Getting Started
First Steps with MeVisLab

Getting Started

Getting Started

Published April 2009
Copyright © MeVis Medical Solutions, 2003-2009

Table of Contents

L. BefOre W STArt ..oooieiiiiiiii et e et e e 1
1.1. Welcome t0 MEVISLADiiiiiiii e 1

1.2. Coverage Of the DOCUMENTc.uuiiii e e e e e et e e e e anas 1

G TR 101 (T oo (=T I 0o 1= o o PSPPSR 1

R = o [W= g =T o £ 2

1.5. Conventions Used in ThiS DOCUMENTuuiiiiiiiieiiiiiin e e 2
LL5.0. ACHVITIES ietiieiiii ittt e et 2

R T o T 1 4= 111 o 2

1.6. HOw t0 Read ThiS DOCUMENT ... cciiuiiieiiiiii ettt e e et e e 2

1.7. Related MeVisLab DOCUMENLSociiiuiiieiiiiiiiee ittt e et e e et eeeeae e eees 3

1.8. Glossary (@bbreviated)ccoeuiiiiiiiii i 4

2. The Nuts and BoIts Of MEVISLADooiiiiiiiiii e 6
2.1, MEVISLAD BASICSuiiiiiiiiieiiiiie e 6

2.2. Development in MEVISLADoiiiiii i 7

2.3. MEVISLaD MOUUIESuiiiiiiii et e et e e eaae e eees 8

P = AT o T PP 9

2.5. Overview of IMpPOortant FilESocoeiiiiiiii e 10

2.6. User INterfaces CONIIOISoiiiiiiiieeiii e et e et e eeeebe e eene 11

2.7. How to Find More Information on Networks and Modulescccooveviiiinniiiiiinneeiinnnnnn. 12

T o To [1aTo =T aTo BNV ToA VT g Vo T g = o =P 13
3.1, The MEVISLAD GUI ...coouiiiiiii e 13

3.2. Searching and Adding MOAUIESiiiiiiiiiei e e e e e 14

3.3. Using the ImagelLoad MOAUIEcceuuiiiiiiie e e e 16

3.4. Adding Viewers t0 IMageLloadocouuiiiiiiiiii e 22
3.4.1. Adding the VIEW2D MOUUIEccouiiiiiiiei e e e e e e 22

3.4.2. Adding the VIEW3D MOUUIEccuuiiiiiieii e e e e 25

3.5. Alternative Ways t0 LOAd IMAGESivviniiiiieii e e e e e e e e e e e et e e e eaneees 26
3.5.1. Dragging Images onto the WOrKSPaCeccceuiiiiiieiiiieii e ee e e 26

3.5.2. Adding Images via the DICOM BIrOWSENcccuveiunieiiiieeeieeeiieeieeeanaeeaineeenneenes 27

3.5.3. Using the Locallmage ModUIEc.eeiuniiiiiie e e 27

3.6. A Note on Importing DICOM IMAQJEScvvunieiiieiiiiieee et e e e e e e e e e eeees 29

4. Implementing @ CONtOUr FIEIoiue i e e e e e et e e e eeees 30
4.1. Loading the INPUL IMAGE .. .ceuiiiiiei e e e e e e e e e e e e eeens 30

4.2. Implementing the Contour Filtero.iirii i e 31

4.3. Parameter Connection for Synchronizationcc.oveviiiiiiin i 35

5. Defining a Region of INterest (ROI) ...o.uuiiiriii e e e e e e 38
5.1. Creating a Viewer with a Selection Rectangleccoovviiiii i, 39

5.2. Adding a Second Viewer for the SUbIMageccoviviii i 39

5.3. Adding the Interactivity for the VIEWEISccviuiiiiiii e 40

6. Creating an OpPeNn INVENTOr SCENEuiiiiiieii e ee e et e e e e e e e e e e e e e eanneees 45
6.1. Introduction t0 OPEN INVENTOTiieeiii e e e e e e eeanas 46

6.2. Creating the APPHCALOrcvie e e e e e e e e eees 48

6.3. Creating the INTEracCtioncc.uii i e e e e e e anas 50

6.4. Creating the AnatomiCal IMAQgEcevuiiiii e e e e e e 53

6.5. Finishing the Complete Open INVENIOr SCENEovveviiiiiiiee e aens 55

7. Starting Development with Package Creationc.ccuviiiiiiiiii e ee e e e e e e 59
A VLY gL L= I o= Tod - T [59

7.2. Creating a User Package for YOUr ProOJECTcvuuiviiiiiii e e e 61

8. Introduction t0 MAcCrO MOGUIEScoiiuiiiiii e e eeaeas 63
9. Developing a Macro Module for an APPlICALOLccvueiiiiii e 65
9.1. Creating a Basic Global MaACIOcoouiiiiiiiii e e 65

9.2. Adding the Macro Parameters and Panelcccoiiviiiiiiiiiiii e 70

9.3. Programming the PYthOn SCHPtoveeiii e e e e e 75

9.4. Addition: Shifting the WHOoIE TiPoveveiii e 80

10. Excursion: Image Processing iN MLcc.iiiiiiiii e e e e e e e e e e ean s 84

Getting Started

10.1. Some Advanced Information on Image ProCesSiNgcoeeeeriiieiiiiinieiiiiineeeiiineeeenen 84
10.2. Structure of MEVISLADuiiiiiii e 84
10.3. COOrdINALE SYSEMISiiitiiieeiiti ettt ettt e e et e ettt e ettt e e e et e e e eett e aeeeebe e e eeeneaeeees 85
10.4. Affine TranSfOrMALiONSuiiiiiiiiei ettt eeaenas 86
10.5. DICOM Data and COOIrINATEScoeeuuuiiiiiiiieieeii et et e e e e e e eenanns 87
10.6. Coordinate Systems in the MeVisLab GUIccoiiiiiiiii e 89
10.7. Data Types for DICOM and TIFF ...t 91
10.8. Image Processing Concepts: Pages, Slices, VirtualVolumes and more 92
11. Introduction t0 CH+ MOAUIEScooiiiiiiiiii et 94
11.1. Module and Connection Specifics on the C++ Levelccccoviiiiiiiiiiiiii e, 94
11.2. Some Tips for MOAUIE DESIGNuuuiiiiiiieiiii et 95
11.2.1. Macro Modules or C++ MOAUIES?coouuiiiiiiiiiieiei e 95
11.2.2. Combining FUNCLONANTIEScoovuiiiiiiiiiei e 95
11.2.3. Tips for MOdUIE TESHNG .. cceereiieiiiiii e e 96
11.3. Programming EXAMPIESoiiiiiiiiiiiiii ettt 96
12. DeVveloping ML MOAUIESiiiiiiiiieeii et e e e e s 98
12.1. Creating a New ML Module for Adding ValUESc.oviiiiiiiiiiiiiiiieci e 98
12.1.1. Creating the Basic ML Module with the Project Wizardc.ccoooevvviiiiiinnnnnnn. 98
12.1.2. Preparing the PrOJECEiiiiii e 102
12.1.3. Programming the Functions of the ML Moduleccccooviiiiiiiiiiiiince, 104
12.1.4. GUI Creation/OPLiMIZINGueeeiiieeeeii et e et e e e e eena e eees 105
12.1.5. Creating an Example Network and Help Fileccoooiiiiiiiiiin, 106
12.2. Creating an ML Module For Simple AVErageccoouuiiiiiiiiiieiiiiiiieeeei e 107
12.2.1. Creating the Basic ML Module with the Project Wizardcccc.ocoeviiiennnnnn. 108
12.2.2. Editing the Header File of Si npl EAVEr agecccvvviiiiiiiiiiiiieiiiece e 109
12.2.3. Editing the CPP File Of Si mpl EAVEr Qg€ovevuiiiiiiiiieii e 109
12.2.4. Testing the MOTUIE i 111
12.3. Combining Two Modules in ONE PrOJECTccouuuiiiiiiieeee e 111
12.3.1. Copying the SOUCE FlESiiiiiiiieii e e 111
12.3.2. Editing and Recompiling the . pro File ..o 111
12.3.3. Editing the Project in the Development Environmentc.occviiieiiiiinneeenns 112
12.3.4. Editing the Module Definition (.def)oiiiiiiiiii e 113
12.3.5. Cleaning up Folders and Example Networksccoocvviiiiiiiiiinciiiieecee, 113

