
1

Getting Started

First Steps with MeVisLab

Getting Started

2

Getting Started

Published April 2009
Copyright © MeVis Medical Solutions, 2003-2009

iii

Table of Contents
1. Before We Start ... 1

1.1. Welcome to MeVisLab ... 1
1.2. Coverage of the Document .. 1
1.3. Intended Audience ... 1
1.4. Requirements .. 2
1.5. Conventions Used in This Document .. 2

1.5.1. Activities ... 2
1.5.2. Formatting .. 2

1.6. How to Read This Document ... 2
1.7. Related MeVisLab Documents ... 3
1.8. Glossary (abbreviated) ... 4

2. The Nuts and Bolts of MeVisLab .. 6
2.1. MeVisLab Basics ... 6
2.2. Development in MeVisLab ... 7
2.3. MeVisLab Modules .. 8
2.4. Networks ... 9
2.5. Overview of Important Files .. 10
2.6. User Interfaces Controls .. 11
2.7. How to Find More Information on Networks and Modules ... 12

3. Loading and Viewing Images .. 13
3.1. The MeVisLab GUI .. 13
3.2. Searching and Adding Modules .. 14
3.3. Using the ImageLoad Module ... 16
3.4. Adding Viewers to ImageLoad .. 22

3.4.1. Adding the View2D Module ... 22
3.4.2. Adding the View3D Module ... 25

3.5. Alternative Ways to Load Images ... 26
3.5.1. Dragging Images onto the Workspace .. 26
3.5.2. Adding Images via the DICOM Browser ... 27
3.5.3. Using the LocalImage Module ... 27

3.6. A Note on Importing DICOM Images .. 29
4. Implementing a Contour Filter ... 30

4.1. Loading the Input Image .. 30
4.2. Implementing the Contour Filter .. 31
4.3. Parameter Connection for Synchronization .. 35

5. Defining a Region of Interest (ROI) ... 38
5.1. Creating a Viewer with a Selection Rectangle ... 39
5.2. Adding a Second Viewer for the Subimage ... 39
5.3. Adding the Interactivity for the Viewers ... 40

6. Creating an Open Inventor Scene ... 45
6.1. Introduction to Open Inventor ... 46
6.2. Creating the Applicator .. 48
6.3. Creating the Interaction .. 50
6.4. Creating the Anatomical Image .. 53
6.5. Finishing the Complete Open Inventor Scene .. 55

7. Starting Development with Package Creation ... 59
7.1. What are Packages ... 59
7.2. Creating a User Package for Your Project ... 61

8. Introduction to Macro Modules .. 63
9. Developing a Macro Module for an Applicator .. 65

9.1. Creating a Basic Global Macro ... 65
9.2. Adding the Macro Parameters and Panel .. 70
9.3. Programming the Python Script .. 75
9.4. Addition: Shifting the Whole Tip ... 80

10. Excursion: Image Processing in ML ... 84

Getting Started

iv

10.1. Some Advanced Information on Image Processing .. 84
10.2. Structure of MeVisLab ... 84
10.3. Coordinate Systems ... 85
10.4. Affine Transformations ... 86
10.5. DICOM Data and Coordinates .. 87
10.6. Coordinate Systems in the MeVisLab GUI ... 89
10.7. Data Types for DICOM and TIFF .. 91
10.8. Image Processing Concepts: Pages, Slices, VirtualVolumes and more 92

11. Introduction to C++ Modules ... 94
11.1. Module and Connection Specifics on the C++ Level ... 94
11.2. Some Tips for Module Design .. 95

11.2.1. Macro Modules or C++ Modules? .. 95
11.2.2. Combining Functionalities .. 95
11.2.3. Tips for Module Testing ... 96

11.3. Programming Examples ... 96
12. Developing ML Modules ... 98

12.1. Creating a New ML Module for Adding Values .. 98
12.1.1. Creating the Basic ML Module with the Project Wizard 98
12.1.2. Preparing the Project ... 102
12.1.3. Programming the Functions of the ML Module .. 104
12.1.4. GUI Creation/Optimizing .. 105
12.1.5. Creating an Example Network and Help File ... 106

12.2. Creating an ML Module For Simple Average ... 107
12.2.1. Creating the Basic ML Module with the Project Wizard 108
12.2.2. Editing the Header File of SimpleAverage .. 109
12.2.3. Editing the CPP File of SimpleAverage .. 109
12.2.4. Testing the Module ... 111

12.3. Combining Two Modules in One Project .. 111
12.3.1. Copying the Souce Files .. 111
12.3.2. Editing and Recompiling the .pro File .. 111
12.3.3. Editing the Project in the Development Environment 112
12.3.4. Editing the Module Definition (.def) ... 113
12.3.5. Cleaning up Folders and Example Networks ... 113

13. Developing Inventor, WEM and CSO Modules ... 114
13.1. Inventor Modules ... 114
13.2. Winged Edge Mesh Library (WEM) ... 114
13.3. Contour Segmentation Objects (CSO) ... 116

v

List of Figures
1.1. Welcome Screen and Documentation Links .. 4
2.1. Image Processing Pipeline ... 8
2.2. Network Layout ... 10
2.3. Module Context Menu: Show Help ... 12
3.1. MeVisLab User Interface .. 13
3.2. Viewer Selection .. 14
3.3. Modules Menu and Module Browser ... 15
3.4. Quick Search Options .. 16
3.5. Quick Search Results .. 16
3.6. ImageLoad Module .. 16
3.7. ImageLoad Panel and Output Inspector .. 17
3.8. Adjusting the Windowing .. 18
3.9. Output Inspector with Image Properties .. 19
3.10. Output Inspector with Additional Information Display .. 20
3.11. 3D Output Inspector ... 20
3.12. Connector Details in the Edit Menu .. 21
3.13. Connector Details in the Preferences .. 21
3.14. Connector Details Depending on Zoom ... 22
3.15. Setting up the Connection .. 23
3.16. Panel of View2D .. 23
3.17. Opening the Settings Panel of View2D ... 24
3.18. Settings Panel of View2D ... 24
3.19. Automatic and Settings Panel of View2D .. 25
3.20. Connecting the View3D Module .. 26
3.21. The View3D Panel ... 26
3.22. DICOM Browser .. 27
3.23. LocalImage Module .. 28
3.24. Show the Internal Network ... 28
3.25. Internal Network of the LocalImage Module ... 28
3.26. DicomImport .. 29
4.1. Example Network Contour Filter ... 30
4.2. Viewing the Input Image for the Contour Filter .. 31
4.3. Adjust Filter Parameters ... 32
4.4. Constructing the Filter Pipeline — Convolution Output ... 33
4.5. Constructing the Filter Pipeline — Morphology Output ... 33
4.6. Constructing the Filter Pipeline — Arithmetic2 Output .. 34
4.7. Creating a New Group ... 34
4.8. Resulting Contour Filter Network .. 35
4.9. Establishing the Parameter Connections ... 36
4.10. Resulting Network .. 37
5.1. Example Network ROISelection .. 38
5.2. Viewer with Selection Rectangle ... 39
5.3. Viewer for the Subimage ... 40
5.4. Searching for World to Voxel Conversion .. 40
5.5. WorldVoxelConvert Panel .. 41
5.6. WorldVoxelConvert Modules Added .. 42
5.7. Adding the Parameter Connections .. 43
5.8. Example Network ROI Selection ... 44
6.1. Example Network: Open Inventor Result ... 45
6.2. Applicator Only .. 46
6.3. Traversing in Open Inventor ... 47
6.4. Creating the Applicator Shaft ... 48
6.5. Coloring the Applicator Shaft .. 49
6.6. Adding an Applicator Tip .. 49
6.7. Adding Translation and Grouping ... 50

Getting Started

vi

6.8. Finishing the Applicator .. 50
6.9. Using SoCenterballManip ... 51
6.10. Connecting Parameters .. 52
6.11. Combining Interaction and Applicator .. 52
6.12. Loading a Local Image .. 53
6.13. Adding the GigaVoxel Renderer ... 53
6.14. Copying the Windowing Modules from View3D .. 54
6.15. Adding the Windowing to the Applicator .. 54
6.16. Combining the Groups ... 55
6.17. Combined Graphic Elements .. 56
6.18. Adding the Applicator Scaling ... 57
6.19. Original Applicator/Interaction Arrangement ... 57
6.20. Improved Applicator/Interaction Arrangement ... 58
7.1. Example for a Package Tree .. 59
7.2. Preferences — Packages .. 60
7.3. Package Wizard .. 61
9.1. Starting a new Macro from the Existing Applicator .. 65
9.2. Renaming Instance Names .. 66
9.3. Creating a Local Macro ... 67
9.4. Selecting a Genre ... 68
9.5. Module Properties ... 69
9.6. File Browser with the New Macro Module Files ... 70
9.7. ApplicatorMacro as Macro Module .. 70
9.8. ApplicatorMacro.script in Mate .. 70
9.9. ApplicatorMacro Module with Output Connector .. 71
9.10. Internal Network of the ApplicatorMacro Module .. 72
9.11. Automatic Panel of the ApplicatorMacro Module .. 73
9.12. Panel of the ApplicatorMacro Module .. 74
9.13. Parameters for Diameter Setting ... 76
9.14. Changing the Diameter of the Applicator ... 77
9.15. Strange Behavior of the ApplicatorMacro .. 78
9.16. Adding the Correct Tip Translation ... 79
9.17. Complete ApplicatorMacro .. 79
9.18. Feeding the SoCalculator Module ... 81
9.19. Improved Applicator Macro Module ... 82
10.1. MeVisLab Structure ... 84
10.2. Coordinate Systems ... 85
10.3. Matrix Multiplication ... 86
10.4. World Coordinates in Context of the Human Body ... 88
10.5. The DICOM Tag Viewer ... 89
10.6. Image Properties for an Ideal Image ... 90
10.7. Image Properties for a Sagittal Image ... 90
10.8. Image Properties in the Info Module .. 91
12.1. Entering the ML Module Properties I ... 99
12.2. Entering the ML Module Properties II .. 100
12.3. Entering the ML Module Properties — Fields ... 101
12.4. Project in Visual C++ 2005 ... 102
12.5. Project in Xcode .. 103
12.6. Project in Code::Blocks .. 104
12.7. Example Network for SimpleAdd ... 107
13.1. WEM IsoSurface Example Network ... 115
13.2. WEM Extrude Example Network ... 115
13.3. Freehand Contours with the SoView2CSOEditor Example Network 116

vii

List of Tables
1.1. Related Documents ... 3
2.1. Module Types ... 8
2.2. Connectors .. 9
2.3. Connections .. 9
2.4. Important Files .. 11

1

Chapter 1. Before We Start
1.1. Welcome to MeVisLab
MeVisLab is a rapid prototyping and development platform for medical image processing and
visualization. With its image processing library, it fulfills the following requirements:

• Able to handle large, six-dimensional images (x, y, z, color, time, user-defined).

• Offers easy ways to develop new algorithms or changing/improving existing ones in a modular C++
interface, perfect for a fast-developing research area.

• Offers easy ways of combining algorithms to algorithm pipelines and networks.

• Fast and easy integration into clinical environments due to standard interfaces, e.g. to DICOM.

• Fair performance for clinical routine due to a page-based, demand-driven approach in the image
processing.

Beside general image processing algorithms and visualization tools, MeVisLab includes advanced
medical imaging modules for segmentation, registration, volumetry and quantitative morphological and
functional analysis.

Based on MeVisLab, several clinical prototypes have been developed, including software assistants for
neuro-imaging, dynamic image analysis, surgery planning, and vessel analysis.

The implementation of MeVisLab makes use of a number of well known third-party libraries and
technologies, most importantly the application framework Qt, the visualization and interaction toolkit
Open Inventor, the scripting language Python, and the graphics standard OpenGL. In addition, modules
based on the Insight ToolKit (ITK) and the Visualization ToolKit (VTK) are available.

1.2. Coverage of the Document
Reading this document you will become familiar with the basic features of MeVisLab and how to use
them. The chapters are going from the easy to the complex, from the visual programming to macros
and programming modules in C++. You will get an idea of how to

• work with the graphical module/network interface concept of MeVisLab

• load and view 2D, 3D and 4D images of various formats

• prototype your specific image processing, image visualization or image interaction tasks with a
standard set of modules provided by the SDK distribution

• let your own image processing C++-algorithms run in MeVisLab as self-defined module plug-ins

• create compact graphical user interface representations of your image processing and image
visualization pipelines, functioning as quasi-applications

Note

Depending on your software license, not all features of MeVisLab may be available. For
licensing information, please refer to the MeVisLab website (http://www.mevislab.de/).

1.3. Intended Audience
Getting Started is aimed at people new to MeVisLab and those who want to explore more of its options.

Before We Start

2

The necessary prior knowledge depends on the MeVisLab usage:

• For pure network creation, no programming knowledge is required.

• For macro creation, basic knowledge of Python or JavaScript and the MDL (MeVisLab Definition
Language) is required.

• For developing modules, basic C++ knowledge is required.

• For using the visualization options to their best advantage, some knowledge of image processing and
computer graphics is required.

1.4. Requirements
It is assumed that you have a working installation of the MeVisLab SDK distribution with a standard set
of modules. Supported platforms are Windows, Linux and Mac OS X. A complete overview of supported
platforms and compilers can be found at the MeVisLab website (http://www.mevislab.de/).

1.5. Conventions Used in This Document

1.5.1. Activities
Select: Click an object with the left mouse button.

Right-click: Click an object with the right mouse button, usually to open the context menu.

Double-click: Click the object twice in fast repetition. Starts the default action of the object (e.g. for a
module, opens the default panel).

Drag: Click the object with the mouse and keep the mouse button pressed while moving the object to
another position. Place/stop by releasing the mouse button.

Right-drag: Click the object with the right mouse button and keep it pressed while moving (as described
for drag).

CTRL+N: Press the keys CTRL and N at the same time.

ALT + double-click: Press the ALT key and double-click the object.

Menuitem → Submenuitem: Open the menu and select the submenu item.

1.5.2. Formatting
Views: Parameter Connections Inspector

MeVisLab modules: ImageLoad:

Parameters: Diameter

Programming code: *outVoxel = *in0Voxel and also

 outMin = inMin + constValue
 outMax = inMax + constValue

1.6. How to Read This Document
If these are your first steps with MeVisLab, start with Chapter 2, The Nuts and Bolts of MeVisLab and
proceed to the first network example Chapter 3, Loading and Viewing Images.

Before We Start

3

If you have basic experience with image processing and want to learn more about visualization and
scenes in Open Inventor, read Chapter 6, Creating an Open Inventor Scene.

If you have basic experience with all module types in MeVisLab and think about extending your networks
with scripting, read Chapter 9, Developing a Macro Module for an Applicator.

If you have basic experience with the possibilities of MeVisLab networks and think about programming
your own modules in C++, start with Chapter 11, Introduction to C++ Modules.

In addition, the following sections might be of help:

• Chapter 10, Excursion: Image Processing in ML for some background on coordinate systems and
how they are used in MeVisLab.

• Chapter 7, Starting Development with Package Creation for the package structure of the module
database and how to create your own packages for development.

1.7. Related MeVisLab Documents
Besides the document at hand, a number of other documents are available.

Table 1.1. Related Documents

Title Contents

MeVisLab Reference Manual Reference for the MeVisLab user interface

MDL Reference MeVisLab Definition Language (MDL) reference

ML Guide MeVis Library Programming Guide

ML Reference (HTML only) Collected help texts for all modules

Inventor Module Help Help for Open Inventor modules

Toolbox Reference MeVisLab Toolbox Class Reference for various
libraries

MeVisLab - Mac OS X Guide Details for MeVisLab on Mac OS X

ToolRunner Manual for ToolRunner, a stand-alone program
delivered with MeVisLab 2.0

qmake qmake in the MeVisLab context, including
explanations for .pro and .pri files

The full list of available documents and resources is available on the Welcome Screen (which can also

be opened via Help → Welcome). While the Getting Started tab offers links to some important resources
and demos, the Documentation tab links to all documentation (HTML and PDF, if available).

Before We Start

4

Figure 1.1. Welcome Screen and Documentation Links

Tip

On the Documentation tab, you can also find the help files for all installed packages and
your user packages listed. This is possible because the documentation links are created
dynamically for your installation. For more information on packages, see Chapter 7, Starting
Development with Package Creation.

For all questions related to programming that are not covered by the documentation, please refer to the
MeVisLab forum where you can search old topics or post new questions.

1.8. Glossary (abbreviated)
For an extensive glossary, see the ML Guide.

ML, MDL, Open Inventor — Some Important Terms
Explained
Base Base fields/objects, for example the connectors for base objects. Base

connectors handle pointers to an abstract data object defined by the
user. How the base object is handled depends on how it is integrated
in the module.

