
TUTORIAL BETTER BACKUPS

www.linuxvoice.com

WHY DO THIS?
•  Understand common 

Linux/Unix archiving 
tools.

•  Save time with 
incremental backups.

•  Encrypt your data for 
maximum security.

LINUX 101: 
BACK UP YOUR DATA
Data loss can be agonising, whether it involves business 
documents or family photos. Never lose a file again with our guide!

 TUTORIAL

82

MIKE SAUNDERS

L inus Torvalds has made some classic quips
over the years. Back in 1996, when announcing 
the release of Linux kernel 2.0.8, he noted that 

his hard drive was close to buying the farm, and 
added: “Only wimps use tape backup; real men just 
upload their important stuff on FTP, and let the rest of 
the world mirror it.”

And it’s a good point, especially today. If you’re an 
open source software developer, you probably don’t 
keep backups of your code, as it’ll already be on 
SourceForge, or GitHub, or a million other repositories 
and mirror sites. But what about personal files? What 

about your music collection, letters, financial 
documents, family snaps and so forth?

You can upload them onto a cloud storage service 
such as Dropbox, but there’s no guarantee that the 
service will be around in the future, nor that 
government spooks aren’t poking around inside your 
data. Ultimately, the best way to keep your data safe 
and secure is to make your own backups and maintain 
full control – and that’s what we’ll focus on now. We’ll 
start off looking at the basic archiving tools included 
with every Linux distro, then examine more advanced 
options for incremental backups and encryption.

ROLLING UP A TARBALL1

Many Linux and Unix commands have intriguing
names that hark back to the early days of computing. 
For instance, the tool that’s used to join a bunch of 
files together into a single file is called tar, which is a 
contraction of “tape archiver”. Yes, it’s a program that 
was originally designed for data tapes (we last used 
one in 2004), which aren’t so much in common use 
today, but its job is still important.

You see, the Unix philosophy is all about small and
distinct tools doing individual jobs, so that users can 
plug them together. (In contrast to giant megalithic 
applications that do a million things ineptly.) So when 
you create a compressed archive of some files in 
Linux, you actually end up using two programs. Take 
this command, for instance:
tar cfvz mybackup.tar.gz folder1/ folder2/

Have a peek inside a 
tarball without extracting it 
using the tar tfv command.



BETTER BACKUPS TUTORIAL

www.linuxvoice.com 83

This creates a single, compressed file (a tarball)
called mybackup.tar.gz, containing folder1 and 
folder2 – you can add as many files or directories as 
you want onto the end. Now, we’re using tar here to 
create the tar archive (a single file), hence the .tar part 
of the filename. But the z option to the command 
says that we want to run it through the gzip 
compression program as well, so we end up with .tar.
gz. (The c option means create an archive, f means to 
create a file (instead of spitting the output to the 
terminal), and v means verbose, so it shows each file 
as it’s being added.)

You can change the compression program that’s 
used. For instance:
tar cfvj mybackup.tar.bz2 folder1/ folder2/
tar cfvJ mybackup.tar.xz folder1/ folder2/

Here we’ve replaced the z (gzip) option with j and J, 
which means bzip2 and xz respectively. These 
programs use different algorithms to compress data, 
and the results can vary widely. The table below 
shows the time required to compress a 700MB folder 
containing a mixture of executable files, along with the 
resulting file size:

So you can see that xz is much, much slower than 
gzip, but it’s also considerably better at compression. 
Different compression tools work better with different 
file types (eg some are more suited to audio data), so 
for your own backups, it’s worth trying them all and 
seeing what results you get. You also need to consider 
the trade-off between speed and size: if your backup 

THE MIGHTY POWER OF RSYNC2

So we’ve seen how to make simple compressed
backups of data, but it’s time to delve a bit deeper with 
the hugely versatile rsync tool. As its core, rsync helps 
you to synchronise data between a source and a 
destination directory, but various features make it 
especially useful for backup purposes. Another plus 
point is that it’s ubiquitous – you can find it in virtually 
every Linux distribution, and it’s also installed by 
default in Mac OS X and available for Windows.

Let’s say you have a folder called myfiles with a few 
items in it, and an empty folder called backup. To copy 
the files from the former to the latter:
rsync -avh myfiles/ backup/

The -a option here means archive mode, so that
metadata such as timestamps and permissions are 
preserved, while -v means verbose (providing extra 
information) and -h presents the information in a 
more human-readable form. When you execute the 
command, you’ll see a list of files being copied, along 

with the total amount of data that was transferred.
Now, you’re probably thinking: “Big wow! I can do that 
with a normal cp operation, right?” That’s true, but try 
running the same command again – and notice the 
amount of data that’s copied. Just a few bytes. 
Helpfully, rsync is cleverer than cp and checks to see if 
files already exist before copying them. And here’s 
where it’s great for backup purposes: it makes 
incremental backups, and doesn’t shift data around 
unnecessarily.