13. Developing Inventor, WEM and CSO MOUIESoooiiiiiiiiiiiiiici e 114
13.1. INVENTOTr MOAUIES ...ttt e e s 114
13.2. Winged Edge Mesh Library (WEM)ccoouiiiiiii e 114
13.3. Contour Segmentation ObJECtS (CSO)uuiiiiiiiiiiiiii e 116

List of Figures

1.1. Welcome Screen and Documentation LINKSoooeuuiiiiiiiiiieii e 4
2.1. Image Processing PIPEIINEoiiiiii e 8
2 1= 1o T4 G - Yo 11 | 10
2.3. Module Context Menu: SNOW HEIPooueiiiiii e 12
3.1. MeVisLabh USEr INEIfACEiiiiiiiiiieii e 13
I Y 1Ty S T=1 =T od 1o o PP 14
3.3. Modules Menu and MoOAUIE BIrOWSETiiieuuuiiiiiiiiee et e et e et e e e e e e eea e eeeanas 15
G I @ W Tod QY= =T o o I @ oo) 16
3.5. QUICK SEAICH RESUILS ...uiitiiitiii e e e e e e e e ees 16
G TG T [= Vo 1= o Y= Lo 1, o o 1= 16
3.7. ImageLoad Panel and OULPUL INSPECLONcuuuiveiiiii e e e e e e e e e e e e eaneees 17
3.8. Adjusting the WINAOWINGcvveeiiici e e e e e e et e e e e e e annas 18
3.9. Output Inspector with Image Properti€sc..oviiiiiiiiieii e e e e 19
3.10. Output Inspector with Additional Information DiSplaycccceviiiiiiiiiiii e 20
G 700 I G |5 B LU o 0 1 1S o 1= o1 o) 20
3.12. Connector Details in the Edit MENUuiiiiiiii e e 21
3.13. Connector Details in the PreferenCes ... 21
3.14. Connector Details Depending ON ZOOMc.uuiiiiiieiieeeii e e e e ee e e e e e eea e eeaneeeaaeeaneees 22
3.15. Setting up the CONNECHIONuiiiiicii e e e e r e e e et e e e e e e eeens 23
3.16. PAnel Of VIBW2Diiiiiiiiieiii ettt et e e et et et e aaan s 23
3.17. Opening the Settings Panel of VIEW2Doiiiiiiiiiiiee e e e 24
3.18. Settings Panel Of VIBW2Diiiiiiiiiii e e e e e e e e e et e e eanas 24
3.19. Automatic and Settings Panel of VIEW2Dcooiiiiiiiiii e e 25
3.20. Connecting the VIeW3D MOUUIEouiiiiiiii e e e e e e e aaaeeeen 26
3.21. The VIEW3D PANEI ... e e e et e e et e e e e et e e e eebe e eeeees 26
3.22. DICOM BIOWSET ...ietiieetieeett ettt e et e e e ettt et et e et e e et e e e n et e e e e an e e en e eenn s 27
307 T I Tor= 1 ' =T =T Y/ o Yo [| 28
3.24. Show the Internal NEtWOTIKooi i e e 28
3.25. Internal Network of the Locallmage Modulecooeuiiiiiiiiiicie e 28
107 T I 1T .01 a0 T o 29
4.1. Example Network Contour Filterovveeiii e e e e e eaes 30
4.2. Viewing the Input Image for the Contour FIltercooviiiii e 31
4.3, AdjUSt FIlter Parameterscoouuiiiiiiiii e e e e e e e e et e a e 32
4.4. Constructing the Filter Pipeline — Convolution OUIPULcoovviiiiiiiiin e 33
4.5. Constructing the Filter Pipeline — Morphology OULPULooviiiiiiiec e 33
4.6. Constructing the Filter Pipeline — Arithmetic2 OUIPULcocvviiiiiiii e 34
oy G O == 1 o = W V=TV] o 1] o S 34
4.8. Resulting Contour Filter NETWOIKc..uiiiiiii e e e e e 35
4.9. Establishing the Parameter CONNECLIONScvvuiiiiiii e e e e s 36
0 T LYY U o T V= A1 37
5.1. Example Network ROISEIECHONiiiiiiiiiiei e e e e e e ea s 38
5.2. Viewer with Selection RECIANGIEccuuiiiiiiii e e e e e een 39
5.3. Viewer for the SUDIMAQGEcveeiii e e e e e et e e e eans 40
5.4. Searching for World to VOXel CONVEISIONuuiiiiiiiiiiicie e e e e e e e 40
5.5. WOrldVOXEICONVEIt PANEIciiiiiiiiiiii e et e et e e erba e e 41
5.6. WorldVoxelConvert Modules AAEdoviiiiiiiiiiii e e 42
5.7. Adding the Parameter CONNECHONScvuuiiiiieeii e ee et e e e e e e e e e e e e e e aanees 43
5.8. Example Network ROI SEIECHONcc.uiiii i e e e e e e e eeen 44
6.1. Example Network: Open INVENtOr RESUILiiiiieii e e e e e 45
L7 A o] o] o= 1 o o Y/ 46
6.3. Traversing iN OPEN INVENTOLc..iiii e e e e e e e e e e e e e e e eean s 47
6.4. Creating the Applicator Shaftcooiiiiii e 48
6.5. Coloring the AppliCator SNAftoiiiiiiii e e e 49
SIS 2Yo [[T To =T 2N o] o] o (] G I o S 49
6.7. Adding Translation and GrOUPINGc.uuiieiiiii e e e e e e et e e e e s e et e e e e eeenees 50