BaseOp The base class (superclass) of all ML modules (page-based, demand-
driven). Not to be confused with the base object described above. WEM
and CSO modules are also derived from BaseOp.

ITK™ The Insight Segmentation and Registration Toolkit™. A large,
well known, open source image processing library which has been
wrapped in many parts for MeVisLab to work seamlessly with other ML
modules. See www.itk.org and www.mevislab.de for details.

ML MeVis Image Processing Library, also called MeVis Library at times.

MDL MeVis Description Language, the language in which user interfaces of
modules and applications are written.

Before We Start

5

MFL Formerly the MeVisLab File Library, the library that is used for reading
and writing any image format (for example, DICOM/TIFF). As of
MeVisLab 2.0, it is named “MLImageIO”.

MeVisLab IDE The Integrated Development Environment.

Open Inventor Object-oriented 3D toolkit on top of OpenGL, a library of objects and
methods used for interactive 3D graphics

VTK™ The Visualization Toolkit™. A large, well known, open source
visualization library which has been wrapped in many parts to work
also in MeVisLab. See www.vtk.org and www.mevislab.de for details.

6

Chapter 2. The Nuts and Bolts of
MeVisLab
In the following chapter, we give you a brief (and dry) introduction into the nuts and bolts of MeVisLab,
that is:

• Section 2.2, “Development in MeVisLab”

• Section 2.3, “MeVisLab Modules”

• Section 2.4, “Networks”

• Section 2.5, “Overview of Important Files ”

• Section 2.6, “User Interfaces Controls”

• Section 2.7, “How to Find More Information on Networks and Modules”

2.1. MeVisLab Basics
Some of the most prominent features of MeVisLab:

• Full 6D image processing (x, y, z, color, time, user dimensions)

• Paging

• Caching

• Multithreading support

• Platform-independent

• Scripting support (Python and JavaScript)

• Macro system

• Defining of GUI elements with the MDL scripting language

• C++ programming interface

• Pure C++ and object-oriented design

• Self-descriptive module and application interfaces

• Error handling: configurable exception usage; configurable error handling; diagnosis modules,
automatic module tester

• Runtime type system

• Extensible voxel type

• Resources-friendly memory usage

• Supports highly complex module networks

• Based on standard libraries

The Nuts and Bolts of MeVisLab

7

• Currently about 1300 modules

• Long time maintenance

2.2. Development in MeVisLab
In MeVisLab, development can be done on three levels:

• Visual level: Programming with “plug and play”: Individual image processing, visualization and
interaction modules can be combined to complex image processing networks using a graphical
programming approach.

• Scripting level: Creating macro modules and applications based on macro modules: Python or
JavaScript scripting components can be added to implement dynamic functionality on both the
network and the user interface level.

• C++ level: Programming modules: New algorithms can easily be integrated using the modular,
platform-independent C++ class library.

In addition, the abstract, hierarchical MeVisLab Definition Language (MDL) allows designing efficient
graphical user interfaces, hiding the complexity of the underlying module network to the end user.

From a workflow point of view, an application development would look as follows:

1. Connect existing modules to networks.

2. Develop new modules, if necessary

3. Build user interface (GUI).

4. Build macro modules to recycle complex functionality.

5. Use scripts to control networks, GUIs and macros.

6. Build installer (only with a special ADK license).

In MeVisLab, the algorithms are visualized in a network of modules (graphs). In a minimalist approach,
an image processing pipeline would consists of an image source, some algorithm/image processing
step in the middle and a viewer for displaying the output. This pipeline is mirrored in the MeVisLab GUI.

The Nuts and Bolts of MeVisLab

8

Figure 2.1. Image Processing Pipeline

Modules can be connected in various ways which will be described in the following paragraphs.

2.3. MeVisLab Modules
Within the concept of MeVisLab the basic entities we are working with are graphical representations of
modules with their specific functions for image processing, image visualization and image interaction.

The three basic module types (ML, Inventor and macro) are distinguished by their colors:

Table 2.1. Module Types

Type Look Characteristics

ML Module (blue) page-based, demand-driven
processing of voxels

Open Inventor Modules (green) visual scene graphs (3D); naming
convention: all modules starting
with “So”

Macro Module (brown) combination of other module
types, allowing implementing
hierarchies and scripted
interaction

Most modules have connectors which are displayed on the module. These represent the inputs (bottom)
and outputs (top) of modules.

The Nuts and Bolts of MeVisLab

9

In MeVisLab, three types of connectors are defined.

Note

In principle, every module type can have any kind of connector.

Table 2.2. Connectors

Look Definition

square Base objects: pointers to data
structures

triangle ML images

half-circle Inventor scene

By connecting these connectors and therefore establishing a so-called data connection, image data or
Open Inventor information is transported from one module to one or more others.

Besides connecting connectors, any field of modules can be connected to other compatible fields of
modules with a parameter connection.

Table 2.3. Connections

Type Look Characteristics

Data connections (connector
connections)

The direct connection between
connectors. Depending on which
connectors are involved, the
connection is rendered in a
different color: blue for ML, green
for Open Inventor, brown for
Base.

Parameter connections (field
connections)

Connections created by
connecting parameter fields
within or between modules

Tip

For more display options, see the MeVisLab Reference Manual, chapter “Modules and
Networks”.

2.4. Networks
Networks are connections between modules with which you can implement complex processing tasks
from sets of standard ML, Inventor, WEM, CSO, ITK, or VTK modules.

Networks are edited and saved as *.mlab files in MeVisLab.

The Nuts and Bolts of MeVisLab

10

In Figure 2.2, “Network Layout”, the example network of the RegionGrowing module is shown. It consists
of all three types of modules and shows data connections as well as parameter connections.

Figure 2.2. Network Layout

Remember that macro modules are encapsulated networks of their own, so you effectively work with
subnetworks (see Chapter 8, Introduction to Macro Modules for more information).

Tip

For information on the involved classes for the programming of modules, connectors and
connections, see Chapter 11, Introduction to C++ Modules.

2.5. Overview of Important Files
Here a list of the most important file types:

The Nuts and Bolts of MeVisLab

11

Table 2.4. Important Files

File type Contents

.mlab Network file, includes all information about its
modules and their connections and settings.

.def Module definition file, necessary for a module to be
added to the common MeVisLab module database.
May also include all MDL script parts (if they are
not sourced out to the .script file).

.script MDL script file, typically includes the user interface
definition for panels. See Section 9.2, “Adding the
Macro Parameters and Panel” for an example on
GUI programming.

.py Python file, used for scripting in macro modules.
See Chapter 9, Developing a Macro Module for an
Applicatorfor an example on macro programming.

.js JavaScript file, used for scripting in macro
modules.

.dcm DCM part of the imported DICOM file, see
Section 10.7, “Data Types for DICOM and TIFF”.

.tiff TIFF part of the imported DICOM file, see
Section 10.7, “Data Types for DICOM and TIFF”.

For files related to module programming in C++, see Chapter 11, Introduction to C++ Modules.

2.6. User Interfaces Controls
MeVisLab uses QT for rendering the GUI (panels etc.) and offers a scripting interface.

Every module comes with an automatic panel on which all fields and available settings are listed.

For improving the handling, user interfaces (“panels”) can be added for modules, see Figure 3.19,
“Automatic and Settings Panel of View2D” for an example. Panels are written in MDL and offer the
following possibilities:

• layouting and grouping of fields

• excluding some of the available fields (to make the panels more user-friendly)

• adding additional fields

• adding additional functionality by calling script methods

The components of the user interface are controls.

• User input controls, like text and number edit controls; popup menus, radio buttons, checkboxes, and
trigger buttons. They are typically, but not necessarily linked to a field. Several controls can be linked
to the same field.

• Layout controls, like for horizontal/vertical grouping

• Decoration controls, complex controls, dynamic controls...

To these controls, scripting can be added.

An example for the programming of a small module panel is given in Section 9.2, “Adding the Macro
Parameters and Panel”.

The Nuts and Bolts of MeVisLab

12

Tip

Example GUI modules are available; enter “Test” in the quick search to get a list of available
modules.

For further details on panel scripting, please refer to the MDL Reference.

2.7. How to Find More Information on
Networks and Modules
1. When you enter the module name in the quick search, the About information of the module is

displayed.
2. If the View Module Inspector is open, you can find the About information on the respective tab.
3. To get a detailed description of the module's function and how to use it, refer to its help file.

a. Right-click the module to open the context menu.

b. Select Show Help to open the module's HTML help in your default browser.

Figure 2.3. Module Context Menu: Show Help

4. To see how the module is working, an example network is delivered with most modules.

a. Right-click the module to open the context menu.

b. Select Show Example Network to open the example network on another network tab.

13

Chapter 3. Loading and Viewing
Images
In the following chapter, we will walk through an example network for loading and viewing images.

• Section 3.1, “The MeVisLab GUI”: first steps in the MeVisLab user interface

• Section 3.2, “Searching and Adding Modules”: searching and finding modules

• Section 3.3, “Using the ImageLoad Module”: loading images

• Section 3.4, “Adding Viewers to ImageLoad”: adding viewers (View2D and View3D)

In addition, two special topics are discussed:

• Section 3.5, “Alternative Ways to Load Images”: alternative ways to load images

• Section 3.6, “A Note on Importing DICOM Images”: importing and converting DICOM images to the
internal image format of MeVisLab

3.1. The MeVisLab GUI
First, start MeVisLab (the “how” depends on your platform). After the Welcome Screen (see Figure 1.1,
“Welcome Screen and Documentation Links”), the start view opens.

Figure 3.1. MeVisLab User Interface

By default, MeVisLab starts with an empty workspace and some Views on the right (like the Output
Inspector) and bottom of the screen (usually the Debug Output). In the Debug Output, you can find
information about your MeVisLab installation and start-up, which preferences and license file are loaded,
and if all packages loaded correctly or with errors.

Loading and Viewing Images

14

Views can be configured via the menu bar, View → Views, or by a right-click on the border of Views.

Figure 3.2. Viewer Selection

Some Views arrangement are pre-defined as layouts, which can be selected via View → Layout. If
you are working in the User Default Layout, all changes you make in the Views configuration are
persistent and will be saved as your “User Default Layout”. Therefore, most screenshots in the MeVisLab
documentation are only examples — your own MeVisLab GUI may look different. Only the workspace
always remains visible.

Tip

For details on layouts, see the MeVisLab Reference Manual, chapter “Menu Bar”.

The workspace is the place for constructing and editing module networks. If more than one network is
open, tabs appear on top of the workspace. To create, open and save one or more networks, use the
tool bar buttons or the File menu in the menu bar. To switch between different network tabs, use the
Networks menu in the menu bar or press Tab.

For more detailed information, see the following examples and the MeVisLab Reference Manual.

3.2. Searching and Adding Modules
There are several ways to add a module to the current network, for example:

Loading and Viewing Images

15

• via the menu bar, entry Modules.

• via the menu bar, Quick Search.

• via the View Module Search.

• via the View Module Browser.

• via copy and paste from another network.

• by scripting, see the Scripting Reference.

Both the Modules menu and the Module Browser display all available modules. The modules are
sorted hierarchically by topics and by module name, as given in the file Genre.def.

Therefore, both places are a good starting point when in need of a specific function, like an image load
module.

Figure 3.3. Modules Menu and Module Browser

The last entry DLL lists the modules by their main DLL name.

The advantage of the Module Browser is that you can right-click the entries, open the context menu
and, for example, open the help (in your default Internet browser) or the module files (in Mate, the in-
built text editor).

Note

For a module to get listed, it has to be available in the SDK distribution or in your user-
defined packages. If in doubt or missing something, check out the loaded packages in the

Preferences (on Windows and Linux: Edit → Preferences → Packages; on Mac OS X:

MeVisLab → Preferences → Packages). For details on packages, see Chapter 7, Starting
Development with Package Creation.

Usually the quickest way to add modules to a network is the quick search in the menu bar. It offers you
the possibility to search for modules by module name. By default, the search will also be extended to
keywords and substrings and is case-insensitive. To change these settings, click the magnifier button
for the search options.

Tip

The quick search field does not need to have the focus — any time you enter something
in the MeVisLab GUI while not being in a dialog window, this will be entered into the quick
search automatically.

Loading and Viewing Images

16

Figure 3.4. Quick Search Options

To search for a module to load an image, you could either type “load” or “image”. Let us go with the
second option this time. While typing “image”, the possible results appear. Use the up/down keys on
your keyboard to move to one of the listed modules. The module's About information will appear next
to it, allowing you to decide if this is the right module for you.

Figure 3.5. Quick Search Results

Tip

For a more complex search, use the Module Search View.

Select ImageLoad and press ENTER to add the module to a new network.

Figure 3.6. ImageLoad Module

The module is an ML module, as can be seen by the blue color. It offers one image output connector
(triangle for image, output because it is on the top of the module; see Chapter 2, The Nuts and Bolts
of MeVisLab).

In the next section, we will have a closer look at the module details.

3.3. Using the ImageLoad Module
For the following section, we expect that the Views Output Inspector and Module Inspector are open.

If necessary, add them via View → Views.

1. First, we need to load an image.

Loading and Viewing Images

17

a. Double-click the ImageLoad module to open its panel.

b. Click Browse to select a file for display, The default file browser opens.

c. Go to the MeVisLab DemoData directory at $(InstallDir)Packages/MeVisLab/Resources/
DemoData in the MeVisLab installation path and select a file, for example a head shot
(Head4_t1.small.tif). The image is loaded immediately. (Instead of ImageLoad, you could
also use LocalImage which is optimized for loading images in relative paths, as explained in
Section 3.5.3, “Using the LocalImage Module”).

Tip

If you would like to start with your own image data immediately, please see the chapter
Section 3.6, “A Note on Importing DICOM Images” on how to convert your DICOM slices
into the internal file format of MeVisLab first. Then continue in place.

Module panels are intended to stay open, so keep the panel open or minimize it if it gets in your way.
There are two ways to minimize a panel:

• Click the minimize button on the top right of the panel window: this will minimize only this panel.

• Select Panels → Minimize All Open Panels (or press the respective keyboard shortcuts): this will
minimize all panels of this network.

Note

Do not use the Close button on the ImageLoad panel as this will close (and unload) the
image.

2. For display, you can either add a viewer (we will do this later in this example) or you can click the
module's output connector to display the image in the Output Inspector.

The great thing about the Output Inspector is that it will display the output of any connector in the
process chain (as long it is a format the inspector can interpret). So if you are ever unsure about what
is actually the input or output of a module, simply click the connector to find out.

Figure 3.7. ImageLoad Panel and Output Inspector

Loading and Viewing Images

18

Your image does not look like this? One reason might be that the slice of the image you are looking at
has no information. Click on the Output Inspector and scroll through the slices by

• using the mouse wheel

• keeping the middle mouse button (mouse wheel) pressed and moving the mouse up and down

• pressing the arrow keys

Still not seeing anything? Then try to adjust the visibility range by changing the windowing. For this,
keep the right mouse button pressed while moving the mouse up/down (for window width) or left/right
(for window center). During these actions, the mouse cursor changes into a contrast symbol.

Figure 3.8. Adjusting the Windowing

Both on the panel and on the additional information of the Output Inspector, the image properties can

be found. In the Output Inspector, you can open them by clicking .

Loading and Viewing Images

19

Figure 3.9. Output Inspector with Image Properties

The image properties show the following information (see Chapter 10, Excursion: Image Processing in
ML for more information):

• Image Size in x, y, z, c, t, n

• Page size in x, y, z, c, t, n

• Data type and range

• Voxel size in mm

• World matrix

Two options are available:

• Snap to image center: If selected, the image is centered, that is the middle z slice is shown (only
effective when opening a new display).

• Save as: Opens a Save dialog.

In addition, two key shortcuts are available:

• A: Toggle the display of the annotations.

• I: Toggle the display of an additional information display.

Loading and Viewing Images

20

Figure 3.10. Output Inspector with Additional Information Display

A 3D display is possible (in case of a single slice, its depth is the voxel depth). For this, click the 3D
tab in the Output Inspector.

Figure 3.11. 3D Output Inspector

Note

The 2D and 3D views are independent of each other.

Loading and Viewing Images

21

The 3D display can be rotated. The orientation can be seen on the little cube in the lower right corner
of the viewer (Notation: A = anterior, front; P = posterior, back; R = right side; L = left side; H = head; F
= feet). You can also use the windowing described above for the 2D view.

The information given in the panel and the 2D view image properties of the Output Inspector can also
be displayed right next to the module connector. For this, check

• Extras → Show Image Connector Preview for a thumbnail preview and/or

• Extras → Show Connector Details for connector details.

Alternatively, activate the respective options in the Preferences, section “Network Appearance” (on

Windows and Linux: Edit → Preferences; on Mac OS X: MeVisLab → Preferences).