For example: say you’ve been using a USB key to 
back up important files each month. The last backup 
of /home/you was 10GB. Since the last backup,
you’ve only created a few extra files and your home 
directory contains 11GB. If you use rsync to perform 
the backup, it will only transfer the 1GB that has 
changed in the meantime, and not copy the whole 
11GB over mindlessly. This saves a lot of time (and 
makes flash media last longer!).

If you’re not overly familiar 
with the command line, 
the Grsync GUI front-end 
to rsync (www.opbyte.it/
grsync/) can make life 
easier.

Compression performance
Program Time Size
gzip 48.9s 231MB
bzip2 2m34s 208MB
xz 10m1s 164MB

PRO TIP
You can open .tar.gz, .tar.
bz2 and .tar.xz files on 
almost any Linux system, 
but what about backups 
that need to be opened 
on Windows machines? 
You can get third-party 
software to handle these 
formats, but it’s often 
simpler to just use the 
de-facto standard Zip 
format. To create an 
archive: zip -ry file.zip 
folder/, and to extract use 
unzip file.zip. When 
creating, you can also add 
the -1 option for the 
fastest compression (but 
larger resulting files), or 
-9 for slower compression 
(but smaller files).

media has plenty of space and you want to archive
files quickly, gzip is the way to go. If you need to be 
more economical with space but can leave the 
archiving process running overnight, xz is better.

Extracting a compressed file is easy:
tar xfv mybackup.tar.gz

The same command works for files compressed
with bzip2 and xz. If you want to peek inside an 
archive to see what files are contained therein, without 
actually expanding it, use:
tar tfv mybackup.tar.gz

Again, this works for the other formats too. And if
you have an archive without a useful filename 
extension – so you don’t know what format it’s in – 
just run the ever-useful file tool on it, eg file 
mybackup.xxx.



TUTORIAL BETTER BACKUPS

www.linuxvoice.com84

By default, rsync won’t delete files from the
destination directory if they have been removed from 
the source, but you can change that with:
rsync -avh --delete myfiles/ backup/

This is useful if you want your backups to be simple
snapshots from certain points in time, and you don’t 
want old and unwanted files lingering around forever.

Another great feature of rsync is the ability to 
narrow down the range of files to be stored. Try this:
rsync -avh --include=”*.jpg” --exclude=”*” myfiles/ backup/
In this case, we’re using wildcards to tell rsync to copy
all files that end in .jpg, and exclude everything else 
(the asterisk means “all text” – ie any filename). This is 
handy when your home directory is a jumble of stuff, 
and you just want to back up your MP3, Ogg or FLAC 
files. (Use multiple --include options if you want to 
copy several types of file.)

Finally in this section, rsync also works a treat when 
copying files to remote servers. This helps if you have 
a NAS box somewhere on your home network, for 

instance, and you want to back up your desktop or
laptop files to it. The simplest way to do this is via 
SSH, so if you have an SSH server running on the 
remote machine, you can do:
rsync -avhze ssh myfiles/ user@remote.box:backups/

The two options we’ve added here are z (to
compress the data going across the network), and e 
followed by ssh to tell rsync which protocol we’re 
using. Then we specify the local folder as usual, 
followed by a user and hostname combination, and 
then the folder in that user’s home directory where the 
backup should be created.

Oh, and a last bit of efficiency awesomeness:  
when large files have been modified, rsync can detect 
which bits have changed, so it doesn’t have to 
transmit entire files each time. If you take a large file 
and tack an extra byte on the end (eg echo x >> file), 
and then run rsync again, you’ll see that it only sends 
the chunk that has changed. This really cuts down on 
bandwidth usage.

PRO TIP
Somtimes you’ll see .tar.
gz and .tar.bz2 filenames 
written in a slightly 
shorter form: .tgz and  
.tbz2. This can help when 
files are being 
transmitted to older 
versions of certain 
operating systems that 
could get confused by 
multiple full-stop 
characters (naming no 
names…).

EncFS in action: the first 
directory shows the 
regular files, while the 
second is the encrypted 
versions with funny 
filenames.

Media and location

Once you have the perfect backup system in place, you’ll need 
to choose the right kind of media to store your data. On the 
low end, recordable DVDs are cheap and cheerful, and decent 
brands have guarantees for longevity (providing you keep the 
discs in the right environment). Blu-ray is becoming 
increasingly affordable as well – an external USB writer costs 
around £65, and for a spindle of 50 TDK discs (holding 25GB 
each) you’ll pay a smidgen under £30.

Then there are external USB hard drives, which are reaching 
impressive capacities (2TB for around the £75 mark), along 
with tape drives that many businesses still swear by. In any 
case, if your data is incredibly important and you’re making 
multiple backups, it’s a good idea to use a variety of media. 