Getting Started

6.8. Finishing the APPICALOLcoeii e e 50
6.9. Using SoCenterDalMaNIDcoouuiiiii e 51
6.10. CONNECHING PArQmELEISiiiiii ittt et e e e et e e e ea e e enees 52
6.11. Combining Interaction and APPIICALOLoiiiiiiiiiiiii e 52
6.12. Loading @ LOCAI IMAGEccoiiiiiiiiii ettt e et e e e e e e eens 53
6.13. Adding the GigaVOXel RENUEIETccouuiieiiii et 53
6.14. Copying the Windowing Modules from VIEW3Dcooiiiiiiiiiiiiiiic e 54
6.15. Adding the Windowing to the ApPlCAtOrcoouuiiiiiii e 54
6.16. ComMDINING The GIOUPSuuiiiiii ettt e e et e et e e e enb e e e eaa e eeee 55
6.17. Combined GraphiC EIEMENTSoiiiiiiiiii e 56
6.18. Adding the APPIICALOr SCAlINGccouuuiiiiiii e 57
6.19. Original Applicator/Interaction ArrangEMIENTiiiiiuii i 57
6.20. Improved Applicator/Interaction ArrangemMENTcoeuuuieiiiiiieeii e 58
7.1. Example fOr @ PACKAJE TTEEciiiii ittt e e et e e 59
7.2. Preferences — PaACKAQGESoiiiiiiiiii e 60
7.3. PACKAGE WIZAIU ...ttt e e et e 61
9.1. Starting a new Macro from the EXisting APPlICALOrccouuiiiiiiiiiiiiiiieeeii e 65
9.2. Renaming INSTANCE NBIMEScoouuiiiiiiii ettt e e e 66
9.3. Creating @ LOCAI MACIOuuuiiiiiiieeeit ettt e e 67
9.4, SEIECHNG 8 GBI ...ttt ettt e et e et e et e et e e e 68
9.5, MOUIE PIOPEITIES ..ottt ettt e e et e e e et e et et e e e e eba s 69
9.6. File Browser with the New Macro Module Files ..o 70
9.7. ApplicatorMacro as Macro MOAUIEoooiiiiiiiii e 70
9.8. ApplicatorMacro.SCrPL IN MALEiiiii e 70
9.9. ApplicatorMacro Module with OUtPUt CONNECIONuiiiiiiieieii et 71
9.10. Internal Network of the ApplicatorMacro Modulecoooiiiiiiiiiiiii e 72
9.11. Automatic Panel of the ApplicatorMacro Modulecooviiiiiiiiiiii e 73
9.12. Panel of the ApplicatorMacro MOTUIEooiiiiii e 74
9.13. Parameters for Diameter SEtHNGccuuuiiiiiiii it 76
9.14. Changing the Diameter of the APPICALOrcoouuiiiiiii e 77
9.15. Strange Behavior of the AppliCAtOrMACIOcoeiuiiiiiiiiiee e 78
9.16. Adding the Correct Tip TranSIAtioNovoiiiiiiiiii e e e 79
9.17. Complete APPHCALOIMEICIOcceuiieeiiii ettt e e e 79
9.18. Feeding the SoCalculator MOGUIEcouuiiiiiii e 81
9.19. Improved Applicator Macro MOTUIEooiiiiiiiii e 82
10.1. MEVISLAD STIUCTUIE ..ottt ettt et e e e e e e ne s 84
10.2. COOIAINALE SYSLEIMSiiiti ittt e ettt ettt e e et e e ettt e et e et e e et eat e e e e estnreeeentnneeeenbnaaeeens 85
10.3. MatrixX MUIIPIHCALIONeieiii ettt e e e e e ne s 86
10.4. World Coordinates in Context of the Human Bodycooveiiiiiiiiiiiiiic e 88
10.5. The DICOM Tag VIEBWETceutiieiiiiii ettt ettt ettt et e et e e enb e e e enanns 89
10.6. Image Properties for an [deal IMagEcoouuiiiiiiiiii e 20
10.7. Image Properties for a Sagittal IMagec.uuiiiiiiiiiiii e 20
10.8. Image Properties in the 1 nf o MOAUIEoiiiiiiiii e 91
12.1. Entering the ML Module Properties |ocoeeiiiiiiiiie et 99
12.2. Entering the ML Module PropertieS 1looiiiiiiiiiii et 100
12.3. Entering the ML Module Properties — FIieldsooouuiiiiiiiii e 101
12.4. Project in Visual CH+ 2005ccouuiiiiiiiie ittt ettt 102
12.5. ProjECt IN XCOUE ...iiiiiiiiii ettt ettt e e e e et e e e e eaa s 103
12.6. Project in CoEIBIOCKSccoeiiieiiii e 104
12.7. Example Network for SIMmpIeAddoooiiiiiiii e 107
13.1. WEM IsoSurface EXample NEIWOIKuiiiiiiiiiiiiiii e 115
13.2. WEM Extrude Example NEtWOTIKoo i 115
13.3. Freehand Contours with the SoView2CSOEditor Example Networkcc.ccoeevviiiieiinnnnnn. 116

Vi

List of Tables

1.1.
2.1.
2.2.
2.3.
2.4,

REIAIEA DOCUMEBNES ...itiiiiiiieii ettt et et e e e et e e et e et e et e et e st saa e st e saeesaeensesnsesnaernnes
11710 To L1 L= Y/ 0T
(0] 0 1= o1 (] =P
(Of0] o1 [=Tox 110 o E- 3PP
g 0o T =T o B 1 =

Vi

Chapter 1. Before We Start
1.1. Welcome to MeVisLab

MeVisLab is a rapid prototyping and development platform for medical image processing and
visualization. With its image processing library, it fulfills the following requirements:

» Able to handle large, six-dimensional images (X, y, z, color, time, user-defined).

» Offers easy ways to develop new algorithms or changing/improving existing ones in a modular C++
interface, perfect for a fast-developing research area.

» Offers easy ways of combining algorithms to algorithm pipelines and networks.
» Fast and easy integration into clinical environments due to standard interfaces, e.g. to DICOM.

» Fair performance for clinical routine due to a page-based, demand-driven approach in the image
processing.

Beside general image processing algorithms and visualization tools, MeVisLab includes advanced
medical imaging modules for segmentation, registration, volumetry and quantitative morphological and
functional analysis.

Based on MeVisLab, several clinical prototypes have been developed, including software assistants for
neuro-imaging, dynamic image analysis, surgery planning, and vessel analysis.

The implementation of MeVisLab makes use of a number of well known third-party libraries and
technologies, most importantly the application framework Qt, the visualization and interaction toolkit
Open Inventor, the scripting language Python, and the graphics standard OpenGL. In addition, modules
based on the Insight ToolKit (ITK) and the Visualization ToolKit (VTK) are available.