Figure 3.12. Connector Details in the Edit Menu

Figure 3.13. Connector Details in the Preferences

Loading and Viewing Images

22

The additional information is displayed when single-selecting a module. The amount of displayed
information depends on the zoom factor. To zoom in/out of a network, scroll with the mouse wheel.

Figure 3.14. Connector Details Depending on Zoom

For this example, we will work without the connector details display, because it tends to clutter the
interface.

3.4. Adding Viewers to ImageLoad
Instead of using the Output Inspector (whose display might change with every clicked connector), it is
sensible to add a viewer to the network. There are two standard macro modules available in MeVisLab
which provide standard viewer configurations for 2D and 3D rendering, namely View2D and View3D.
Especially the 2D Viewer is frequently used to examine image processing results within a module
pipeline, for example. Once you begin to implement your own applications, you are free to create your
own viewer implementations adapted to your special tasks.

3.4.1. Adding the View2D Module

1. Add a View2D module to your network. In the Modules menu it is located at Modules → Visualization

→ 2D Viewers → View2D.

The View2D module has one input connector for the image to be rendered. (It also has three Inventor
inputs which are hidden by default, see Chapter 5, Defining a Region of Interest (ROI).)

2. Feed in the image by connecting the image output of the ImageLoad module with the image input of
the View2D module. This is done as follows:

a. Click the output connector of ImageLoad.

b. Keep the left mouse button pressed while dragging the connection to the input connector of View2D
(white line).

c. Check that the connection is well-defined (green line).

d. At the input connector of View2D, release the mouse button and establish the connection (blue
line).

Loading and Viewing Images

23

Figure 3.15. Setting up the Connection

Although the connection is established, no image rendering has started yet. To initialize rendering,
open the View2D panel by double-clicking the View2D module in your network. As you can see, the
default panel is the viewer itself.

Figure 3.16. Panel of View2D

The View2D panel provides a standard viewer with many features, like slicing, zooming, windowing,
annotations, slab view, cine mode, and many more. A full description of all supported features and
how to use them can be found on the View2D help page which you can open from the module's
context menu.

The View2D module offers various settings. As the default panel is the viewer, the Settings panel

needs to be opened explicitly from the context menu via Show Window → Settings.

Loading and Viewing Images

24

Figure 3.17. Opening the Settings Panel of View2D

Figure 3.18. Settings Panel of View2D

As you can see on the Settings panel, the View2D module also offers Inventor inputs that are usually
hidden. Take a look at the module's example network (context menu, Show Example Network) for
the usage of these Inventor inputs connectors. Another module that might get connected here is the
View2DExtension macro module, which extends the viewer for drawing (image overlays, contours,
ROIs), measuring and more.

Note

A module always has one automatic panel and may have an arbitrary number of
additional panel windows, as defined in an MDL file (in the .script file by default). The
automatic panel lists all variables, fields and inputs/outputs of the module; the scripted
panels may only include a fraction of these fields (see also Section 2.6, “User Interfaces
Controls”).

Loading and Viewing Images

25

Figure 3.19. Automatic and Settings Panel of View2D

3. Now is a good time to save your network as MyFirstNetwork.mlab. You can do this in several ways:

• Select File → Save or press the respective keyboard shortcut (for a list for all operating systems,
see the MeVisLab Reference Manual, chapter “Shortcuts”).

• Click the disk symbol in the toolbar.

The network modules and all module parameters are stored. Next time you open the network, you
will get access to the loaded image at the output of the ImageLoad module immediately.

Tip

You can quickly re-open the last twenty networks via the menu bar, File → Recent Files.

Tip

If the option Auto save MeVisLab documents in the Preferences is selected, MeVisLab
networks are auto-saved as <NetworkName>.mlab.auto upon major changes. This
allows for restoring in case of system crashes. Auto-saved copies are deleted when the
according networks are saved.

3.4.2. Adding the View3D Module

The View3D macro module is an easy-to-use application of the SoGVRVolumeRenderer module, which
is a high-end, hardware-based image rendering module using 3D textures. Adding the View3D module
to the network, we get access to a 3D scene of our example image.

Loading and Viewing Images

26

Figure 3.20. Connecting the View3D Module

Figure 3.21. The View3D Panel

In addition to the 3D display offered by the Output Inspector, the View3D viewer comes with several
panels on which you can set display details or even record a movie.

3.5. Alternative Ways to Load Images
Besides the way described above, there are variations.

3.5.1. Dragging Images onto the Workspace
Instead of adding the module, you can drag the image file

• onto the workspace: An ImageLoad module is created automatically in the current network when you
drag a DICOM or TIFF image file from a file browser onto the MeVisLab workspace. The dragged file
is loaded automatically and available at the image output connector of the created ImageLoad module.

Loading and Viewing Images

27

Tip

This mechanism also works for WEM files (creates a WEMLoad module) and CSO files
(creates a CSOLoad module). For these module classes, see Chapter 13, Developing
Inventor, WEM and CSO Modules.

• onto an existing ImageLoad module
• onto the filename field of an existing ImageLoad module

3.5.2. Adding Images via the DICOM Browser

For loading DICOM files (or DCM/TIFF pairs, see Section 10.7, “Data Types for DICOM and TIFF”), you
can use the DicomBrowser module.

With the DicomBrowser, DICOM images can be sorted by DICOM tags like institution, patient, modality
etc. The default browser path is set to the MeVisLab image path at $(InstallDir)/data. You can set
your own default DicomBrowser path in the Preferences, section “Paths”.

Figure 3.22. DICOM Browser

3.5.3. Using the LocalImage Module

Instead of using the ImageLoad module, you can use LocalImage.

LocalImage is a macro module that allows for image selection based on relative paths. This method
is recommended for image referencing because it enables an easier exchange of networks between
cooperating parties. On the panel, the list of supported variables and their meaning is displayed.

Loading and Viewing Images

28

Figure 3.23. LocalImage Module

Macro modules are a combination of an internal network and a script. You can open the internal network
via the module's context menu or by pressing SHIFT and double-clicking the module.

Figure 3.24. Show the Internal Network

In the case of LocalImage, the internal network consists of an ImageLoad only. The difference to that
module is only in the scripting that offers relative instead of absolute paths to the file.

Figure 3.25. Internal Network of the LocalImage Module

Loading and Viewing Images

29

3.6. A Note on Importing DICOM Images
MeVisLab works with its own 3D file format which stores the image values and the image DICOM
tags separately in two files with same name but different extensions: <filename>.tiff and
<filename>.dcm. Without importing your DICOM slices to MeVisLab DICOM/TIFF format, the MeVisLab
image loading modules will only be able to load single DICOM slices separately. For further information,
see the chapter Chapter 10, Excursion: Image Processing in ML.

The DICOM import is provided by the module DicomImport.

1. Add the module to the network via the quick search or the menu bar, Modules → File → DICOM →
DicomImport. Open the module panel with double-click on the module.

Figure 3.26. DicomImport

2. Enter the necessary data.

a. Select the Source Path where your DICOM slices are located. In the MeVisLab installation path
you can find some example DICOM slices in the $(InstallDir)/MeVisLab/data/demodata/
BrainT1Dicom directory. All subdirectories will be scanned recursively and each series will be
converted into the 3D DICOM/TIFF format.

b. Select the Target Path where your imported DICOM/TIFF files will be stored in. If you want
to import the example DICOM slices, we suggest using the $(InstallDir)/MeVisLab/data/
demodata path.

c. Click the Import button. A window pops up showing the import progress. Close the window when
the import has been finished (Successfully terminated).

Depending on how much series have been imported, you will find one or more DICOM/TIFF
file pairs in the Target Path. For the example slices import, two files should have been created:
TestPatien_id0__0001.dcm and TestPatien_id0__0001.tiff .

If your DICOM import fails, check if some optional flags in the Options field are missing. You can find
more information either via the options description (Help button in the module panel) or via the module's
help page (context menu, Show Help).

Tip

DICOM multi-frame files can be opened directly in MeVisLab; therefore, the import step
is not necessary for displaying the data. (For image processing, it is still recommended to
import the files.)

30

Chapter 4. Implementing a Contour
Filter
In this chapter we will introduce to you how an image processing pipeline is implemented by means of a
MeVisLab network. We are going to implement a contour filter which is based on the elementary image
processing steps average, dilation and subtraction. To get a visual impression of what the filter is doing,
we will also implement two synchronized render pipelines with 2D viewers for the filter in- and output.

Following this chapter you will get an idea about how to

• implement an image processing pipeline (see Section 4.2, “Implementing the Contour Filter”).
• synchronize parameters between different modules by establishing parameter connections (see

Section 4.3, “Parameter Connection for Synchronization”).

This will be our resulting network:

Figure 4.1. Example Network Contour Filter

4.1. Loading the Input Image
First, we need an image as input. This image will be used as the input image for the normal viewer as
well as as the input and filter image for the image processing pipeline.

1. Create a new network (File → New) and save it to disk.

2. Find and add the LocalImage module via the Quick Search. As image input, use an image from the
default MeVisLab demo data path.

3. Choose an image filename by opening the module's panel and set the module parameter Name
to the value $(DemoDataPath)/Head4_t1.small.dcm or to any other image name located in the
$(DemoDataPath) directory.

4. For the output, find and add the View2D module via the Quick Search and connect it to the LocalImage
output. Double-click View2D to see the original image. Later, we will compare this output with the
image resulting from the filter process.

Implementing a Contour Filter

31

Figure 4.2. Viewing the Input Image for the Contour Filter

Tip

To see an immediate (albeit small) preview of the input image, you can enable the preview

modus in the menu bar, Extras → Show Image Connector Preview.

4.2. Implementing the Contour Filter
We want to implement a contour filter that is composed of the following image processing pipeline:

1. Take an input image a.
2. Smooth the input image with an average kernel: Average[image a] -> image b.
3. Dilate the smoothed image by means of a morphological kernel operation: Dilate[image b] ->

image c.
4. Subtract the smoothed image from the dilated and smoothed image: Subtract[image c,image b]

-> image d.
5. Output the filter output image d.

For this processing pipeline we need the following basic image operators:

• Average operator: a search yields the module Convolution. From the description: “Simple constant
convolution filters like Average, Gauss, Sobel, Laplace.”

• Dilation operator: a search yields the module Morphology. From the description: “Implements dilation
and erosion filters that separately act on single bits.”

• Subtraction operator: a search yields various arithmetic modules. How to decide which module is the
correct one? When you add the modules and have a look at the modules' help, you will find that
Arithmetic0 is for arithmetic operations on scalars or 3D vectors, Arithmetic1 is for arithmetic
operations on a single image, and Arithmetic2 is for arithmetic operations on two images. As we
want to subtract two images, Arithmetic2 is the correct module.

Implementing a Contour Filter

32

Proceed as follows:

1. Add the modules Convolution, Morphology, and Arithmetic2 to the network.

Alternatively you could find and add the modules to the network via the Modules menu:
a. via Modules → Filters → Kernel → Convolution,

b. via Modules → Filters → Morphology → Morphology and

c. via Modules → Analysis → Arithmetic → Binary → Arithmetic2.

The image we use as input has to be processed first via the Convolution module. After that, the
resulting convoluted image will be processed and also output directly to the Arithmetic2 module
where the two images will be subtracted.

For the subtraction, the following information is offered in the help of Arithmetic2: “The input image
1 decreased by input image 2 is passed to the output.” Therefore, it is important to connect the images
in the correct order, otherwise the result will look rather strange.

2. Open the panels of Convolution, Morphology and Arithmetic2 by double-clicking the modules.
Then adjust/check the default values of the following parameters:
a. Module Convolution: Keep the default kernel type "3x3 Average Kernel" for predefKernel.
b. Module Morphology:

i. In the field Filter Mode, keep the default value "Dilation".
ii. For the Kernel Geometry, use a kernel of the size 3x3x3.

c. Module Arithmetic2: In the field Function, change the default value "Add" to the value "Subtract".

Figure 4.3. Adjust Filter Parameters

Tip

You can view and edit module field values also in the Module Inspector View. On the
Fields tab, all fields of the currently selected module are listed by names and values.

Implementing a Contour Filter

33

Note

Field names (in the module) and field labels (in the interface of the module panel) do not
have to be the same. To find the field name, right-click the field label on the panel; the
field name is listed as first entry of the context menu.

3. To view the results of every step in the processing pipeline, use the Output Inspector, which can be

opened via the menu bar, View → Views. Click each connector to follow the image processing.

Figure 4.4. Constructing the Filter Pipeline — Convolution Output

Figure 4.5. Constructing the Filter Pipeline — Morphology Output

Implementing a Contour Filter

34

Figure 4.6. Constructing the Filter Pipeline — Arithmetic2 Output

4. To distinguish the image processing pipeline, you can create a group for it. For that:
a. Select the three modules, for example by dragging a selection rectangle around them, or by single-

selecting the modules while pressing SHIFT.
b. Right-click the selection to open the context menu and select Add to New Group.
c. Enter a name for the new group, for example “Filter”.

Figure 4.7. Creating a New Group

The new group is created and displayed as a green rectangle. The group allows for quick interaction;
for example, a double-click on its title bar zooms in and centers the group; a right-click on the title

Implementing a Contour Filter

35

bar opens a menu for editing and deleting the group. You can also change the default color in the
Preferences. For further information on groups, please refer to the MeVisLab Reference Manual.

5. For the output, add another View2D module, either via the quick search or by selecting the existing

View2D module in the network and duplicating it (via Edit → Duplicate or by pressing the keyboard
shortcuts given there).

Figure 4.8. Resulting Contour Filter Network

Tip

The filter can be tuned via some parameters given in the Convolution and Morphology
modules. Changing the convolution kernel size (field predefKernel of the Convolution
module) and/or the dilation kernel (fields kernelX, kernelY, kernelZ of the Morphology
module) will enhance contours at different scales.

In a final step, we will synchronize the Viewers of the two View2D modules by establishing parameter
connections between them.

4.3. Parameter Connection for
Synchronization
Besides data connections between module inputs and outputs (Image, Inventor and Base connectors)
there is also the possibility to connect module fields via a parameter connection. The values of connected
fields are synchronized, that means when changing the value of one field, all fields connected to this
field will be adapted to the same value.

Some important points:

• Fields can be connected to an arbitrary number of other fields as source, but only once as destination.
(Similar to data connections, for which an output connector can be connected to an arbitrary number
of other connectors but an input connector can only be connected once.)

• Connections between fields may be unidirectional or bidirectional.

Unidirectional: Field A is the output and field B the input. Changes in field A reflect in field B but
changes in field B have no effect on field A.

Implementing a Contour Filter

36

Bidirectional: Field A is the output and field B the input and vice versa (two parameter connections).
Changes in field A reflect in field B and changes in field B reflect in field A. (This is the setting we
will use in our example.)

Tip

MeVisLab prevents the creation of infinite loops.

• Not all connections between all fields are sensible. Usually the connected fields should be of the
same type.

• Parameter connections may be established both between fields within the same module and between
fields of different modules.

• On the MeVisLab user interface, parameter connections are established by dragging fields onto the
labels of automatic panels (and most scripted MDL panels, see the MeVisLab Reference Manual,
chapter “Parameter Connections Inspector” for details).

In our example, a bidirectional parameter connection is the way to synchronize the View2D modules so
that the same slice is rendered in both viewers. To establish this, proceed as follows:

1. Right-click each View2D module to open the context menu and select Show Window → Automatic
Panel (alternatively, press ALT and double-click the module). The field that controls the currently
rendered slice in a SoView2D module is the startSlice field.

2. On the SoView2D panel, select the label of the startSlice field and drag the (invisible) connection
onto the label of startSlice field on the SoView2D1 panel. The connection is drawn as thin grey
arrow with the arrowhead pointing to the module that receives the parameter as input.

3. Repeat the process in the other direction by dragging the startSlice field from the SoView2D1 panel
to the SoView2D panel. The bidirectional connection is drawn as a thin, grey double arrow.

Tip

Another typical way of notating the fields is “InstanceName.FieldName”, for example
SoView2D.startSlice. You will find this notation when you right-click the parameter
connection to open its context menu, in which you can disconnect single or all parameter
connections.

Figure 4.9. Establishing the Parameter Connections

Implementing a Contour Filter

37

Figure 4.10. Resulting Network

As a result, moving through the slices with the mouse wheel (“slicing”) in one of the viewers synchronizes
the rendered slice in the second viewer.

Tip

A list of all parameter connections is displayed in the Parameter Connections Inspector

View (which can be opened via the menu bar, View → Views → Parameter Connections
Inspector). Right-click the connections for a context menu with various options.

For further information on parameter connections, please refer to the MeVisLab Reference Manual.

This is the end of this example. The full network is delivered with the demos of MeVisLab (available

via Help → Welcome).

38

Chapter 5. Defining a Region of
Interest (ROI)
In the following chapter, we will walk through the creation of a network that allows defining a 2D region
of interest (ROI), that is by selecting a region of the image in the first viewer, the selected region is
displayed as a subimage in a second viewer.