Imagine using three hard drives from the same vendor for your 
backups, only to find that a design defect makes them all 
break after six months…

Then there’s the question of where to store your backup 
media. Where possible, it’s a good idea to use different 
physical locations, to prevent everything from being lost in the 
case of robbery, fire or natural disaster. If you use Linux at 
home, you could always tightly encrypt your data using the 
guides in this article and ask a friend or neighbour to put a 
DVD or USB hard drive in a safe place. Most banks in the UK 
have stopped offering safety deposit box services now, 
although you can find independent companies that claim to 
store physical items securely.



BETTER BACKUPS TUTORIAL

www.linuxvoice.com 85

Mike Saunders stores his data by printing out hex dumps and 
laminating the sheets. His cellar holds a whopping 30MB!

ENCRYPTING YOUR DATA3

And here we come to arguably the most important
step in a backup procedure: encrypting your data. 
Obviously, this is essential if you’re going to store your 
files in a cloud-based service such as Dropbox, but it’s 
also well worth considering for locally stored backups 
as well. If someone gets physical access to your 
machines and nabs the drives, at least they won’t get 
their mitts on your critical data.

If you’ve looked online for encryption tutorials 
before, you might’ve been overwhelmed by all of the 
options available. That’s not a bad thing per se – it’s 
good that there are so many methods and algorithms 
in widespread usage. Monocultures are normally bad, 
and if everyone were using the same encryption 
system and a fatal flaw in it were discovered, we’d all 
be doomed. So here are a couple of possibilities.

The simplest method is to use GnuPG like so:
gpg -c --cipher-algo AES256 filename

You’ll be asked to enter a password (twice, to
prevent typos from encrypting your file with the wrong 
password). The file will then be encrypted using a 
symmetric cypher, AES-256, which is strong enough 
for general usage, and the resulting file will be given a  
.gpg extension. To decrypt it, simply enter:
gpg filename.gpg

And that’s it. It’s also possible to encrypt using
public/private key combinations, although that’s a 
more complicated process and beyond the scope of 
this tutorial. But if you’re interested, see  
http://serverfault.com/a/489148.

Extra security with EncFS
Instead of encrypting individual files or tarballs, you
can also add a layer of encryption onto your 
filesystem. So you can work with files normally, but 
when you shut down your machine, they’re 
automatically stored in an encrypted format. To do 

this, install EncFS; it’s a userspace filesystem that’s
available in most distros, and in Debian/Ubuntu it’s 
just an apt-get install encfs away.

Firstly, create two directories in your home directory 
like so:
mkdir ~/encrypted ~/decrypted
(If you’re not too familiar with the shell, ~ is a shortcut
for your home directory.)

Now, the first directory here will be used as a 
permanent store for your data (in encrypted format), 
while the latter will be used on a temporary basis 
when you want to access the files. Enter this:
encfs ~/encrypted ~/decrypted

When prompted, hit p for ‘paranoid’ mode, and then
enter a password (preferably long) that will be used to 
secure your data. The encrypted directory will now be 
mounted in decrypted, so try copying some files into 
the latter. Everything looks normal at this stage – you 
can work with your files just like in any other directory. 
Switch into the encrypted directory, however, and run 
ls – you’ll see that there is the same number of files 
as in decrypted, but they all have bizarre names like 
XEfn2,34CC-Bu3hs.

These are the encrypted versions, in which the data 
permanently lives. So once you’re finished doing your 
work in the decrypted directory, enter:
cd ~
fusermount -u ~/decrypted

This unmounts the encrypted drive from decrypted, 
so the latter is now empty; as mentioned, it’s just a 
temporary place for working with the readable data. 
The permanent store is in encrypted, and you can 
access it at any point by repeating the previous  
encfs ~/encrypted ~/decrypted command and 
entering your password. 

Alternative tools

We’ve focused on a core set of Linux tools in this article, 
but you can find more specialised open source backup 
solutions as well. Bacula (www.bacula.org) is a notable 
example that focuses on enterprises and backing up data 
over the network. To give you an example of its target 
users, it lets you print out special barcodes to stick on 
data tapes that can be then chosen in a tape drive 
auto-changer.

BackupPC (http://backuppc.sf.net), meanwhile, uses a 
client/server model, where the server organises backup 
schedules for multiple clients on the network. It’s a 
complicated program, but thanks to its web-based 
administration panel, you don’t have to faff around too 
much at the command line to set it up.

For home desktop users, Areca Backup  
(www.areca-backup.org) is a mature and well-designed app 
written in Java, while Back In Time (http://backintime.
le-web.org) strives to provide a snapshot-based alternative 
to Apple’s Time Machine system.

PRO TIP
Complex rsync operations 
can do potential damage, 
such as overriding 
important data, so it’s 
often worth adding the 
--dry-run option when 
you first run the 
command. This will show 
you exactly what rsync 
intends to do, without 
actually doing it. Once 
you’re satisfied that 
everything is in order, 
re-run the command 
without it.

Back In Time clones some 
features of Apple’s Time 
Machine, and has both 
Gnome and KDE-based 
front-ends.