1.2. Coverage of the Document

Reading this document you will become familiar with the basic features of MeVisLab and how to use
them. The chapters are going from the easy to the complex, from the visual programming to macros
and programming modules in C++. You will get an idea of how to

» work with the graphical module/network interface concept of MeVisLab
* load and view 2D, 3D and 4D images of various formats

» prototype your specific image processing, image visualization or image interaction tasks with a
standard set of modules provided by the SDK distribution

* let your own image processing C++-algorithms run in MeVisLab as self-defined module plug-ins

» create compact graphical user interface representations of your image processing and image
visualization pipelines, functioning as quasi-applications

‘ Note
Depending on your software license, not all features of MeVisLab may be available. For

licensing information, please refer to the MeVisLab website (http://www.mevislab.de/).

1.3. Intended Audience

Getting Started is aimed at people new to MeVisLab and those who want to explore more of its options.

Before We Start

The necessary prior knowledge depends on the MeVisLab usage:
» For pure network creation, no programming knowledge is required.

» For macro creation, basic knowledge of Python or JavaScript and the MDL (MeVisLab Definition
Language) is required.

» For developing modules, basic C++ knowledge is required.

 For using the visualization options to their best advantage, some knowledge of image processing and
computer graphics is required.

1.4. Requirements

It is assumed that you have a working installation of the MeVisLab SDK distribution with a standard set
of modules. Supported platforms are Windows, Linux and Mac OS X. A complete overview of supported
platforms and compilers can be found at the MeVisLab website (http://www.mevislab.de/).

1.5. Conventions Used in This Document
1.5.1. Activities

Select: Click an object with the left mouse button.
Right-click: Click an object with the right mouse button, usually to open the context menu.

Double-click: Click the object twice in fast repetition. Starts the default action of the object (e.g. for a
module, opens the default panel).

Drag: Click the object with the mouse and keep the mouse button pressed while moving the object to
another position. Place/stop by releasing the mouse button.

Right-drag: Click the object with the right mouse button and keep it pressed while moving (as described
for drag).

CTRL+N: Press the keys CTRL and N at the same time.

ALT + double-click: Press the ALT key and double-click the object.

Menuitem — Submenuitem: Open the menu and select the submenu item.

1.5.2. Formatting

Views: Parameter Connections Inspector
MeVisLab modules: | rageLoad:
Parameters: Di anet er

Programming code: * out Voxel = *i nOVoxel and also

inMn + const Val ue
i nMax + const Val ue

outMn
out Max

1.6. How to Read This Document

If these are your first steps with MeVisLab, start with Chapter 2, The Nuts and Bolts of MeVisLab and
proceed to the first network example Chapter 3, Loading and Viewing Images.

Before We Start

If you have basic experience with image processing and want to learn more about visualization and
scenes in Open Inventor, read Chapter 6, Creating an Open Inventor Scene.

If you have basic experience with all module types in MeVisLab and think about extending your networks
with scripting, read Chapter 9, Developing a Macro Module for an Applicator.

If you have basic experience with the possibilities of MeVisLab networks and think about programming
your own modules in C++, start with Chapter 11, Introduction to C++ Modules.

In addition, the following sections might be of help:

» Chapter 10, Excursion: Image Processing in ML for some background on coordinate systems and
how they are used in MeVisLab.

» Chapter 7, Starting Development with Package Creation for the package structure of the module
database and how to create your own packages for development.

1.7. Related MeVisLab Documents

Besides the document at hand, a number of other documents are available.

Table 1.1. Related Documents

Title Contents

MeVisLab Reference Manual Reference for the MeVisLab user interface

MDL Reference MeVisLab Definition Language (MDL) reference

ML Guide MeVis Library Programming Guide

ML Reference (HTML only) Collected help texts for all modules

Inventor Module Help Help for Open Inventor modules

Toolbox Reference MeVisLab Toolbox Class Reference for various
libraries

MeVisLab - Mac OS X Guide Details for MeVisLab on Mac OS X

ToolRunner Manual for ToolRunner, a stand-alone program
delivered with MeVisLab 2.0

gmake gmake in the MeVisLab context, including
explanations for . pro and . pri files

The full list of available documents and resources is available on the Welcome Screen (which can also

be opened via Help — Welcome). While the Getting Started tab offers links to some important resources
and demos, the Documentation tab links to all documentation (HTML and PDF, if available).

Before We Start

Figure 1.1. Welcome Screen and Documentation Links

ili Welcome To MeVisLab

Getting Started | Documentation

Basics

Getting Started Tutarial

(Gives an introduction ko the MevisLab Lser InterFace and explains
firsk skeps

User Interface Reference

Explains how to uss the MevisLab IDE

MevisLab Movies

A st=p by step introduction ko MelisLab

wiww,MeVisLab.de

Visit the MewisLab home site

ecently Opened Networks
Jcs s Jab

D lsb

R

(i}

5]

[. WEMIsoSurface MEMIsoSurfaceExample, miab
[...[applicatorMacrojApplicator MacroTest.misb
o

. [Soiew2DiSeNiew2DExample.mlab

New etwork | Open Network,

Giga Voxel Renderer
Use diferert looleup bables to seperate objects in the volume
rendering visualy

OpenGL
Use the of
LTK ima
A registr
Registrat
WK Vi
A exan
Winged
Four subr
WEMIs0SH
Contour
Create ¢

more ..

EIEX

Demos

il Welcome To MeVisLab

Getting Started Documentation |

Using MeVisLab

User Interface Manual poF
Mac 05 X Guide eoF
Getting Started eoF

SDK General Help

Tool Runner eoe

VDL (Panel/GUD) Reference pok
Seripting Reference (Python/JavaScripty
Open Inventor Help o

Fr hofer MEVIS Rel

This Version

New in MeVislsh 2.0 eor.
Package Structure poF
Release Notes

SDK C++ Help and References

OMake poe.

The ML Guide EDF
Toolox Reference

Qpen Inventor Reference

pport (on the Web)

QsiriX MevisLab Bridge poF

Suppart

Installed Packages
et isLab /Standard Reference

User Packages
Example/General Reference

¥ Dan't shaw this at MeVisLab launch

MY Research/ITK Reference

Tip

h/Release Reference
Mev isRecearch/\VTK Reference

I¥ Dan't show this at MeisLab launch

On the Documentation tab, you can also find the help files for all installed packages and
your user packages listed. This is possible because the documentation links are created
dynamically for your installation. For more information on packages, see Chapter 7, Starting
Development with Package Creation.

For all questions related to programming that are not covered by the documentation, please refer to the
MeVisLab forum where you can search old topics or post new questions.

1.8. Glossary (abbreviated)

For an extensive glossary, see the ML Guide.