• Section 5.1, “Creating a Viewer with a Selection Rectangle”: adding a first viewer with a selection
rectangle

• Section 5.2, “Adding a Second Viewer for the Subimage”: adding a viewer for a subimage

• Section 5.3, “Adding the Interactivity for the Viewers”: adding interaction between the viewers

The resulting network looks as follows:

Figure 5.1. Example Network ROISelection

In this chapter, we will use the terms “world position” (absolute) and “voxel position” (relative to the
image), which are discussed in detail in the chapter Chapter 10, Excursion: Image Processing in ML.

Defining a Region
of Interest (ROI)

39

5.1. Creating a Viewer with a Selection
Rectangle
The first part is building a simple network with an image load module, a viewer, and a module that allows
for drawing a selection rectangle.

1. Add LocalImage and the View2D module to the new network and connect their image connectors.
2. To display the usually hidden Inventor inputs of View2D, right-click View2D and select View2D

Options → Show Inventor Inputs
3. Add the Open Inventor module SoView2DRectangle and connect its output to the first View2D Open

Inventor input connector.

The module help offers the following purpose for the module: “The SoView2DRectangle module
allows for a drawing and interactive adjustment of a 2D rectangle in a 2D viewer. Note: although this
module is called SoView2DRectangle, it actually draws a 3D box.” (The latter is the reason why the
world positions are given in 3D.)

A double-click on SoView2DRectangle opens its panel. For displaying the subimage, the world
positions will be crucial.

Figure 5.2. Viewer with Selection Rectangle

5.2. Adding a Second Viewer for the
Subimage
Add the second viewer part, which consists of two modules:

• a SubImage module for cutting out the selected region

• and another View2D module.

The module help of SubImage offers the following purpose and usage tips for the module: “This module
extracts subimages from its input image. [...] Connect an input image, set the coordinate mode and the
size and position of the subimage.”

Defining a Region
of Interest (ROI)

40

Figure 5.3. Viewer for the Subimage

Of course, since we have not yet defined how the world positions of SoView2DRectangle are connected
to the subimage, nothing is displayed.

5.3. Adding the Interactivity for the Viewers
In the third step, we add the interactivity. The problem in connecting the modules SoView2DRectangle
and SubImage is that the world positions offered by the first modules need to be translated to voxels
positions for the latter.

For such translation tasks, there are several modules that convert values from one type to the other.

1. As we need world and voxel, enter those words in the quick search to find the module:

Figure 5.4. Searching for World to Voxel Conversion

Defining a Region
of Interest (ROI)

41

WorldVoxelConvert converts world into voxel positions (or vice versa), either as vector or as single
float values.

Figure 5.5. WorldVoxelConvert Panel

In our case, we need two conversions, for the start and end positions separately.
2. Add WorldVoxelConvert a second time by selecting the module and duplicating it, either via Edit →

Duplicate or by pressing the respective keyboard shortcut.
3. Name the instances accordingly, for example “startPos” and “endPos”. For this, select Edit Instance

Name in the module's context menu.

Tip

Alternatively, use the shortcuts F2 (Windows and Linux) or ENTER (Mac OS X). For a
complete list, see the MeVisLab Reference Manual, chapter “Shortcuts”.

4. Both WorldVoxelConvert modules need the original image for obtaining the world-to-voxel matrix, so
connect them to LocalImage (the image output can be connected to an unlimited number of modules).

Defining a Region
of Interest (ROI)

42

Figure 5.6. WorldVoxelConvert Modules Added

5. For the parameter connections, proceed as follows:

a. Connect the SoView2DRectangle Start World Position to the WorldVoxelConvert(startPos)
Word Position Vector.

b. Similarly, connect the SoView2DRectangle End World Position to the
WorldVoxelConvert(endPos) Word Position Vector.

c. Connect the converted values from WorldVoxelConvert(startPos), that is the Single X, Single
Y and Single Z values, to the respective Subimage Start X, Start Y and Start Z values.

d. Similarly, connect the converted values from WorldVoxelConvert(endPos), that is the Single X,
Single Y and Single Z values, to the respective Subimage End X, End Y and End Z values.

Defining a Region
of Interest (ROI)

43

Figure 5.7. Adding the Parameter Connections

6. At last, check the option Auto apply on the SubImage panel (bottom right corner), so that any changes
of the selected region in the first viewer are updated automatically in the second viewer.

Now the network is fully functional.

Defining a Region
of Interest (ROI)

44

Figure 5.8. Example Network ROI Selection

This is the end of this example. The full network is delivered with the demos of MeVisLab (available

via Help → Welcome).

45

Chapter 6. Creating an Open Inventor
Scene
In the following chapter, we will walk through the creation of an Open Inventor scene.

• Section 6.2, “Creating the Applicator”

• Section 6.3, “Creating the Interaction”

• Section 6.4, “Creating the Anatomical Image”

• Section 6.5, “Finishing the Complete Open Inventor Scene”

Here a look at what we want to accomplish: a dynamically definable applicator shall be placed at a
position and an angle relative to the rendering of an anatomical image:

Figure 6.1. Example Network: Open Inventor Result

Creating an Open Inventor Scene

46

Figure 6.2. Applicator Only

The applicator shall be able to be moved within the viewer (navigation) and also be able to be
repositioned (interaction) with the tip pointing to the body.

The data shall be displayed in 3D mode. In addition, the output shall have the windowing functionality
of the standard Output Inspector.

In the resulting network, modules will be grouped; however, this has no effect on the functionality we
will build.

6.1. Introduction to Open Inventor
Open Inventor is an object-oriented 3D toolkit developed by Silicon Graphics (SGI) offering a
comprehensive solution to interactive graphics programming problems.

Inventor scenes are organized in structures called scene graphs. A scene graph is made up of nodes,
which represent 3D objects to be drawn, properties of the 3D objects, nodes that combine other nodes
and are used for hierarchical grouping, and others (cameras, lights, etc). These nodes are accordingly
called shape nodes, property nodes, group nodes and so on. Each node contains one or more pieces
of information stored in fields. For example, the Sphere node contains only its radius, stored in its radius
field.

The MeVisLab implementation of Open Inventor is based on the original SGI source code that was
released to the public in 2000. It is suited for use with MeVisLab but can also be used independently.
The MeVisLab modules can be used for rendering and viewing both image data and arbitrary Open
Inventor objects as well as for interacting with images. Inventor modules function as Inventor nodes, so
they may have input connectors to add Inventor child nodes (modules) and output connectors to link
themselves to Inventor parent nodes (modules).

Characteristics of an Open Inventor scene graph:

Creating an Open Inventor Scene

47

• Scene objects are represented by nodes.

• Size and position is defined by transformation nodes.

• A rendering node represents the root of the scene graph.

• Nodes are rendered in the order of traversal.

• Nodes on the same level are traversed from left to right.

• All modules that are derived from SoGroup offer a basically infinite number of input connectors (a new
connector is added for every new connection).

Figure 6.3. Traversing in Open Inventor

Typical functions of Open Inventor modules are:

• Draggers and manipulators

• Group nodes

• Light sources

• Transformations

• Cameras

• 3D Viewers

• Geometric objects (Cone, 3D Text, Nurbs, Tri.Meshes, etc.)

• Object properties (Textures, Colors, Materials, etc.)

The order of traversal is very important, and its effects will be shown in detail in the following example.

For further information on Open Inventor modules in MeVisLab, please refer to the Inventor Reference
and the Inventor Module Help. For information on Open Inventor, we recommend the following literature:

• The Inventor Mentor by Josie Wernecke (ISBN 0-201-62495-8: This book provides basic information
on programming with Open Inventor. It includes detailed program examples in C++ and describes
key aspects of the Open Inventor toolkit, including its 3D scene database, node kits, interactive
manipulators, the Inventor Component Library, which contains editors and viewers, and the Open
Inventor file format.

• The Inventor ToolMaker by Josie Wernecke (ISBN 0-201-62493-1): The Inventor Toolmaker provides
advanced information on extending Open Inventor by creating new C++ classes and customizing
existing classes. Detailed examples and discussion show how to create new nodes, actions, elements,
fields, node kits, draggers, manipulators, engines, and components.

Creating an Open Inventor Scene

48

Tip

For online links to these books and other resources, see the MeVisLab website (http://
www.mevislab.de).

6.2. Creating the Applicator
1. As a first element, we need the shaft of the applicator. For this, start by adding a SoCylinder module.

2. As we want to keep the applicator shaft and tip basically independent, we can already add a
SoSeparator module here which comes with an in-built viewer. Connect the two modules and set
the parameters for the cylinder.

Tip

Several Open Inventor modules come with an in-built viewer, like SoSeparator, SoGroup,
SoRenderArea and more. For a complete viewer experience, use SoExaminerViewer
and its associated macro module SceneInspector.

Note

Each of the viewers have their own persistent settings. So if you copy and paste such
modules into another network, the zoom settings etc. will be those of the previously used
state! If confused, always add fresh modules via the search or the Modules menu.

Figure 6.4. Creating the Applicator Shaft

3. Usually, such Open Inventor objects will be colored. Add the SoMaterial module before the
SoCylinder module and edit the material settings. Feel free to play around with the color settings.

Creating an Open Inventor Scene

49

Figure 6.5. Coloring the Applicator Shaft

4. In a next step, we will create the applicator's tip. For this, add a SoCone module and also another
SoMaterial and SoSeparator module to build a construction similar to the shaft.

Figure 6.6. Adding an Applicator Tip

To combine the two independent elements (shaft and tip), we have to a) combine them and b)
translate the tip (or shaft) in relation to the other, otherwise the two Open Inventor elements would
be placed at the same position, namely the origin of the Inventor's world coordinate system [0,0,0].
(For more information on coordinate systems, see Chapter 10, Excursion: Image Processing in ML.)

5. For the translation, add a SoTranslation module in front of to the cone, and set the translation to (in
this case) “11.5”. The SoGroup module has an in-built viewer, so that you can preview the resulting
applicator. It can be rotated in the viewer.

Creating an Open Inventor Scene

50

Figure 6.7. Adding Translation and Grouping

6. For a finishing touch, add a SoExaminerViewer for display and a SoBackground. The latter adds a
grey gradient background that gives a more 3-dimensional impression of the rendered Open Inventor
scene.

7. For easier handling, create a group for the two parts of the applicator. Select the modules that belong
to the applicator, right-click them and select Add to New Group. Enter an appropriate name like
“applicator”. The new group appears in the workspace.

Figure 6.8. Finishing the Applicator

6.3. Creating the Interaction
Although the applicator created in the last section is complete, it is not yet functional so that you can
easily point the tip to a position. For this, some interactivity must be enabled.

The first module necessary for this is SoCenterballManip. In the Inventor Reference, the following
information can be found for this module:

“SoCenterballManip is derived from SoTransform (by way of SoTransformManip). When its fields
change, nodes following it in the scene graph rotate, scale, and/or translate. [...] On screen, this
manipulator will surround the objects influenced by its motion. This is because it turns on the
surroundScale part of the dragger. ”

This means that once we put an object in the middle of the sphere opened by this module, it can be
moved around with it.

Creating an Open Inventor Scene

51

1. To keep the interaction separate from the applicator, add another separator.

2. Then add the modules SoCenterballManip and SoTranslation. The translation module is
necessary to position the centerball (as the latter is foremost intended for rotation and not perfect
for translation).

Figure 6.9. Using SoCenterballManip

3. To connect the translation of the modules, a parameter connection has to be established between
the Center field of SoCenterballManip and the Translation field of SoTranslation. This is done
by opening the panels, clicking near the Center field and dragging it onto the other panel until a little
plus sign appears. The parameter connection is drawn as a thin line between the modules, always
starting at the modules' side (never on top or bottom, like data connections do).

Tip

For an overview of all parameter connections, open the Parameter Connections

Inspector via the menu bar, View → Views → Parameter Connection Inspector.

Creating an Open Inventor Scene

52

Figure 6.10. Connecting Parameters

4. Now we can combine the interaction part and the applicator. For this, connect the applicator to the
second separator.

Figure 6.11. Combining Interaction and Applicator

The applicator can now be rotated or dragged into any direction by using the handles on the
manipulation sphere.

Creating an Open Inventor Scene

53

6.4. Creating the Anatomical Image
Last not least we need the 3D image at which the applicator shall be positioned.

1. As first step, add a LocalImage module. Select an image from the demo data folder, for example a
liver set. You can view the result in the normal Output Inspector.

Figure 6.12. Loading a Local Image

2. For the 3D display, add a SoGVRVolumeRenderer module. Behind this hides a rather potent module
called GigaVoxel Renderer. It comes with many features — open its panel to have a look at the
options.

Figure 6.13. Adding the GigaVoxel Renderer

Creating an Open Inventor Scene

54

For the windowing, we need two modules: SoMouseGrabber and SoRLLookUpTable module. Instead
of building this functionality from scratch, we can take the easy way and copy those modules and
their parameter connection from the internal network of the View3D module.

3. Add a View3D module via the quick search and open its internal network (via the context menu).
Select the two modules and copy them. This will also copy the parameter connection between them.

Figure 6.14. Copying the Windowing Modules from View3D

4. Then add the modules to your applicator network and connect them to the SoGroup module, in front
of the rendering module.

Figure 6.15. Adding the Windowing to the Applicator

Afterwards, delete the View3D module.

Creating an Open Inventor Scene

55

6.5. Finishing the Complete Open Inventor
Scene
The three elements of the scene — applicator, interaction and anatomical image, preferably grouped,
now have to be combined to result in one Open Inventor scene.

1. First, connect all three groups to the same SoExaminerViewer. Make sure that the applicator and its
interaction sphere are connected via a separator.

Figure 6.16. Combining the Groups

Note

Because the scene with the anatomical image can be rendered with transparencies, add
it right-most to the viewer so it is rendered last.

Creating an Open Inventor Scene

56

Figure 6.17. Combined Graphic Elements

2. A look at the viewer tells us that the relative sizes of the graphic elements need to be aligned. This
can be done by adding the scaling module SoScale, either to the applicator or the image. In our case,
we will add it to the applicator, that means to the SoSeparator module. A scale factor of 10 in all
directions is sufficient.

Creating an Open Inventor Scene

57

Figure 6.18. Adding the Applicator Scaling

3. At last, take the applicator and move it to the body to point at whatever spot you want to point at.

Figure 6.19. Original Applicator/Interaction Arrangement

Creating an Open Inventor Scene

58

Looking at the result, it might not be the best idea to have the applicator tip at the edge of the sphere
which is always aligned by its center. It may be sensible to place the tip into the sphere's center
instead.

4. Add another SoTranslation module. It needs to have an effect on the applicator, so it needs to be
added to the applicator's SoGroup module.

Figure 6.20. Improved Applicator/Interaction Arrangement

This is the end of this example. The full network is delivered with the demos of MeVisLab (available

via Help → Welcome).

Tip

In the chapter Chapter 9, Developing a Macro Module for an Applicator, the applicator
modules will be used as the starting point for programming a Python macro.

59

Chapter 7. Starting Development with
Package Creation
7.1. What are Packages
As of MeVisLab 2.0, modules and projects come in a package structure, which offers an improved
modularity and granularity.

A package is a self-contained directory structure that contains the following components:

• PackageGroup

• PackageName

• Package.def

• Modules

• Sources

• Configuration

• Documentation

• lib

• bin

Figure 7.1. Example for a Package Tree

In this example, we have a PackageGroup "MyPackageGroup". Below it, four packages can be found
(Internal, Playground, Research, YetAnotherPackage). Below each package, the typical folders can be
found. (This example was generated with the Project Wizard in MeVisLab.)

A PackageGroup can contain any number of packages, and of course there can be different
PackageGroups.

The PackageIndentifier is defined by "PackageGroup/PackageName", e.g. the MeVisLab Standard
Package has the identifier "MeVisLab/Standard".

Note

For more detailed information on packages, see the Package Structure documentation.

MeVisLab reads packages in the following order:

Starting Development
with Package Creation

60

• the Packages directory in which MeVisLab was installed

• the directories given in the PackagePaths settings of the mevislab.prefs file

• the UserPackagePath (as set in the MeVisLab Preferences dialog

Scanning is always two levels deep, never deeper. If a package with the same PackageIdentifier is found
more than once, the last package found will overwrite the earlier packages (in the order given above).
This way, your packages given by mevislab.prefs or your user packages can overwrite installed
packages.

You can check your effective package structure in two ways:

• by using the ToolRunner, a meta-tool delivered with MeVisLab 2.0. See the ToolRunner
documentation for details.

• by checking the MeVisLab Preferences, section “Packages”.

Figure 7.2. Preferences — Packages

In this dialog, the sequence of display is as follows (from top to bottom; higher entries overwrite lower
entries):

• User Packages: packages found in the user path (packages in other paths can be added manually).
These are the default packages for user-defined modules.

• mevislab.prefs: packages resulting from the paths given in the .prefs file.

• Installed Packages: packages resulting from an installation of e.g. MeVisLab SDK.

If a package with the same PackageIdentifier is found more than once, the last package found will
overwrite the previously loaded packages. These will be greyed out and labeled “(Overwritten)”.

You can:

Starting Development
with Package Creation

61

Create New Package: Opens the Package Wizard (see Section 7.2, “Creating a User Package for Your
Project”).

Add Existing User Packages: Opens the default file browser so that you can add a user package.
Folders are read recursively and all packages below them are automatically included.

Remove: Removes the selected user package from the path of MeVisLab. (Installed packages cannot
be removed.) Removed user packages can always be re-added later.

7.2. Creating a User Package for Your Project
When you create new modules with the Wizard, you need to enter their package path. For your own
modules, you always should have your own user package (and path). This is done as follows:

1. Run the Project Wizard (File → Run Project Wizard)

2. Select New Package. The Package Wizard opens.

Figure 7.3. Package Wizard

Starting Development
with Package Creation

62

3. Create a new package with the Package Wizard. Enter the following:

• Package Group: Enter the package group in which your package should be saved. Enter a name,
for example your company or site name. For our example, enter “Example”.

• Package Name: Enter the package name. Select a typical user package name from the list or
enter a new package name. For our example, select “General”

• Package Owner: Enter a package owner (meta description without actual effect).

• Target Directory: Select the target directory below which this package will be created.

4. Click Create so that the new package is created.

The new package is added to the User Package Path, including all subdirectories and files. The
information entered in the dialog is saved in the Packages.def file. As adding a new package group
alters the user package path, the module database has to be reloaded.

After reloading, your user package Example/General is ready for saving modules and projects.

63

Chapter 8. Introduction to Macro
Modules
Macro modules are implemented by means of the MeVisLab Definition Language (MDL) and the
scripting languages Python or JavaScript. A macro module behaves like any other elementary (ML or
Inventor) module in MeVisLab. However, no C++ has to be coded to implement a macro module.

Tip

Based on macro modules, stand-alone applications can be created with MeVisLab.
Prerequisite for this is a license for the Application Development Kit (ADK).

Like any other module, a macro module has to be declared within the MeVisLab module database in a
module definition file (*.def), which has to be located in the User Module Path.

The MDL script implementation of a macro module, that is its interface definition (input-, output- and
parameter fields) as well as its GUI definition, usually are written in a *.script file. The scripting is
given in separate *.py/*.js files which need to be included in the *.script module definition file.

The definition of a macro module and the creation of all necessary files is supported by the ML Module

Wizard, via File → Run Project Wizard (see the next chapter Chapter 9, Developing a Macro Module
for an Applicator).

What you should know about macro modules:

• In most cases, macro modules encapsulate the “macro behavior” of an image processing and/or
visualization pipeline (realized by a MeVisLab module network). Its functionality is defined by the
macro module interface with inputs, outputs and parameters (fields). The interface is built as a
combination of the interface elements of the modules in the underlying network, and of evenutally
new fields. The encapsulated module network is stored in a <MacroModuleName.mlab> file, which is
also called the macro network of the module.

Why this encapsulation?

• In many cases, a desired module function can be built by connecting some elementary modules
or macros that are already implemented.

• Certain processing pipelines may be of common use in a variety of further applications and it is
convenient to encapsulate them in macro modules which can then be added easily to any network.

• The interface of an encapsulating macro module is more compact than the sum of all interfaces
of the contained modules.

• Macro modules are defined on an abstract level. They can and do exist stand-alone without a
corresponding macro network. In those cases, the module's functionality is implemented with scripting
only. In most cases those macro modules encapsulate dynamic user interfaces without any image
processing or visualization behind it. Examples for those modules are the MDL test modules, for
example TestBoxLayout. They consist only of *.def and *.script files without any internal module
network.

• Macro modules can also be defined locally to a given network document path, called 'Local Macro
Modules'. These are used in complex networks to encapsulate subnetworks as independent functional
units with a defined interface to other network components. Such local macros often carry out an
application specific function which would not be of common use for any other application, and are
therefore not added to the common MeVisLab module database (that is they are not declared in /
do not possess a *.def file).

Introduction to Macro Modules

64

Local macros are created and added with respect to the current network via the menu bar, File →
Create Local Macro and File → Add Local Macro.

Tip

However, as we will show in our example, local macros can also be promoted to global
(normal) macros.

65

Chapter 9. Developing a Macro
Module for an Applicator
In the following sections, we will create a macro module based on the applicator we have built in the
Open Inventor example chapter, adding fields and scripting for dynamic control of length and diameter
of the applicator.

• Section 9.1, “Creating a Basic Global Macro”

• Section 9.2, “Adding the Macro Parameters and Panel”

• Section 9.3, “Programming the Python Script”

• Section 9.4, “Addition: Shifting the Whole Tip”

If you have not followed our tutorial, please open the ApplicatorExample.mlab demo (available via

Help → Welcome) and start from there.

9.1. Creating a Basic Global Macro
1. For a start, open a new network tab (File → New or a keyboard shortcut) and copy and paste the

applicator modules (Edit → Copy, Edit → Paste or the respective keyboard shortcuts) to the new
network.

Tip

You can select the Applicator group with a double-click on its title bar and then press
SHIFT and click the group title to deselect the group and keep only the modules selected
for copying.

Figure 9.1. Starting a new Macro from the Existing Applicator

2. In the next step, clean the instance names of the modules — as they will be used for a new macro,
there is no need to have names like “SoTranslation2”. Remove all numbers and write all module
instance names starting with capital letters (if you want to) by right-clicking the module and selecting
Edit Instance Name from the context menu.

Developing a Macro
Module for an Applicator

66

Figure 9.2. Renaming Instance Names

As we already have the modules for our macro, it is easiest to create a new local macro from them

first. For this, select File → Create Local Macro. The local macro can be promoted to a global macro
in the creation process.

Developing a Macro
Module for an Applicator

67

Figure 9.3. Creating a Local Macro

When you promote the macro to a global macro, the Macro Module Wizard starts.

3. Enter the properties for your new module.

• Name:

Enter the module name ApplicatorMacro here. It has to be a unique name within the MeVisLab
module database (including the SDK module database).

• Author

Enter your name or initials. The author entry is mandatory and will be used in module searches.

• Comment

Enter a short description for the module. The comment entry is mandatory.

• Keywords

The optional keywords should be the terms other users might search for, e.g. “applicator” in this
case.

• See Also

The optional See Also entries should list other, related modules that might be of interest for a user.

• Genre

Enter the genre. Genre entries are mandatory; they defines the place of the module in the Modules
menu and the Module Browser. For suggestions, check out similar modules in the database.

Developing a Macro
Module for an Applicator

68

Tip

To find a fitting genre, you might have a look at the Genre.def file in the Standard/
IDE package. In our case, Visualization/Misc might be a good choice, which is (slightly
confusing) the genre “Visualization” in the genre definition file.

Figure 9.4. Selecting a Genre

The genres are not carved in stone but developed over time, so there might be more
than one fitting choice for your module. You may even want to add a new genre in
Genre.def or define an own user genre.

• Add reference to example network:

Each module should be completed by an example network to explain its function and usage in
an exemplary application. Check to create an empty example network ExampleModuleName.mlab
which may be edited later (optional).

• Project:

User defined modules are grouped in projects. Enter a new project name here: “ApplicatorMacro”.
The module will be installed in the Project Path in the subdirectory ProjectName.

• Target Package:

Select a Target Package from the list, for this example “MyPackageGroup/Research” ??.

Click Next.

4. Click Create. You are asked whether the original local macro files should be removed. Accept with
OK, because the local macro files are obsolete with the promotion to global.

Developing a Macro
Module for an Applicator

69

Figure 9.5. Module Properties

Now that the macro module and its necessary files are created, the file browser (depending on
your system) will open and display the folders and files. In our example, we have a package group
“Example” with the package “General” and in the folder Modules/Macros the new ApplicatorMacro
with the files

• .def: module definition file, for registering the module(s) to the MeVisLab module database.

• .mlab: network file which includes the modules and their settings.

• .script: MDL script file for the panel and from which other scripts (Python or JavaScript) may
get called.

Developing a Macro
Module for an Applicator

70

Figure 9.6. File Browser with the New Macro Module Files

On the workspace, the previously visible network is now displayed as a macro module.

Figure 9.7. ApplicatorMacro as Macro Module

5. To display the internal network on a second tab, right-click the module and select Show Internal
Network from the context menu. Alternatively, you can hold Shift and double-click the macro module.

9.2. Adding the Macro Parameters and Panel
So far, the macro module has no points of interaction. Therefore, the input/output, the parameters/fields
and the scripting need to be added.

1. To edit the panel and its underlying scripting, right-click the ApplicatorMacro module and select

Related Files → ApplicatorMacro.script to open the file in the in-built text editor Mate. Since we
just defined this macro module, the script file is basically empty except for some placeholders.

Figure 9.8. ApplicatorMacro.script in Mate

Tip

Mate comes with some special features like autocompletion, syntax highlighting,
indentation, etc. for MDL, Python and JavaScript. For an extensive list, see the MeVisLab
Reference Manual.

Developing a Macro
Module for an Applicator

71

We want three sections in the .script file:

a. Interface: defines the inputs and outputs of data connections for the macro. In our case, the
macro has no inputs from other modules, but one output which is the Inventor scene.

b. Commands: defines the scripting file to be executed upon the activity of defined fields.

c. Window: defines the panel of the macro to set the parameters. In our case, length and diameter.
This is an optional entry; if not defined, only the automatic panel is available.

Note

The window section of the GUI could also be implemented in the .def file. If you want
to implement an enhanced GUI and add more fields that only exist for scripting, use the
.script file and reference that from your .def file. The advantage of splitting the GUI
definition from the module announcement is a faster MeVisLab startup (because only the
.def file is read). Further information on this subject can be found in the MDL Reference. .

2. First we will define the interface. As no inputs are needed, keep this line as it is. For the output, we
address the output of the SoGroup module named ApplicatorMacro. The following lines will result
in an output field that will "deliver" the applicator.

Interface {
 Inputs = ""
 Outputs {
 Field Scene { internalName = "Applicator.self" }
 }
 Parameters = ""
}

Enter the lines in Mate and save the script file.

3. Then reload the module by right-clicking the macro module and selecting Reload Definition to apply
the changes. The ApplicatorMacro module now shows an Open Inventor output connector.

Figure 9.9. ApplicatorMacro Module with Output Connector

The internal network of the macro shows the output placeholder. In the mouse-over, the output field
name is displayed.

Developing a Macro
Module for an Applicator

72

Figure 9.10. Internal Network of the ApplicatorMacro Module

4. As next step, we will define the parameters for our interface. In this example, we want to have two
parameters:

• Length: this shall be the overall length of the applicator.

• Diameter: this shall be the diameter of the applicator.

These two parameters need to be added to the Interface part of the script file. Besides setting the
parameter type (type) and the default value (value), you can also add a minimum and a maximum
value to limit the range to sensible values.

Interface {
 Inputs = ""
 Outputs {
 Field Scene { internalName = "Applicator.self" }
 }
 Parameters {
 Field Length {
 type = float
 value = 20
 min = 1
 max = 50
 }
 Field Diameter {
 type = float
 value = 3
 min = 0.1
 max = 10
 }
 }
}

Once again, save the script and reload the macro module.

5. Open the automatic panel, either by double-clicking the module, by holding ALT and double-clicking

the module, or by right-clicking the module and selecting Show Window → Automatic Panel from
the context menu. The new parameters are visible in the automatic panel. They can also be edited
there by clicking on each value field and editing the value.

Developing a Macro
Module for an Applicator

73

Figure 9.11. Automatic Panel of the ApplicatorMacro Module

In principle, this would be enough to enter the values. However, usually a more user-friendly panel
should be offered. In the panel, values can be sorted by correlation or importance and distributed on
various tabs. It is also possible to leave rarely used parameters out of the panel to make it slimmer; as
the automatic panel of a module is always available, the user can always view and edit all parameters
there.

6. To create a panel for the two parameters, the new section Window is added at the end of the script
file. Besides defining the fields in Category, you can also add a step value which will regulate how
large the step is when moving through the values with the spin box arrows or the mouse wheel (with
the mouse cursor over the field). As the diameter is smaller than the length, it makes sense to set
a smaller step size here.

Interface {
 Inputs = ""
 Outputs {
 Field Scene { internalName = "Applicator.self" }
 }
 Parameters {
 Field Length {
 type = float
 value = 20
 min = 1
 max = 50
 }
 Field Diameter {
 type = float
 value = 3
 min = 0.1
 max = 10
 }
 }
}

Commands {

}

Window {
 Category {
 Field Length { step = 1 }

Developing a Macro
Module for an Applicator

74

 Field Diameter { step = 0.1 }
 }
}

Save the script and reload the macro module.

7. Now open the panel, either by double-clicking the module (because the panel is the new default

panel) or by right-clicking the module and selecting Show Window → Panel from the context menu.
The new parameters are visible in the panel and can be edited manually (or by using the spin arrows
or the mouse wheel).

Figure 9.12. Panel of the ApplicatorMacro Module

All parameters are defined and the panel is ready for entering values — however, we still do not have
any interaction. So the last section Command needs to be added, in which the respective scripting file
(in our case, a Python file) and the fields this scripting file should “look at” need to be entered

The source will be a local file which we will add manually, with the name ApplicatorMacro.py by
convention.

To relate to the scripting, we need two field listeners that listen to fields and call the script command
given in the command tag when the field changes. The functions AdjustLength and AdjustDiameter
used in the code do not exist yet but will be defined by us in the Python file.

Interface {
 Inputs = ""
 Outputs {
 Field Scene { internalName = "Applicator.self" }
 }
 Parameters {
 Field Length {
 type = float
 value = 20
 min = 1
 max = 50
 }
 Field Diameter {
 type = float
 value = 3
 min = 0.1
 max = 10
 }
 }
}

Commands {
 source = $(LOCAL)/ApplicatorMacro.py

 FieldListener Length { command = AdjustLength }
 FieldListener Diameter { command = AdjustDiameter }
}

Developing a Macro
Module for an Applicator

75

Window {
 Category {
 Field Length { step = 1 }
 Field Diameter { step = 0.1 }
 }
}

8. Save the script and reload the macro module. If the Python file or the scripting commands do not
exist yet, errors messages will appear in the Debug Output of Mate. Do not be concerned — we will
add everything we need for real interactivity in the next section.

Tip

Panels can have a more complex design; for the possibilities, see the MDL Reference
and the MDL panel example modules (search for modules starting with “Test...”).

9.3. Programming the Python Script
1. If not yet existing, create the Python file. For this, select File → New in the Mate menu bar and save

the new file as ApplicatorMacro.py in the same folder as the other module files.

2. For the header of the file, take a look at other existing macro modules. What we need, besides the
comment lines in #, is a line for importing the MeVis Python modules.

This file implements scripting functions for the ApplicatorMacro module
#
\file ApplicatorMacro.py
\author JDoe
\date 01/2009

MeVis module import
from mevis import *

3. Then we need to add two functions, one for each scripting command

def AdjustLength():
 return

def AdjustDiameter():
 return

Note

In Python, block structure is defined by indentation. Therefore it is important to indent the
lines as shown in the code examples. In the Mate editor, this will happen automatically.

4. Let us have a look at the diameter adjustment. The diameter is given by the Diameter field. This is
written as follows:

def AdjustDiameter():
 diameter = ctx.field ("Diameter").value
 return

To have both an effect on shaft and tip likewise, the diameter parameter of both must be set to the
value of the Diameter field. A look at the automatic panels of SoCone and SoCylinder shows that
both modules offer a radius parameter.

Developing a Macro
Module for an Applicator

76

Figure 9.13. Parameters for Diameter Setting

These radius parameters need to be set to diameter:

 ctx.field("SoCone.bottomRadius").value = diameter
 ctx.field("SoCylinder.radius") .value = diameter

As the radius is half the diameter, a correcting factor of 0.5 has to be added to the diameter equation.

def AdjustDiameter():
 diameter = ctx.field("Diameter").value * 0.5

 ctx.field("SoCone.bottomRadius").value = diameter
 ctx.field("SoCylinder.radius") .value = diameter
 return

5. To test if the diameter adjusting works, add a SceneInspector module to the network and connect
its input to the output of your ApplicatorMacro module. Double-click the SceneInspector to open
its viewer. When you change the diameter setting of the macro, the diameter of the applicator is
changed accordingly.

Developing a Macro
Module for an Applicator

77

Figure 9.14. Changing the Diameter of the Applicator

6. Adjusting the length is a bit more complicated. The length change should have the following effects:

• The Length parameter gives the overall length.

• Only the shaft should be extended, not the tip.