ML, MDL, Open Inventor — Some Important Terms

Explained

Base

BaseOp

ITK™

ML

MDL

Base fields/objects, for example the connectors for base objects. Base
connectors handle pointers to an abstract data object defined by the
user. How the base object is handled depends on how it is integrated
in the module.

The base class (superclass) of all ML modules (page-based, demand-
driven). Not to be confused with the base object described above. WEM
and CSO modules are also derived from BaseOp.

The I nsi ght Segment ation and Regi stration Tool kit ™. Alarge,
well known, open source image processing library which has been
wrapped in many parts for MeVisLab to work seamlessly with other ML
modules. See www.itk.org and www.mevislab.de for detalils.

MeVis Image Processing Library, also called MeVis Library at times.

MeVis Description Language, the language in which user interfaces of
modules and applications are written.

Before We Start

MFL

MeVisLab IDE

Open Inventor

VTK™

Formerly the MeVisLab File Library, the library that is used for reading
and writing any image format (for example, DICOM/TIFF). As of
MeVisLab 2.0, it is named “MLImagelO”.

The Integrated Development Environment.

Object-oriented 3D toolkit on top of OpenGL, a library of objects and
methods used for interactive 3D graphics

The Visualization Tool kit ™. A large, well known, open source
visualization library which has been wrapped in many parts to work
also in MeVisLab. See www.vtk.org and www.mevislab.de for details.

Chapter 2. The Nuts and Bolts of
MeVisLab

In the following chapter, we give you a brief (and dry) introduction into the nuts and bolts of MeVisLab,
that is:

Section 2.2, “Development in MeVisLab”

Section 2.3, “MeVisLab Modules”

Section 2.4, “Networks”

Section 2.5, “Overview of Important Files ”

Section 2.6, “User Interfaces Controls”

Section 2.7, “How to Find More Information on Networks and Modules”

2.1. MeVisLab Basics

Some of the most prominent features of MeVisLab:

Full 6D image processing (X, Y, z, color, time, user dimensions)
Paging

Caching

Multithreading support

Platform-independent

Scripting support (Python and JavaScript)

Macro system

Defining of GUI elements with the MDL scripting language
C++ programming interface

Pure C++ and object-oriented design

Self-descriptive module and application interfaces

Error handling: configurable exception usage; configurable error handling; diagnosis modules,
automatic module tester

Runtime type system

Extensible voxel type

Resources-friendly memory usage
Supports highly complex module networks

Based on standard libraries

The Nuts and Bolts of MeVisLab

Currently about 1300 modules

Long time maintenance

2.2. Development in MeVisLab

In MeVisLab, development can be done on three levels:

Visual level: Programming with “plug and play”: Individual image processing, visualization and
interaction modules can be combined to complex image processing networks using a graphical
programming approach.

Scripting level: Creating macro modules and applications based on macro modules: Python or
JavaScript scripting components can be added to implement dynamic functionality on both the
network and the user interface level.

C++ level: Programming modules: New algorithms can easily be integrated using the modular,
platform-independent C++ class library.

In addition, the abstract, hierarchical MeVisLab Definition Language (MDL) allows designing efficient
graphical user interfaces, hiding the complexity of the underlying module network to the end user.

From a workflow point of view, an application development would look as follows:

1.

2.

5.

6.

Connect existing modules to networks.

Develop new modules, if necessary

. Build user interface (GUI).

. Build macro modules to recycle complex functionality.

Use scripts to control networks, GUIs and macros.

Build installer (only with a special ADK license).

In MeVisLab, the algorithms are visualized in a network of modules (graphs). In a minimalist approach,
an image processing pipeline would consists of an image source, some algorithm/image processing
step in the middle and a viewer for displaying the output. This pipeline is mirrored in the MeVisLab GUI.

The Nuts and Bolts of MeVisLab

Figure 2.1. Image Processing Pipeline

v

Convolution

&

Modules can be connected in various ways which will be described in the following paragraphs.

2.3. MeVisLab Modules

Within the concept of MeVisLab the basic entities we are working with are graphical representations of
modules with their specific functions for image processing, image visualization and image interaction.

The three basic module types (ML, Inventor and macro) are distinguished by their colors:

Table 2.1. Module Types

Type Look Characteristics

ML Module (blue) page-based, demand-driven
- - processing of voxels

visual scene graphs (3D); naming
convention: all modules starting
with “So”

Open Inventor Modules (green)

combination of other module
types, allowing implementing
hierarchies and scripted
interaction

Macro Module (brown) n

Most modules have connectors which are displayed on the module. These represent the inputs (bottom)
and outputs (top) of modules.

The Nuts and Bolts of MeVisLab

In MeVisLab, three types of connectors are defined.

Note

O

In principle, every module type can have any kind of connector.

Table 2.2. Connectors

Look Definition
square Base objects: pointers to data
I structures
f triangle ML images
half-circle Inventor scene

By connecting these connectors and therefore establishing a so-called data connection, image data or
Open Inventor information is transported from one module to one or more others.

Besides connecting connectors, any field of modules can be connected to other compatible fields of
modules with a parameter connection.

Table 2.3. Connections

Type Look Characteristics
Data connections (connector The direct connection between
connections) connectors. Depending on which

connectors are involved, the
connection is rendered in a
different color: blue for ML, green
for Open Inventor, brown for
Base.

Parameter connections (field Connections created by
connections) connecting parameter fields

within or between modules

Tip

For more display options, see the MeVisLab Reference Manual, chapter “Modules and
Networks”.

2.4. Networks

Networks are connections between modules with which you can implement complex processing tasks
from sets of standard ML, Inventor, WEM, CSO, ITK, or VTK modules.

Networks are edited and saved as *. nl ab files in MeVisLab.

The Nuts and Bolts of MeVisLab

In Figure 2.2, “Network Layout”, the example network of the Regi onGr owi ng module is shown. It consists
of all three types of modules and shows data connections as well as parameter connections.

Figure 2.2. Network Layout

Remember that macro modules are encapsulated networks of their own, so you effectively work with
subnetworks (see Chapter 8, Introduction to Macro Modules for more information).

Tip

For information on the involved classes for the programming of modules, connectors and
connections, see Chapter 11, Introduction to C++ Modules.

2.5. Overview of Important Files

Here a list of the most important file types:

10

The Nuts and Bolts of MeVisLab

Table 2.4. Important Files

File type Contents

.nlab Network file, includes all information about its
modules and their connections and settings.

. def Module definition file, necessary for a module to be
added to the common MeVisLab module database.
May also include all MDL script parts (if they are
not sourced out to the . scri pt file).

.script MDL script file, typically includes the user interface
definition for panels. See Section 9.2, “Adding the
Macro Parameters and Panel” for an example on
GUI programming.

. py Python file, used for scripting in macro modules.
See Chapter 9, Developing a Macro Module for an
Applicatorfor an example on macro programming.

.js JavaScript file, used for scripting in macro
modules.