• The adjustment should be done in a way that the point of the tip is not translated, that is that the
tip points to the same position as before. Therefore, we need to increase the applicator length in
the direction away from the tip.

We can define an overall length, a tip length and a shaft length. They can be calculated as follows:

def AdjustLength():
 overallLength = ctx.field("Length").value
 tipLength = ctx.field("SoCone.height").value

 shaftLength = overallLength - tipLength
 return

The original translation factor for the tip (which is the relevant factor) was given by half the shaft
length (“10”) plus half the tip length (“1.5”). This can be written in a general way.

 tipTranslation = shaftLength*0.5 + tipLength*0.5

The shaftLength defines the height of the SoCylinder cone to

 ctx.field("SoCylinder.height").value = shaftLength

Developing a Macro
Module for an Applicator

78

The resulting code lines for the length adjustment look as follows:

def AdjustLength():
 overallLength = ctx.field("Length").value
 tipLength = ctx.field("SoCone.height").value

 shaftLength = overallLength - tipLength
 tipTranslation = shaftLength*0.5 + tipLength*0.5

 ctx.field ("SoCylinder.height").value = shaftLength
 return

Add this code to the Python script, save, and reload the definition. A test shows a funny effect: the
shaft length is changed independently of the tip.

Figure 9.15. Strange Behavior of the ApplicatorMacro

This is due to not having connected the calculated tipTranslation with the TranslationTip
module yet.

7. To solve this problem, add the SoComposeVec3f module to the internal network of the macro and
assign to its translation in y direction the calculated value tipTranslation.

 ctx.field("SoComposeVec3f.y").value = tipTranslation

8. In a last step, this translation needs to be connected to the tip's SoTranslation module via a
parameter connection in the network.

Developing a Macro
Module for an Applicator

79

Figure 9.16. Adding the Correct Tip Translation

Here the network and complete Python script of the ApplicatorMacro example:

Figure 9.17. Complete ApplicatorMacro

This file implements scripting functions for the LocalFileName module
#

Developing a Macro
Module for an Applicator

80

\file ApplicatorMacro.py
\author JDoe
\date 01/2009

MeVis module import
from mevis import *

def AdjustDiameter():
 diameter = ctx.field("Diameter").value * 0.5

 ctx.field("SoCone.bottomRadius").value = diameter
 ctx.field("SoCylinder.radius") .value = diameter
 return

def AdjustLength():
 overallLength = ctx.field("Length").value
 tipLength = ctx.field("SoCone.height").value

 shaftLength = overallLength - tipLength
 tipTranslation = shaftLength*0.5 + tipLength*0.5

 ctx.field("SoCylinder.height").value = shaftLength
 ctx.field("SoComposeVec3f.y") .value = tipTranslation
 return

9.4. Addition: Shifting the Whole Tip
In the example above, the change in length will be translated into an overall change with the center of
rotation as overall center. However, it might be preferable to keep the tip in place and change the length
of the shaft into the other direction.

Basically, this is the same problem as the length calculation we made in the Python script. However,
instead of calculating it in the macro scripting, we can also use a module for the calculation.

For this, the following modules need to be added:

• SoCalculator: For calculating the length of the shaft.

• SoComposeVec3f: For applying the translation of the float value to the vector of the overall translation
in TranslationApplicator.

The SoCalculator module offers input and output of floating values and vectors.

Developing a Macro
Module for an Applicator

81

Figure 9.18. Feeding the SoCalculator Module

Some important points:

• In the Expression field, mathematic formulas can be entered; the name of the input values and the
name of the output have to be given.

• More than one expression can be entered. For that, end each line with a semicolon ;

• For the expression to be calculated, you need to click Apply.

For calculating the translation from the input values of cone and shaft height, use the SoCalculator
module and set up parameter connections

1. Connect SoCylinder.height to SoCalculator.a

2. Connect SoCone.height to SoCalculator.b

3. Enter the calculation: oa = - (0.5*a+0.5*b) (a negative sign needs to be added; otherwise, the
end of the applicator is fixed and the tip side grows).

Developing a Macro
Module for an Applicator

82

To apply the new translation, we need another SoComposeVec3f module. It allows for converting the float
value y into a vector translation in y direction. For this, it needs to receive the output of SoCalculator
and deliver the input for the SoTranslation module.

1. Connect SoCalculator.oa to SoComposeVec3f1.y

2. Connect SoComposeVec3f1.vector to SoTranslation.translation

Tip

You can find the names of the connected parameters by right-clicking the parameter
connections. For an overview of all parameter connections in a network, use the Parameter
Connections Inspector View.

The resulting macro network looks as follows:

Figure 9.19. Improved Applicator Macro Module

When to choose calculating values in scripts and when via modules? This is not an easy question.

• The advantage of the script is that it is easily changed and extended. This might be harder with
modules

• The advantage of the modules is that the connections between modules are visible as parameter
connections (which can be changed and removed).

In the end, it comes down to your current network and your design decisions which way to choose. Or
you might combine them, like we did in our ApplicatorMacro network.

Developing a Macro
Module for an Applicator

83

What else could you do now? You could, for example, make sure that the shaft length cannot be shorter
than the tip length (which looks strange in the Open Inventor scene). You could also make the colors
parametrizable, or add new features for the applicator.

This is the end of this example. The full network is delivered as example ($(InstallDir)Packages/
MeVisLab/Standard/Modules/Examples/GettingStarted/ApplicatorMacro), so feel free to check
it out and play around with it.

84

Chapter 10. Excursion: Image
Processing in ML
10.1. Some Advanced Information on Image
Processing
In this chapter you will find a brief survey of some more advanced image processing concepts used in
MeVisLab. Many of them are also discussed in the MLGuide, chapter 5 “Image Processing Concepts”.
Please refer to this document for further information.

10.2. Structure of MeVisLab
In the following figure, the basic structure MeVisLab is shown:

Figure 10.1. MeVisLab Structure

MeVisLab is based on C++ objects called modules which either belong to the ML type system developed
at MeVis or to the Open Inventor type system from SGI. Both module types offer a generic parameter
field system for parametrization and change notification. Open Inventor modules together form a scene

Excursion: Image
Processing in ML

85

graph for interaction and rendering in OpenGL, while the ML modules can be connected to form an
image processing pipeline.

Image processing in the ML is demand-driven (in that only the required parts of an image output are
calculated) and tile-based (this is used for caching of results). As an additional benefit, many classes
from the ITK and VTK libraries are provided in the ML type system through code-generated wrapper
modules.

Mixed modules belong to either system but can take input from the other system, thereby serving as
a bridge between systems.

MeVisLab unifies these two module systems with another internal layer that abstracts away the
differences between these systems. Stacked upon that layer is

• a system to turn whole module networks into new macro modules with an interface of their own. Macro
modules may be built upon other macro modules.

• a GUI system where the elements are generated from a hierarchical description file, automatically
providing access to the parameter fields of the modules if desired.

• an interface to the scripting languages Python and JavaScript with full access to the modules and
GUI widgets, including the ability to generate new modules or widgets.

Based on these functionality one can build, test and evaluate own applications with the integrated
development environment and — with the proper license — generate own installers with standalone
applications.

10.3. Coordinate Systems
In MeVisLab, three coordinate systems exist next to each other:

• World coordinates

• Voxel coordinates

• Device coordinates

Figure 10.2. Coordinate Systems

The blue rectangle shows the same region in the three coordinate systems.

World coordinates are:

• Global: Combine several objects in a view

• Absolute: Measure distances and angles

Excursion: Image
Processing in ML

86

• Isotropic: All directions are equivalent

• Orthogonal: Coordinate axes are orthogonal to each other

Voxel coordinates are:

• Relative to an image

• Dependent on voxel spacing

• Continuous from [0..x,0..y,0..z], voxel center at 0.5

• Often non-isotropic, sometimes non-orthogonal

• Direct relation to voxel location in memory

Device coordinates are:

• 2D coordinates in OpenGL viewport

• Measured in pixel

• Have their origin (0,0) in the top left corner of the device (with x-coordinates increasing to the right
and y-coordinates increasing downwards)

10.4. Affine Transformations
For mapping e.g. world to voxel coordinates, or device to world coordinates, affine transformations have
to be applied. This is done with homogeneous coordinates:

• Extend the (x,y,z) triple by an artificial coordinate with a fixed value 1.

• Affine transforms can then be represented by a single matrix multiplication.

Why not a 3x3 matrix? Two reasons:

1. One cannot construct a 3x3 matrix that will translate the point (0,0,0). The zeroes in the coordinate
vector cancel out all the coefficients.

2. Transformations could not be combined by multiplying the matrices.

Affine transformations have these elementary transforms:

• Translation (moves an object along a direction vector)

• Rotation (rotates the object around an axis vector)

• Scaling (shrinks/grows the object size)

• Shearing (deforms the object; rare in medical image data)

Figure 10.3. Matrix Multiplication

Excursion: Image
Processing in ML

87

Tip

Look at the example Chapter 5, Defining a Region of Interest (ROI) for the module
WorldToVoxel in action.

The voxel coordinate system is a continuous coordinate system. Voxel boundaries are at integer values,
voxel centers are 0.5 off. To transform integer voxel indices to voxel centers in world coordinates, either
add the value “0.5” to voxel indices or check the option Integer Voxel Coordinates in the modules
WorldVoxelConvert, SoMLTransform, and others.

Common pitfalls

• Computing the voxel volume: getVoxelSize() returns voxel spacing in x, y and z. The product of these
values is not the voxel volume if the voxel-to-world-matrix is not orthogonal. Solution: Use the absolute
value of the matrix determinant instead.

• Inventor using row vector conventions: ML and MeVisLab use the widespread column vector
conventions, that is vectors are written as columns and matrices are applied by left-multiplication.
Open Inventor, in contrast, uses row vector conventions, that is vectors are written as rows and
matrices are applied by right-multiplication. Solution: Use the matrix transposition to convert a matrix
from one convention to the other.

10.5. DICOM Data and Coordinates
A mixed type are DICOM "coordinates". They are mostly world coordinates but refer to the patient axes.

• Based on the patient's main body axes (axial/transverse, coronal, sagittal)

• Measured as 1 coordinate unit = 1 millimeter

• Right-handed

• Not standardized regarding their origin

Excursion: Image
Processing in ML

88

Figure 10.4. World Coordinates in Context of the Human Body

The DICOM (Digital Imaging and Communications in Medicine) standard is a data format that groups
information into data sets. This way, the image data is always kept together with all meta information like
patient ID, study time, series time, acquisition data etc. The image slice itself is essentially just another
tag with pixel information.

DICOM tags have unique numbers, encoded as 2x4 numbers in hexadecimal notation (0000,0000). The
first four numbers are the data group, the second four numbers the data set/tag.

Note

Although DICOM is a standard, often the data that is received / recorded does not follow
the standard. Wrongly used tags or missing mandatory tags may cause problems in data
processing.

Some typical modules for DICOM handling:

• With DicomImport you import DICOM files and convert them into a 4D-TIFF image and a DICOM
header file for the use in MeVisLab.

• In addition, DicomImport offers features for sorting; click the help button for an overview of possible
options.

• You can view the image-wide DICOM tags with the module DicomTagViewer.

Excursion: Image
Processing in ML

89

• You can view and cut out frame-specific tags with the module DicomFrameSelect.

• You can modify DICOM tags with the module DicomTagModify.

• You can also create a new DICOM header for an image file with the ImageSave module, tab Options,
Save DICOM header file only.

Tip

For handling and manipulating DICOM data, the DICOM toolkit “DCMTK” (DICOM@offis)
is recommended. Parts of this toolkit are also used in MeVisLab.

Figure 10.5. The DICOM Tag Viewer

10.6. Coordinate Systems in the MeVisLab
GUI
You can find information about the voxel and world matrix in the image properties on the Output
Inspector View.

The easiest (ideal) image is when the world and the voxel matrix correspond, so that one voxel is one
world unit, and the world matrix is coronal (not tilted in any way). In case of an image taken in the sagittal
position, voxel sizes may be different and the world matrix may be tilted.

Excursion: Image
Processing in ML

90

Figure 10.6. Image Properties for an Ideal Image

Figure 10.7. Image Properties for a Sagittal Image

Excursion: Image
Processing in ML

91

Note

In DICOM, the voxel thickness does not necessarily correspond to the distance between
slices. In MeVisLab however, the calculated voxels close the slice distance.

Tip

Also see the Info module and its help for further information on the displayed data,
especially the calculation of the slice thickness z.

Figure 10.8. Image Properties in the Info Module

10.7. Data Types for DICOM and TIFF
The DICOM standard does not support pixel data types other than signed and unsigned integer, and
the maximum bit depth is 16. This is the reason why in MeVisLab, the data is saved as float and (u)int32
data in DCM/TIFF format. This data type is correctly encoded in the TIFF format, and the DICOM file
is written as if it was an (u)int16 image.

The data is saved as follows:

• The TIFF file stored as part of a DCM/TIFF pair is a fairly standard TIFF file. For storing 3D images,
the SGI 3D TIFF extension is used. 4D images are stored as 3D, the time dimension being unfold
into the z-dimension.

• The DCM file in a DCM/TIFF pair is a fairly standard DICOM file, except that it does not contain the
pixel data tag. The contents of such a file can be read with the dcmdump tool by DICOM@offis, for
example. Some information gathered during the original DICOM import, such as the individual time
points in a 4D data set and the values of frame specific tags, are stored in private DICOM tags. There
is no official documentation of these private tags.

Excursion: Image
Processing in ML

92

In MeVisLab, the libraries libtiff and dcmtk (by DICOM@offis) are used to read these files. The
following applies:

• When opening such a DCM/TIFF pair, the data type stored in the TIFF file has precedence over the
one in the DCM file. This mechanism is described in the help pages of the ImageSave and ImageLoad
modules.

• If a DICOM file contains illegal values, the data is not regarded as valid DICOM and is completely
ignored. The TIFF file is handled as if the DICOM file did not exist.

The MeVisLab binding (e.g. as used in ImageSave and ImageLoad) does not support the double image
data type for TIFF.

As consequence, images with data of the type double cannot be saved as TIFF by ImageSave.
As a workaround, you can either convert the data type to float or use MLImageFormatSave and
MLImageFormatLoad.

However, the images can be saved as RAW images with double data type (not long double).

Tip

For loading several TIFF files, use the module ImageLoadMulti. This should not be
confused with loading a multi-page TIFF file (in which several images are saved); that format
is not supported by MeVisLab.

Tip

The page size delivered by the ImageLoad module is actually not determined by the
pageSizeHint field, but by the file format module reading the image data. Only if the
file format allows reading the image data in different (or even arbitrary) pages, the
pageSizeHint is used. (That is why it is called page size hint and not page size.) For the
TIFF format, the page size is fixed by the size of the tiles in the TIFF file holding the image
data. To change the page size for successive modules, ImagePropertyConvert needs to
be used. For RAW images, the page size hint can be set.

10.8. Image Processing Concepts: Pages,
Slices, VirtualVolumes and more
In MeVisLab, a variety of image processing concepts is available. They differ in scope:

Page-based approaches:

• Page-based

• Voxel-based

• Slice-based

• Kernel-based

Semi-global approaches:

• Random Access (Tile requesting)

• Sequential Image Processing

• Virtual Volume

Global approaches:

Excursion: Image
Processing in ML

93

• Temporary Global

• Global

• Memory Image

All those concepts are discussed in detail in the MLGuide, chapter 5 “Image Processing Concepts”.

When choosing your approach, keep in mind that some of the concepts are not scaling well for larger
images. For example, the page-based approach can only be beneficial if the pages are of a size so
that they actually fit into memory, or can be administered by the internal ML host / cache. Always
try to set the page sizes to some reasonable values, like 128x128x1x1x1x1. You can do this with
ImagePropertyConvert modules (insert them right after the loading modules in your network).

Tip

The ITK modules frequently produce memory allocation problems for large images because
they try to load the entire image at once. You can find out about the memory management
in the ITK module help. Look for something like PageExt=ImgExt or global “memory
management”. If you find these, the module cannot work page-based.

94

Chapter 11. Introduction to C++
Modules
There are different types of modules that may be developed by the user of MeVisLab:

• Macro modules

• Image processing (ML) modules

• Open Inventor modules

There are several noticable characteristics for all these modules types, and it is not always easy to
choose the best way of implementing a new project.

11.1. Module and Connection Specifics on
the C++ Level
ML modules on the C++-level:

• Image processing modules are objects derived from class BaseOp defined in the ML library and
therefore are also called ML modules.

• Image inputs and outputs are connectors to objects of class SubImage, which are defined in the ML
library.

• Inputs and outputs for abstract data structures are connectors to pointers of objects derived from
class Base and are called Base objects.

Inventor modules on the C++-level:

• Most Inventor modules are objects derived from class SoNode defined in the Open Inventor library.

• Inventor inputs and outputs are connectors to objects derived from class SoNode defined in the Open
Inventor library. Many Inventor modules will return themselves as outputs (“self”). On inputs, they may
have connectors to child Inventor modules.

• Some Inventor modules are objects derived from class SoEngine. They are used for calculations and
return their output not via output connectors but via fields.

• Inventor modules may also have input and output connectors to Base objects and Image objects.

• All standard Inventor nodes defined in the Open Inventor library are available in MeVisLab as Inventor
modules.

Modules

In Section 2.3, “MeVisLab Modules”, we introduced modules by their functions and looks. Here a brief
look at their programming basis:

1 Inventor Modules: green. Objects derived from class SoNode or SoEngine defined in the Open
Inventor library.

2 ML Modules: blue. Objects derived from class BaseOp defined in the ML library.

3 Macro Modules: brown. MeVisLab intern objects of the type MLABMacroModule.

Introduction to C++ Modules

95

There is no special module type for MLBase objects.

Module Inputs/Outputs

1 Inventor: Inputs/Outputs: half-circles. Connectors from/to objects derived from class SoNode defined
in the Open Inventor library .

2 Image: Inputs/Outputs: triangles. Connectors from/to Image objects of type SubImage defined in the
ML library.

3 Base: Inputs/Outputs: squares. Connectors from/to objects derived from class Base defined in the
ML library.

11.2. Some Tips for Module Design

11.2.1. Macro Modules or C++ Modules?
Advantages of macros:

1. Macros are useful for creating a layer of abstraction by hierarchical grouping of existing modules.

2. Scripts can be edited on the fly:

• no compilation and reload of the module database necessary

• scripting possible on the module or network level

• scripting supported by the Scripting Assistant View (basically a recorder for actions performed
on the network)

Disadvantages:

With macros, only existing functionalities and algorithms can be used.

Conclusion:

• For rapid prototyping based on existing image processing algorithms, use macros.

• For implementing new image processing, write new ML or Open Inventor modules.

11.2.2. Combining Functionalities
It is possible to have ML and Open Inventor connectors in the same module. Two cases are possible:

• Type 1: ML -> visualization: Image data or properties are displayed by a visualization module. Usually
a SoSFXVImage field gets random access to an ML image by getTile(). Examples: SoView2D,
GlobalStatistics.

• Type 2: visualization -> ML: Modules generate an ML image from a pixmap (sequence). Examples:
SoExaminerViewer, SoShadowViewer.

Generally, however, it is not always a good solution to combine that, as the processes of image
processing and image visualization are usually separated.

Therefore, rather separate the ML and Open Inventor functionalities into two modules. This way,

• functionality is encapsulated and can be reused as module

• modules for the single steps may already be available in MeVisLab and spare you a new development

Introduction to C++ Modules

96

11.2.3. Tips for Module Testing
After being done with the usual module and macro tests, make sure to stress your network's algorithms
and processing speed by testing with

• large data sets

• images with anisotropic voxels

• images with non-trivial world matrix (translated or rotated)

Many of the possible problems will only occur with these kinds of data.

In addition, keep in mind that modules

• need to run platform-independent

• should work on 32 and 64 bit

• should offer a well-designed panel for future users

• should come with a useful help and example network

11.3. Programming Examples
Besides the examples in the next chapters, several programming examples are available in the
MeVisLab software development kit.

For these modules to be available, the module group “Module Examples” has to be enabled, see

Preferences → Module Groups.

The module data can be found at

• Sources: Packages\MeVisLab\Standard\Sources\Examples\ML\...

• Modules: Packages\MeVisLab\Standard\Modules\Examples\ML\...

Some modules are combined in one DLL, like the MLExample modules.

Tip

See the chapter Section 12.3, “Combining Two Modules in One Project” on how to combine
modules into one DLL.

Here is an overview of the most important example modules, listed by module name.

• AddExample (Class: mlAddExample; DLL: MLExample)

Startup example for ML module programming.

• BitImageExample (Class: mlBitImageExample; DLL: MLExample)

This module demonstrates the BitImage class of the ML Tools project.

• FieldExample (Class: mlFieldExample; DLL: MLExample)

An example module which simply creates most ML fields and adds them to a module interface. It also
uses the new Vec8Field also derived in this library.

• GlobalPagedImageExample (Class: mlGlobalPagedImageExample; DLL: MLExample)

Introduction to C++ Modules

97

This module demonstrates how a VirtualVolume and/or a TVirtualVolume instance can be used
to get a random read/write access to an input image during page-based processing and to demand
driven image processing.

• Kernel3In2OutExample (Class: mlKernel3In2OutExample; DLL: MLKernelExamples)

Example class to demonstrate the implementation of a kernel-based algorithm with three inputs and
two outputs in the ML.

• KernelExample (Class: mlKernelExample; DLL: MLKernelExamples)

Example class to demonstrate the implementation of a kernel-based algorithm in the ML.

• MarkerListExample (Class: mlMarkerListExample; DLL: MLExample)

Example module generating an equally spaced linear set of XMarker objects.

• ObjVolume (Class: MLObjVolume; DLL: MLObjVolume)

Example module to store and retrieve volume information in a hard-coded ObjMgr information cell.
For details see the MeVisLab SDK.

• ProcessAllPagesExample (Class: mlProcessAllPagesExample; DLL: MLExample)

This is an example module to demonstrate how to process all pages of one or more (input) images.

• SeparableKernelExample (Class: mlSeparableKernelExample; DLL: MLKernelExamples)

Example class of the implementation of a kernel-based algorithm in the ML which implements
separable kernel filtering.

• SmallImageInterfaceExample1, SmallImageInterfaceExample2 (Class:
mlSmallImageInterfaceExample; DLL: MLSmallImageInterfaceExamples)

Example modules to demonstrate the class SmallImageInterface which provides a very simplified
image processing interface for educational use. See the MeVisLab SDK for details.

• SparseImageExample (Class: mlSparseImageExample; DLL: MLExample)

Defines an example module which uses a VirtualVolume as a sparse image.

• TypeAddExample (Class MLTypeAddExample)

Example class to demonstrate the integration of a new voxel data type in the ML.

Tip

Similar examples are available for MDL panels; for those, search for modules starting with
“Test...”.

98

Chapter 12. Developing ML Modules
In the following chapter, the development of ML modules will be shown in three examples.

1. An ML module that allows adding a user-defined constant value to image voxels, see Section 12.1,
“Creating a New ML Module for Adding Values”.

2. A more complex ML module that calculates a simple average over voxel values of an entire image,
see Section 12.2, “Creating an ML Module For Simple Average”.

3. Combining the two ML modules in one project (which results in one DLL), with a discussion of the
pros and cons of such combinations, see Section 12.3, “Combining Two Modules in One Project”.

The following examples are developed very explicitly to give you some insight into the ML, the MeVis
image processing library. Another useful way to start with module development is to copy the source
code of an existing module that might already have some of the wanted functionality and adapt it to your
needs. For further information, please refer to the MLGuide.

Note

Developing C++ modules requires a C++ development environment being available on your
computer, e.g. Visual C++ on Windows and Xcode on Mac OS X.

12.1. Creating a New ML Module for Adding
Values
In the following chapter, we will create a new ML module with the functionality of adding a value to all
voxels, in the following steps:

• Section 12.1.1, “Creating the Basic ML Module with the Project Wizard”

• Section 12.1.2, “Preparing the Project”

• Section 12.1.3, “Programming the Functions of the ML Module”

• Section 12.1.4, “GUI Creation/Optimizing”

• Section 12.1.5, “Creating an Example Network and Help File”

Tip

This example is delivered with MeVisLab (.def file in $(InstallDir)Packages/
MeVisLab/Standard/Modules/Examples/GettingStarted/MLSimpleAdd, source files in
$(InstallDir)Packages/MeVisLab/Standard/Sources/Examples/GettingStarted/

MLSimpleAdd). The module can be added via quick search. As module names have to be
unique, choose another name when trying to recreate this example, e.g. MLMySimpleAdd.

12.1.1. Creating the Basic ML Module with the Project
Wizard
1. First of all, make sure that you have a user package defined as described in Section 7.2, “Creating

a User Package for Your Project” or create it now.

2. Then run the Project Wizard and select the link ML Module. This starts the Wizard for C++/ML
Modules. Enter the following:

Developing ML Modules

99

• Name: SimpleAdd

• Comment: Adds a constant double value to each voxel.

• See Also: Arithmetic1

• Project: SimpleAdd

• Target Package: Example/General

Click Next to proceed.

Figure 12.1. Entering the ML Module Properties I

3. On the dialog Additional Module Properties, the inputs and outputs as well as possible sample
code can be added to the ML module.

Developing ML Modules

100

Figure 12.2. Entering the ML Module Properties II

Most of the settings can be kept. Enter/change the following:

• Inputs: 1

• Outputs: 1

• Add configuration hints: Uncheck (otherwise your code will be full of text).

• Add calcInSubImageBox: Uncheck (as we will not work with subimages).

4. On the dialog Module Field Interface, the fields of the module can be defined (more fields can be
added later but this is the easiest way to add fields).

Developing ML Modules

101

Figure 12.3. Entering the ML Module Properties — Fields

Click New to create a new field, then enter the following:

• Field Name: constantValue

• Field Type: Double

• Field Comment: This constant value is added to each voxel.

• Field Value: 0.

5. Click Create to create the module.

In the default file browser of your system, two folders are opened:

• folder with the source code: path \Example\General\Sources\ML\MLSimpleAdd

• folder with the module's GUI definition: path \Example\General\Modules\ML\MLSimpleAdd

Note

For a full list of all created files and their contents, refer to the MLGuide, chapter “B.2.
Files in an ML Project”.

The foundation of the module has been created with the Wizard. From here on, the programming starts.

Developing ML Modules

102

Tip

The Wizard will not close automatically. This way, you can change settings or fields and
create the module once more.

After module creation, the module database needs to be reloaded.

12.1.2. Preparing the Project
Out of the MeVisLab .pro files, the system-dependent project files (release and debug) have to be
created. How this is done depends on your operating system.

On Windows, the .vcproj file should be created automatically. (If this does not happen, double-click
the <ModuleName>.bat file to create one <ModuleName>.vcproj project file (the debug/release status
is set in the Visual C++ environment).

Double-click the project file. Visual Studio starts, displaying a list of all project files.

Figure 12.4. Project in Visual C++ 2005

Note

If you are encountering problems with MeVisLab on Visual C++ 2005, make sure that
the Service Pack 1 (SP1) is installed. You can find all version-specific information on the
MeVisLab website (http://www.mevislab.de/), section “Download”.

On Mac:

• Restart MeVisLab.

• Double-click the <ModuleName>.pro file. The application MeVisLabProjectGenerator starts which
creates the two files <ModuleName>.xcodeproj and <ModuleName>_debug.xcodeproj.

• Double-click one of the project files (debug or release). The application Xcode starts, displaying a
list of all project files.

Developing ML Modules

103

Figure 12.5. Project in Xcode

On Linux:

• Restart MeVisLab.

• Open a MeVisLab console, for example $ /home/.../MeVisLab/MeVisLab2.0aGCC4.1.3/bin.

• In the console, switch to the project folder and run the <ModuleName>.sh shell script. This results in
two files, Makefile.<ModuleName> and <ModuleName>.cbp. The .cbp file is a Code::Blocks project
(see http://www.codeblocks.org/ for more information).

Developing ML Modules

104

Figure 12.6. Project in Code::Blocks

Note

It is recommended to open and compile the debug versions for development.

12.1.3. Programming the Functions of the ML Module
Open the file mlSimpleAdd.cpp.

Note

In the following code examples, the comment lines already available in the created .cpp
file are added for better overview.

12.1.3.1. Implementing calcOutImageProps

As we add a constant value to each voxel, we need to adjust the value range of the output image, which
results in:

outMin = inMin + constValue
 outMax = inMax + constValue

In code, this is:

//--
//! Sets properties of the output image at output outIndex.
//--
void SimpleAdd::calcOutImageProps (int outIndex)
{
 ML_TRACE_IN("SimpleAdd::calcOutImageProps ()");

 // get the constant add value
 const double constantValue = _constantValueFld->getDoubleValue();

 // get input image's min and max values
 const double inMinValue = getInImg(0)->getMinVoxelValue();
 const double inMaxValue = getInImg(0)->getMaxVoxelValue();

Developing ML Modules

105

 // set the output image's min and max values
 getOutImg(outIndex)->setMinVoxelValue(inMinValue + constantValue);
 getOutImg(outIndex)->setMaxVoxelValue(inMaxValue + constantValue);
}

outindex is the index number of the output connector.

12.1.3.2. Implementing calcOutSubImage

1. Loop over all voxels of the output page and add the constant value. The loop is already generated
by the wizard, so only the following line has to be added at the start of the method, to obtain the
constant value in the correct data type:

// Compute subimage of output image outIndex from input subimages.
const T constantValue = static_cast<T>(_constantValueFld->getDoubleValue());

That is the datatype of the output image which is the data type of the input image.

2. Then change the inner line of the following loop:

// Process all row voxels.
for (; p.x <= rowEnd; ++p.x, ++in0Voxel, ++outVoxel){
 *outVoxel = *in0Voxel;
}

Change the line

*outVoxel = *in0Voxel;

to

*outVoxel = *in0Voxel + constantValue;

so that the constant value is added to the value of the input voxel.

3. Compile the project (this includes all module files) in the development environment.

4. (Re)start MeVisLab.

Note

If the module was edited in the debug version, MeVisLab must be run in the debug mode.

The restart is necessary

• so that the ModuleName.def file can be found and parsed by MeVisLab.

• so that the module DLL is copied to the correct location, from a temporary source folder to the lib
folder. (If a .def file exists but no DLL is found, the module is displayed in red in MeVisLab.)

The module is now available in the (quick) search. Add it to the network.

12.1.4. GUI Creation/Optimizing

1. For optimizing the GUI of the module — that is the panel — open the .def file. You can do that in
two ways:

• Open the .def file in your development environment. The downside is that the development
environment does not support the MDL language of the .def file.

Developing ML Modules

106

• Open the .def file in the inbuilt text editor Mate, by right-clicking the module in MeVisLab and

selecting Related Files → MLSimpleAdd.def from the context menu. The advantage is that
Mate supports MDL (and Python and JavaScript). Therefore, it is recommended to edit MDL files
primarily with Mate. (More information on Mate can be found in the MeVisLab Reference Manual.)

2. Add the line step = 100 to the definition of the field constantValue in order to adjust the constant
value conveniently. (Smaller steps are barely visible in the output.)

Window {
 Vertical {
 Field constantValue {
 tooltip = "This constant value is added to each voxel."
 step = 100 // big change for big effect
 }
 }
}

3. Reload the module definition by right-clicking the module and selecting Reload Definition from the
context menu. This will only reload the GUI definition, not the module DLL.

4. To check if everything worked, double-click the module to open the panel and test

Congratulations, you have now implemented your first page-based and demand-driven ML image
processing module!

As last step, we will create a little example network.

12.1.5. Creating an Example Network and Help File

1. Load the example network of the module via File → Open. Its name is automatically constructed as
<ModuleName>Example.mlab. So far, the example network only includes the module itself.

2. Add two modules to the network, namely LocalImage and View2D. Connect the image input to the
bottom connector and the image output to the top connector of SimpleAdd.

3. Double-click SimpleAdd to open its panel and View2D to open the viewer. When you now change
the steps, the image display changes.

Developing ML Modules

107

Figure 12.7. Example Network for SimpleAdd

4. To create the help, right-click the new module and select Create Help from the context menu. The
default HTML editor (as set in the MeVisLab Preferences) opens and displays a template HTML file.
Add the module-specific contents and save them.

Now the module is ready for usage.

The module including the example network and help file are delivered with the examples of MeVisLab,
so feel free to check it out and play around with it.

12.2. Creating an ML Module For Simple
Average
In the following chapter, we will create a new ML module that calculates an average over voxel values,
in the following steps:

• Section 12.2.1, “Creating the Basic ML Module with the Project Wizard”

• Section 12.2.2, “Editing the Header File of SimpleAverage”

• Section 12.2.3, “Editing the CPP File of SimpleAverage”

Tip

This example is delivered with MeVisLab (.def file in $(InstallDir)Packages/MeVisLab/
Standard/Modules/Examples/GettingStarted/MLSimpleAverage, source files in
$(InstallDir)Packages/MeVisLab/Standard/Sources/Examples/GettingStarted/

MLSimpleAverage). The module can be added via quick search. As module names
have to be unique, choose another name when trying to recreate this example, e.g.
MLMySimpleAverage.

Developing ML Modules

108

12.2.1. Creating the Basic ML Module with the Project
Wizard
For the following example, we expect the user package Example/General to be available, see
Section 12.1.1, “Creating the Basic ML Module with the Project Wizard”.