.dcm DCM part of the imported DICOM file, see
Section 10.7, “Data Types for DICOM and TIFF".

Stiff TIFF part of the imported DICOM file, see

Section 10.7, “Data Types for DICOM and TIFF".

For files related to module programming in C++, see Chapter 11, Introduction to C++ Modules.

2.6. User Interfaces Controls

MeVisLab uses QT for rendering the GUI (panels etc.) and offers a scripting interface.

Every module comes with an automatic panel on which all fields and available settings are listed.

For improving the handling, user interfaces (“panels”) can be added for modules, see Figure 3.19,
“Automatic and Settings Panel of View2D” for an example. Panels are written in MDL and offer the
following possibilities:

* layouting and grouping of fields

» excluding some of the available fields (to make the panels more user-friendly)
» adding additional fields

» adding additional functionality by calling script methods

The components of the user interface are controls.

» User input controls, like text and number edit controls; popup menus, radio buttons, checkboxes, and
trigger buttons. They are typically, but not necessarily linked to a field. Several controls can be linked
to the same field.

» Layout controls, like for horizontal/vertical grouping
» Decoration controls, complex controls, dynamic controls...

To these controls, scripting can be added.

An example for the programming of a small module panel is given in Section 9.2, “Adding the Macro
Parameters and Panel”.

11

The Nuts and Bolts of MeVisLab

Tip
Example GUI modules are available; enter “Test” in the quick search to get a list of available

modules.

For further details on panel scripting, please refer to the MDL Reference.

2.7. How to Find More Information on
Networks and Modules

1. When you enter the module name in the quick search, the About information of the module is
displayed.

. If the View Module Inspector is open, you can find the About information on the respective tab.

3. To get a detailed description of the module's function and how to use it, refer to its help file.

N

a. Right-click the module to open the context menu.

b. Select Show Help to open the module's HTML help in your default browser.

Figure 2.3. Module Context Menu: Show Help

¥
Imageload
Show Window 3

Edit Instance MName

2 MeVisLab ImageLoad - Mozilla Firefox

Datel Bearbeiten @nsicht Chronik Lesezeichen Extras Hife
- c {a? l\;] file: /11 jPragrammeMevisLab 2, 0aVCEiP ackagesiMeVisLab/Standard/Document atiol

Reload Definition | | MevisLabIm... | | MeVislabIm.. || MevislabIm...| | | MasterBuild.. | | MevisLabIm... | | MeVisLabIm...

Related Files
H@ ImageLoad (MLModule)

Loads an nnage.

Library MM ImageFile Package MeVisLab/St:
Genre FileMain Kevwords ImageLoad L«
Defuution milmageFile def’ See also ImageSave Oy

Author Tobias Boskamp Dirk Selle
Mo Apr 27 14:21:31 2009

Purpose Usage Details Inputs Outputs

ImageLoad

[Purpose
4. To see how the module is working, an example network is delivered with most modules.

a. Right-click the module to open the context menu.

b. Select Show Example Network to open the example network on another network tab.

12

Chapter 3. Loading and Viewing
Images

In the following chapter, we will walk through an example network for loading and viewing images.

Section 3.1, “The MeVisLab GUI": first steps in the MeVisLab user interface

Section 3.2, “Searching and Adding Modules”: searching and finding modules

Section 3.3, “Using the Imageload Module”: loading images

Section 3.4, “Adding Viewers to ImageLoad”: adding viewers (View2D and View3D)

In addition, two special topics are discussed:

¢ Section 3.5, “Alternative Ways to Load Images”: alternative ways to load images

e Section 3.6, “A Note on Importing DICOM Images”: importing and converting DICOM images to the
internal image format of MeVisLab

3.1. The MeVisLab GUI

First, start MeVisLab (the “how” depends on your platform). After the Welcome Screen (see Figure 1.1,
“Welcome Screen and Documentation Links”), the start view opens.

Figure 3.1. MeVisLab User Interface

ili MeVisLab - [untitled 1] =mEix]
7 File Edit Modules Applications Extras Scripting View Networks Panels Help = x

H)&T} Ky

Outpuk Inspector 8 X

Click on a connector to display a data
ohject

Module Inspector: Untitled & X
Fiolds | Fies | Tree | sbout | Rela 4|¥
Harne Type |In | out | value

instancetlame String Untitled
4 |0l
Module List & x

Type | Name |

Debug Output & X
2009-04-27 08:50:57 [nfo; Inkel(R) Core(TM)2 Duo CPU EG400 @ 3.00GHz with OpenGL 2.1,2 (Quadro Fx S70{PCI/SSEZ) -
2009-04-27 (018:50:57 [rfo: Loading preferences from C:/Pro sl abZ. 0aVCE{PackagesMetisL abDE b islah.p

2009-04-27 (018:50:57 [rfo: Laading preferences from C:/Dolumente und n/mevislab.pref:

2009-04-27 08:50:57 o Licerse mevislablcense, dst owner: Mevis Feature; al

2009-04-27 0850057 [nfo: Loading package MeVisLab (tnstaliech From C:Progr b2, D Pack

2009-04-27 08:50:58 [rfo: Loading package MeVisResearch,/ ITK {(nsfaliech from C:/Prodamme fMeVisl sh2, 0avCa[Pad h/ITE Modules

2009-04-27 08:50:58 [rfc: Loading package MevisResearch/Release (mstafied) from Cier b2.08VC

2003-04-27 (018:50:58 [rfo: Loading package MeVisResearch WK { nstalled) from C:/Pro s abi?, DVCE Pac) h /T Modules

2009-04-27 08:50:58 [rfo: Loading package Example; General { Vi tserPackagePath) from CulProo b2 0a Itodle:

2009-04-27 08:50:58 [nfo: Sranning rodule path C: b2, 02VCHIE:

0:58 [rfo; Ready. s
2009-04-27 08:51:00 Info; Python language lnaded, |

/500000 KB ’E ’E

By default, MeVisLab starts with an empty workspace and some Views on the right (like the Output
Inspector) and bottom of the screen (usually the Debug Output). In the Debug Output, you can find
information about your MeVisLab installation and start-up, which preferences and license file are loaded,
and if all packages loaded correctly or with errors.

13

Loading and Viewing Images

Views can be configured via the menu bar, View - Views, or by a right-click on the border of Views.

Figure 3.2. Viewer Selection

Yiew Metworks Panels Help

I [view Al [

B :]EE Zoom To Selection

'i}\ Zoom In

'3\ Zoom Cut
Zoam 100%

Layouk

|T Debug Cukput
Maodule Browser

|T Madule Inspeckar: Untited
Module List

Madule Search
Metwork, Field WatchList

|T Output Inspeckor
Parameter Connections Inspector

Screenshot Gallersy

Scripking

Scripting Assistant

Search in Network,

v Ed
|T File Cperations
|T Cuick Madule Search

|T Zoaming

Some Views arrangement are pre-defined as layouts, which can be selected via View - Layout. If
you are working in the User Default Layout, all changes you make in the Views configuration are
persistent and will be saved as your “User Default Layout”. Therefore, most screenshots in the MeVisLab
documentation are only examples — your own MeVisLab GUI may look different. Only the workspace
always remains visible.

Tip

For details on layouts, see the MeVisLab Reference Manual, chapter “Menu Bar”.
The workspace is the place for constructing and editing module networks. If more than one network is
open, tabs appear on top of the workspace. To create, open and save one or more networks, use the
tool bar buttons or the File menu in the menu bar. To switch between different network tabs, use the

Networks menu in the menu bar or press Tab.

For more detailed information, see the following examples and the MeVisLab Reference Manual.

3.2. Searching and Adding Modules

There are several ways to add a module to the current network, for example:

14

Loading and Viewing Images

* via the menu bar, entry Modules.

 via the menu bar, Quick Search.

* via the View Module Search.

* via the View Module Browser.

* via copy and paste from another network.
by scripting, see the Scripting Reference.

Both the Modules menu and the Module Browser display all available modules. The modules are
sorted hierarchically by topics and by module name, as given in the file Genr e. def .

Therefore, both places are a good starting point when in need of a specific function, like an image load
module.

Figure 3.3. Modules Menu and Module Browser

ili MeVisLab - [untitled 3]

Filters 3

Seqgrmentation 3

ImageSave

BtImage

7 File Edt | Modules Applications Extras Srripting Misw Mebworks Panels Help =8| %
== File: 3 B =
O o B oon g & S| =
Irventor 3
wellocallmage) Image ' Misc N Module Browser 5 X
Geometry i’ ML F . Available Modules | Status | Author | Type | =1
Analysis 3 Nagerorms S Fis
BitIrmage »

stable
Tobias Boskamp, D

Tobias Boskamp, Dirk Selle MLModule

= MLModule I

’ Imagesave Bitlmageload stable wolf Spindler MLMadule I+
Transformations #] BitImageSave stable wolf Spindler MLModule
+|- MLImageFormat
Reqgistration 3 +- Misc b
+|- Inventor
Visualization 3 +- DICOM
Open Inventor F - Image
= Geometry
Special L4 - Misc
+- Subimage
Extras 4 +- Resample
Dlls 3 +|- Coordinate
+- Plane

i

] |

The last entry DLL lists the modules by their main DLL name.

The advantage of the Module Browser is that you can right-click the entries, open the context menu
and, for example, open the help (in your default Internet browser) or the module files (in Mate, the in-
built text editor).

Note

For a module to get listed, it has to be available in the SDK distribution or in your user-
defined packages. If in doubt or missing something, check out the loaded packages in the

Preferences (on Windows and Linux: Edit — Preferences - Packages; on Mac OS X:

MeVisLab - Preferences - Packages). For details on packages, see Chapter 7, Starting
Development with Package Creation.

Usually the quickest way to add modules to a network is the quick search in the menu bar. It offers you
the possibility to search for modules by module name. By default, the search will also be extended to
keywords and substrings and is case-insensitive. To change these settings, click the magnifier button
for the search options.

Tip
The quick search field does not need to have the focus — any time you enter something

in the MeVisLab GUI while not being in a dialog window, this will be entered into the quick
search automatically.

15

Loading and Viewing Images

Figure 3.4. Quick Search Options
| ﬂ &

v Substring

WiewZDE xample.mlab |
v Kewwords

Case Sensitive

To search for a module to load an image, you could either type “load” or “image”. Let us go with the
second option this time. While typing “image”, the possible results appear. Use the up/down keys on
your keyboard to move to one of the listed modules. The module's About information will appear next
to it, allowing you to decide if this is the right module for you.

Figure 3.5. Quick Search Results

Panels Help =
_.-\ |image ﬂ S
: -
| Imageyiewer :‘ MLModule ImageLoad
ImageLaadtult author Tobias Baskamp, Ditk Selle
ImageSave skatus stable

Locallmage
MLImageInspector
BitImageSave

package MevisLab/Standard
comment Loads an image.

CSOCanvertTalmage DLL MLImageFile
MLImageFormatLoad genre FileMain
Cpenlmage ¥ [keywords Imgload Load Open File Format TIFF DICOM Analyze Lumisys Raw

PMM PGEM PPM JPEG JPG PNG BMP image
seeflso ImgSave, Openlmage, Savelmage, MakeMame, ImgLoadrult,
LoadBase, FileDiractory, DicomBrawser, Locallmage

@ Y v

Tip
For a more complex search, use the Module Search View.

Select | rageLoad and press ENTER to add the module to a new network.

Figure 3.6. ImageLoad Module

,
Imageload

The module is an ML module, as can be seen by the blue color. It offers one image output connector
(triangle for image, output because it is on the top of the module; see Chapter 2, The Nuts and Bolts
of MeVisLab).

In the next section, we will have a closer look at the module details.

3.3. Using the ImageLoad Module

For the following section, we expect that the Views Output Inspector and Module Inspector are open.
If necessary, add them via View - Views.

1. First, we need to load an image.

16

Loading and Viewing Images

a. Double-click the | mageLoad module to open its panel.
b. Click Browse to select a file for display, The default file browser opens.

c. Go to the MeVisLab DemoData directory at $(1 nstal | Di r) Packages/ MeVi sLab/ Resour ces/
DenoDat a in the MeVisLab installation path and select a file, for example a head shot
(Head4_t1.smal | .tif). The image is loaded immediately. (Instead of | mageLoad, you could
also use Local I mage which is optimized for loading images in relative paths, as explained in
Section 3.5.3, “Using the Locallmage Module”).

Tip

If you would like to start with your own image data immediately, please see the chapter
Section 3.6, “A Note on Importing DICOM Images” on how to convert your DICOM slices
into the internal file format of MeVisLab first. Then continue in place.

Module panels are intended to stay open, so keep the panel open or minimize it if it gets in your way.
There are two ways to minimize a panel:

* Click the minimize button on the top right of the panel window: this will minimize only this panel.

Select Panels — Minimize All Open Panels (or press the respective keyboard shortcuts): this will
minimize all panels of this network.

Note

Do not use the Close button on the | mageLoad panel as this will close (and unload) the
image.

. For display, you can either add a viewer (we will do this later in this example) or you can click the
module's output connector to display the image in the Output Inspector.

The great thing about the Output Inspector is that it will display the output of any connector in the
process chain (as long it is a format the inspector can interpret). So if you are ever unsure about what
is actually the input or output of a module, simply click the connector to find out.