1. Run the Project Wizard and select the link ML Module. This starts the Wizard for C++/ML Modules.
Enter the following:

a. Name: SimpleAverage

b. Comment: Computes the average voxel value of an image.

c. Keywords: Stastistics Average

d. See Also: ImageStatistics

e. Project: SimpleAverage

f. Target Package: Example/General

Click Next to proceed.

2. On the dialog Additional Module Properties, the inputs and outputs as well as possible sample
code can be added to the ML module.

Most of the settings can be kept. Enter/change the following:

• Inputs: 1

• Outputs: 1

• Add configuration hints: Uncheck (otherwise your code will be full of text).

• Add attachField-statements: Uncheck (as no entry field will be used).

• Add calcInSubImageBox: Uncheck (as we will not work with subimages).

Note

Although we will have no real "output" of the module, it is helpful to create an output
here, as this will add some of the ML methods necessary for the module functionality. It
is easier to exchange or delete some code than to add new code sections manually.

Click Next to proceed.

3. On the dialog Module Field Interface, create two new fields:

One field to keep the calculated value:

• Field Name: voxelValueAverage

• Field Type: Double

• Field Value: 0.

One field that will function as Update button:

• Field Name: update

• Field Type: Notify

Developing ML Modules

109

4. Click Create to create the module.

In the default file browser of your system, two folders are opened:

• folder with the source code: path \Example\General\Sources\ML\MLSimpleAverage

• folder with the module's GUI definition: path \Example\General\Modules\ML\MLSimpleAverage

Note

For a full list of all created files and their contents, refer to the MLGuide, chapter “B.2.
Files in an ML Project”.

5. Reload the module database.

6. Prepare the project, as described inSection 12.1.2, “Preparing the Project”.

12.2.2. Editing the Header File of SimpleAverage
1. Open the file mlSimpleAverage.cpp.

2. Add the following two lines to the private section

size_t _numVoxels;
double _sumVoxelValues;

They will be used as follows: All voxel values are added (_sumVoxelValues) and divided by the
number of counted voxels (_numVoxels). Voxel values usually define brightness or color.

3. Remove the following lines.

//! Sets properties of the output image at output outIndex.
virtual void calcOutImageProps (int outIndex);

The virtual function calling calcOutImageProps has to be removed because there will be no image
output. If the line is not removed, a warning will be generated by the compiler. (However, the
calcOutSubImage template is necessary.)

12.2.3. Editing the CPP File of SimpleAverage
Open the file mlSimpleAverage.cpp.

Note

In the following code examples, the comment lines already available in the created .cpp
file are added for better overview, when necessary.

1. Change the constructor call of the superclass from BaseOp(1,1) to BaseOp(1,0).

This leaves our module with one input and no output image.

2. Add the following code in the method handleNotification(Field* field).

// Handle changes of module parameters and connectors here.
if (field == _updateFld) {

 _numVoxels = 0;
 _sumVoxelValues = 0;

 processAllPages();

Developing ML Modules

110

 double result = 0;

 if (_numVoxels > 0) {
 result = _sumVoxelValues / static_cast<double>(_numVoxels);
 }

 _voxelValueAverageFld->setDoubleValue(result);
}

The code includes the important ML BaseOp method processAllPages(). This method can be
used in algorithms that only extract information from an image (but do not modify it). As the
extraction of information is not driven by demand, the loop over all pages has to be implemented with
processAllPages(). For further information, see the ML Guide.

3. Remove the following lines, as no image will be output by this module.

 //--
//! Sets properties of the output image at output outIndex.
//--
void SimpleAverage::calcOutImageProps (int outIndex)
{
 ML_TRACE_IN("SimpleAverage::calcOutImageProps ()");

 // Change properties of output image outIndex here whose
 // defaults are inherited from the input image (if there is one).
}

4. In the method calcOutSubImage(...), remove outSubImg and outIndex from the method's
signature. Result:

template <typename T>
void SimpleAverage::calcOutSubImage (TSubImg<T>* ,
 int ,
 TSubImg<T>* inSubImg0
)

outIndex would reference an output image of the module which we do not have.

5. Replace the line:

const SubImgBox validOutBox(outSubImg->getBox().intersect(...

with the line:

const SubImgBox inBox = inSubImg0->getBox();

6. Remove the line

T *outVoxel = outSubImg->getImgPos(p);

7. Replace all occurrences of validOutBox with inBox.

8. Replace the line

*outVoxel = *in0Voxel;

with the lines:

_sumVoxelValues += static_cast<double>(*in0Voxel);
++_numVoxels;

9. At last, compile the project. Then restart MeVisLab so that the new module is registered and added
to the module database.

Developing ML Modules

111

12.2.4. Testing the Module
Now you can use the new module in MeVisLab.

1. Add your new module SimpleAverage and a LocalImage module to a new network. Connect them
and load an image.

2. Then double-click SimpleAverage to open its automatic panel and click the Update button on the
module panel. The calculated output of SimpleAverage is displayed.

A module with a similar functionality is available in MeVisLab, called ImageStatistics.

Add ImageStatistics via the quick search and compare its mean value with the displayed value of
SimpleAverage. You will find that the results are almost the same apart from the rendering error in
the display.

Tip

This test network is delivered as the example network for SimpleAverage.

12.3. Combining Two Modules in One Project
In the following chapter, we will merge our two modules (SimpleAdd and SimpleAverage) into one
project, in the following steps:

• Section 12.3.1, “Copying the Souce Files”

• Section 12.3.2, “Editing and Recompiling the .pro File”

• Section 12.3.3, “Editing the Project in the Development Environment”

• Section 12.3.4, “Editing the Module Definition (.def)”

• Section 12.3.1, “Copying the Souce Files”

Per project, one DLL (.dynlib/.so) file is created and transferred, and the modules might share
common includes etc. within one project.

Therefore, this example is a showcase on how to build a larger library by augmenting an existing project.

In this example, we will merge the SimpleAverage module into the SimpleAdd project. For two modules,
this is an arbitrary decision; for larger projects, always merge into the existing project.

Tip

The source code of this example is delivered with MeVisLab
(source files in $(InstallDir)Packages/MeVisLab/Standard/Sources/Examples/

GettingStarted/MLSimpleMerged). However, as module names have to be unique, no
.def file is delivered (so the module is not available in MeVisLab), to avoid collisions with
the examples above.

12.3.1. Copying the Souce Files
Copy the mlSimpleAverage.cpp and mlSimpleAverage.h files to the source folder of SimpleAdd.

12.3.2. Editing and Recompiling the .pro File
1. Open mlSimpleAdd.pro in any text editor.

2. Add mlSimpleAverage.h to the HEADERS section.

Developing ML Modules

112

3. Add mlSimpleAverage.cpp to the SOURCES section. Make sure that the previous line is terminated
with a backslash with NO whitespaces behind it. The last line does not need to be terminated by a
backslash.

4. Recompile the .pro file (run .bat on Windows, .sh on Linux, double-click .pro on Mac).

For the resulting .pro file, see $(InstallDir)Packages/MeVisLab/Standard/Sources/Examples/
GettingStarted/MLSimpleMerge.

12.3.3. Editing the Project in the Development
Environment
1. Open the SimpleAdd project in your development environment.

2. Open SimpleAverage.h.

3. Exchange the line

#include "MLSimpleAverageSystem.h"

by

#include "MLSimpleAddSystem.h"

4. Exchange the macro in the class definition (this handles exporting symbols under Windows)

MLSIMPLEAVERAGE_EXPORT

by

MLSIMPLEADD_EXPORT

The new module in this project (i.e. SimpleAdd) needs to be initialized for the runtime-type system.

5. Open MLSimpleAddInit.cpp.

6. Add the line

#include "mlSimpleAverage.h"

below the line

#include "mlSimpleAdd.h"

7. Add the line

SimpleAverage::initClass();

below the line

SimpleAdd::initClass();

This registers the classes to the ML runtime type system.

8. Recompile the project.

Note

mlSimpleAverage.cpp does not have to be edited.

For the resulting sources, see $(InstallDir)Packages/MeVisLab/Standard/Sources/Examples/
GettingStarted/MLSimpleMerged.

Developing ML Modules

113

12.3.4. Editing the Module Definition (.def)
1. Open the file MLSimpleAverage.def in Mate.

Copy the definition of the module SimpleAverage into the clipboard (this is at least from the line

MLModule SimpleAverage {

to the last closing curly bracket })

2. Open the file MLSimpleAdd.def.

Paste the definition of the SimpleAverage module below the definition of the SimpleAdd module.

Exchange the line in the definition of the SimpleAverage module

DLL = "MLSimpleAverage"

by the line

DLL = "MLSimpleAdd"

12.3.5. Cleaning up Folders and Example Networks
1. Copy the example network and HTML documentation of the SimpleAverage module to the according

folders of the SimpleAdd module. The paths to those files should be relative, so they are still correct.

2. (Re)move the old files and folders of the SimpleAverage module from the folders /Sources and /
Modules so that no conflicts arise.

3. (Re)start MeVisLab.

Both modules can now be added e.g. via a quick search. However, you will find that in the About
information, the same DLL will appear for both modules.

114

Chapter 13. Developing Inventor,
WEM and CSO Modules
The following chapter gives a short brief overview and some references to the possibilities of developing
Inventor, WEM and CSO modules.

Tip

Additional documents on various MeVisLab features and aspects can be found in the
Toolbox Class Reference.

13.1. Inventor Modules
New Inventor modules may be added by creating some basic Open Inventor module types with the
Project Wizard and extending them. For the available options, see the MeVisLab Reference Manual,
chapter “Project Wizard”.

For documentation on Open Inventor, see the Inventor Module Help (for an introduction on Open
Inventor and module-related help) and the Inventor Reference (converted from the original man pages).

13.2. Winged Edge Mesh Library (WEM)
The approach of the WEM (Winged Edge Mesh) library is to unitize the generation, the processing and
the rendering of surface representations. The library in MeVisLab offers a basis for dealing with common
tasks: an iso surface can be generated at a certain threshold out of medical images, the resulting
surface can be reduced in its amount of primitives or can be smoothed by using different algorithms. For
rendering, the surface can be colored in order to reflect certain additional information or according to
a flexible coloring scheme out of the image data itself. Finally, all the generated and modified surfaces
can be saved and loaded with a variety of different file formats that are compliant with standard 3D
applications.

New WEM modules may be created with the Project Wizard, see the MeVisLab Reference Manual,
chapter “Project Wizard”.

Note

The WEM wizard is intended for implementing ML-based modules. Although there are WEM
modules based on Open Inventor in the library, the creation of those is not documented.

For documentation on WEM in MeVisLab, see the Toolbox Class Reference, section “WEM”. The
chapter “WEM Data Structure” gives an overview of the concepts behind WEM.

For available WEM modules, enter “WEM” in the quick search. Their example networks offer insights
into the features and functionality of WEM.

Developing Inventor,
WEM and CSO Modules

115

Figure 13.1. WEM IsoSurface Example Network

Although the focus of WEM is more on calculation and display than on interaction, interactivity can be
implemented like in the following example:

Figure 13.2. WEM Extrude Example Network

Developing Inventor,
WEM and CSO Modules

116

13.3. Contour Segmentation Objects (CSO)
The CSO library provides data structures and modules for freehand drawing, semi-automatic or
automatic generation of contours in voxel images. Furthermore, these contours can be analyzed,
maintained, grouped, and converted into a voxel image again.

In the CSO library, all coordinates of the object are stored in world space. The contours themselves
are called CSO and are 3D objects. The CSOs are not attached to any special image and can freely
be interchanged between different images or the same image in different resolutions. Due to their 3D
nature, the CSOs are not restricted to the axial plane or to ortho planes in general, but can be generated
on oblique MPRs. In one CSOList, arbitrarily oriented CSOs can coexist.

For documentation on CSO, see the page $(InstallDir)Packages/MeVisLab/Standard/Modules/
ML/MLCSOModules/Overview/CSOOverview.html and also the Toolbox Reference, section “CSO”.

CSO modules cannot be created with the wizard. For extending CSO features, see the two
base classes CSOGenerator ($(InstallDir)Packages/MeVisLab/Standard/Sources/ML/MLCSO/
CSOBase/CSOModuleBase/) and CSOProcessor ($(InstallDir)Packages/MeVisLab/Standard/
Sources/Inventor/SoCSO/CSOProcessor/).

For available CSO modules, enter “CSO” in the quick search. Their example networks offer insights into
the features and functionality of CSO.

Figure 13.3. Freehand Contours with the SoView2CSOEditor Example Network

	Getting Started
	Table of Contents
	Chapter 1. Before We Start
	1.1. Welcome to MeVisLab
	1.2. Coverage of the Document
	1.3. Intended Audience
	1.4. Requirements
	1.5. Conventions Used in This Document
	1.5.1. Activities
	1.5.2. Formatting

	1.6. How to Read This Document
	1.7. Related MeVisLab Documents
	1.8. Glossary (abbreviated)
	ML, MDL, Open Inventor — Some Important Terms Explained

	Chapter 2. The Nuts and Bolts of MeVisLab
	2.1. MeVisLab Basics
	2.2. Development in MeVisLab
	2.3. MeVisLab Modules
	2.4. Networks
	2.5. Overview of Important Files
	2.6. User Interfaces Controls
	2.7. How to Find More Information on Networks and Modules

	Chapter 3. Loading and Viewing Images
	3.1. The MeVisLab GUI
	3.2. Searching and Adding Modules
	3.3. Using the ImageLoad Module
	3.4. Adding Viewers to ImageLoad
	3.4.1. Adding the View2D Module
	3.4.2. Adding the View3D Module

	3.5. Alternative Ways to Load Images
	3.5.1. Dragging Images onto the Workspace
	3.5.2. Adding Images via the DICOM Browser
	3.5.3. Using the LocalImage Module

	3.6. A Note on Importing DICOM Images

	Chapter 4. Implementing a Contour Filter
	4.1. Loading the Input Image
	4.2. Implementing the Contour Filter
	4.3. Parameter Connection for Synchronization

	Chapter 5. Defining a Region of Interest (ROI)
	5.1. Creating a Viewer with a Selection Rectangle
	5.2. Adding a Second Viewer for the Subimage
	5.3. Adding the Interactivity for the Viewers

	Chapter 6. Creating an Open Inventor Scene
	6.1. Introduction to Open Inventor
	6.2. Creating the Applicator
	6.3. Creating the Interaction
	6.4. Creating the Anatomical Image
	6.5. Finishing the Complete Open Inventor Scene

	Chapter 7. Starting Development with Package Creation
	7.1. What are Packages
	7.2. Creating a User Package for Your Project

	Chapter 8. Introduction to Macro Modules
	Chapter 9. Developing a Macro Module for an Applicator
	9.1. Creating a Basic Global Macro
	9.2. Adding the Macro Parameters and Panel
	9.3. Programming the Python Script
	9.4. Addition: Shifting the Whole Tip

	Chapter 10. Excursion: Image Processing in ML
	10.1. Some Advanced Information on Image Processing
	10.2. Structure of MeVisLab
	10.3. Coordinate Systems
	10.4. Affine Transformations
	10.5. DICOM Data and Coordinates
	10.6. Coordinate Systems in the MeVisLab GUI
	10.7. Data Types for DICOM and TIFF
	10.8. Image Processing Concepts: Pages, Slices, VirtualVolumes and more

	Chapter 11. Introduction to C++ Modules
	11.1. Module and Connection Specifics on the C++ Level
	11.2. Some Tips for Module Design
	11.2.1. Macro Modules or C++ Modules?
	11.2.2. Combining Functionalities
	11.2.3. Tips for Module Testing

	11.3. Programming Examples

	Chapter 12. Developing ML Modules
	12.1. Creating a New ML Module for Adding Values
	12.1.1. Creating the Basic ML Module with the Project Wizard
	12.1.2. Preparing the Project
	12.1.3. Programming the Functions of the ML Module
	12.1.3.1. Implementing calcOutImageProps
	12.1.3.2. Implementing calcOutSubImage

	12.1.4. GUI Creation/Optimizing
	12.1.5. Creating an Example Network and Help File

	12.2. Creating an ML Module For Simple Average
	12.2.1. Creating the Basic ML Module with the Project Wizard
	12.2.2. Editing the Header File of SimpleAverage
	12.2.3. Editing the CPP File of SimpleAverage
	12.2.4. Testing the Module

	12.3. Combining Two Modules in One Project
	12.3.1. Copying the Souce Files
	12.3.2. Editing and Recompiling the .pro File
	12.3.3. Editing the Project in the Development Environment
	12.3.4. Editing the Module Definition (.def)
	12.3.5. Cleaning up Folders and Example Networks

	Chapter 13. Developing Inventor, WEM and CSO Modules
	13.1. Inventor Modules
	13.2. Winged Edge Mesh Library (WEM)
	13.3. Contour Segmentation Objects (CSO)