Figure 3.7. ImageLoad Panel and Output Inspector

| % |Cutput Inspector 8 x

B

20 | ap | r

d4 t1_mprage B

Filenarme: ataﬂ-{eadét_tl.small.tiﬂ Browse...
Main } Read Raw } Page Size]
Format: DICOM/TIFF
Size: X 119 v 119 Z: 74
i, 2
& 1T tu 1 ImageLoad
] F X
Data Type: wnsigned ints Module Inspectar: Imageload
Fields 1 Files I Tree] About] Related 4
Min Yalue: 0 Mame |Type |In |Out ‘Va\l bl
. instancefame String Imz
Mai Vallie: 100 filename String il
load Trigoer Trigy
Camment: MevisLab Sl Boal TRL
close Trigoer Trigy
Status: File apen status String File:
progress Float 0.4
Format Skring DIC
Close Load dataType String uns
sizen Integer e
sizey Integer 115
sizeZ Integer 74
sizelC Integer 1
sizeT Integer 1 -
sizel | Trkrner 1
Ll T 3

17

Loading and Viewing Images

Your image does not look like this? One reason might be that the slice of the image you are looking at
has no information. Click on the Output Inspector and scroll through the slices by

* using the mouse wheel

» keeping the middle mouse button (mouse wheel) pressed and moving the mouse up and down

» pressing the arrow keys

Still not seeing anything? Then try to adjust the visibility range by changing the windowing. For this,

keep the right mouse button pressed while moving the mouse up/down (for window width) or left/right
(for window center). During these actions, the mouse cursor changes into a contrast symbol.

Figure 3.8. Adjusting the Windowing

Outpuk Inspeckor g x

[3

Both on the panel and on the additional information of the Output Inspector, the image properties can
be found. In the Output Inspector, you can open them by clicking *.

18

Loading and Viewing Images

Figure 3.9. Output Inspector with Image Properties

Cutpuk Inspeckor g X

20 | 3p | -
Image Properties
Image Size: 119, 119, 74, 1,1, 1
Page Size: 64,64,1,1,1,1
Data Twpe: wunsigned inkS Range: [0, 100]
Moxel Size: 2,154, 2.154, 2,154

Mprage_s... MR

Wi'orld -0.075190 -2,153 B2.02
Matriz:
2,153 0 -0,07519-139.4
] -2,1540 112.4
]] 0 1

Options

I Smap ko image center Save As...

The image properties show the following information (see Chapter 10, Excursion: Image Processing in
ML for more information):

* Image Sizeinx,y, z,¢c,t,n
» Pagesizeinx,y, z,c, t,n
» Data type and range

* Voxel size in mm

World matrix
Two options are available:

* Snap to image center: If selected, the image is centered, that is the middle z slice is shown (only
effective when opening a new display).

» Save as: Opens a Save dialog.
In addition, two key shortcuts are available:
» A: Toggle the display of the annotations.

* |: Toggle the display of an additional information display.

19

Loading and Viewing Images

Figure 3.10. Output Inspector with Additional Information Display

Cubput Inspector

A 3D display is possible (in case of a single slice, its depth is the voxel depth). For this, click the 3D
tab in the Output Inspector.

Figure 3.11. 3D Output Inspector

Outpuk Inspeckor g X

2D 3D g

rlzadd vl _mAah ey SHBAT SREMERN
Courtzzy Of ail, Bramain-s

Allsgra
20000

[l

O TE Grey| H
Courtesy of ZeM, Bremequisition: 20 o

Note

The 2D and 3D views are independent of each other.

20

Loading and Viewing Images

The 3D display can be rotated. The orientation can be seen on the little cube in the lower right corner
of the viewer (Notation: A = anterior, front; P = posterior, back; R = right side; L = left side; H = head; F
= feet). You can also use the windowing described above for the 2D view.

The information given in the panel and the 2D view image properties of the Output Inspector can also
be displayed right next to the module connector. For this, check

* Extras - Show Image Connector Preview for a thumbnail preview and/or

* Extras — Show Connector Details for connector details.

Alternatively, activate the respective options in the Preferences, section “Network Appearance” (on
Windows and Linux: Edit — Preferences; on Mac OS X: MeVisLab - Preferences).

Figure 3.12. Connector Details in the Edit Menu

tras Scripbing Wiew Metworks Panels Help
"T Reload Module Database (Keep Cache)
Reload Module Database (Clear Cache)
Run Module Tester

Generake Module Reference For User Packages (HTML)

Debig Widgets
Merbose Scripking

v Show Connector Details

v Show Image Connectar Presiew I

Clear Image Cache

Figure 3.13. Connector Details in the Preferences

ili MeVisLab Preferences

Categary | Network Appearance
General

Network Settings

Packages
-~ Module Groups [Owerwrite pressts
~Supportive Programs Modules
~Paths FontSize: | 125
-Developer
= = Make sure 1o reload your netwarks for the
Pythan WM Snap to grid ¥ 8 El. ¥ g i

= changes of the snap settings 1o take full effect!
- Network Appearance

~-Panel Appearance I™ Draw background images

- Cout/Cerr Redirection I ~Connector Details |
~Symbol Controlled Debugging ||V Show conmector detail info ¥ Show connector image preview
- Exceptions / Tracing — —

Detail Font Size: 105 Image Preview Thumb Size: 64 ¥

Details on Zoom: 001 E|:
“erbose Details on Zoom: 1.5 E|:

ote: Sizes and font sizes relate to a zoom factor of 100%. |

Mini Map

Show 1IN Map: |Aummatic j Position: |Unper Right j
Network Rendering Style

Style: ’W‘

Default Colors

Groups: | Motes: |

Changing parameters in this panel overwrites settings from your mevislab.prefs file!

Restore Defaults Ok Apply Cancel

21

Loading and Viewing Images

The additional information is displayed when single-selecting a module. The amount of displayed
information depends on the zoom factor. To zoom in/out of a network, scroll with the mouse wheel.

Figure 3.14. Connector Details Depending on Zoom

I BT
S Er N B T A 3 BT
Lyeize dniziepzie s

¥

Image Load

ImagelLoad

For this example, we will work without the connector details display, because it tends to clutter the
interface.

3.4. Adding Viewers to ImagelLoad

Instead of using the Output Inspector (whose display might change with every clicked connector), it is
sensible to add a viewer to the network. There are two standard macro modules available in MeVisLab
which provide standard viewer configurations for 2D and 3D rendering, namely Vi ew2D and Vi ew3D.
Especially the 2D Viewer is frequently used to examine image processing results within a module
pipeline, for example. Once you begin to implement your own applications, you are free to create your
own viewer implementations adapted to your special tasks.

3.4.1. Adding the View2D Module

1. Add a Vi ew2Dmodule to your network. Inthe Modules menu itis located at Modules - Visualization
- 2D Viewers - View2D.

The Vi ew2D module has one input connector for the image to be rendered. (It also has three Inventor
inputs which are hidden by default, see Chapter 5, Defining a Region of Interest (ROI).)

2. Feed in the image by connecting the image output of the | mageLoad module with the image input of
the Vi en2D module. This is done as follows:

a. Click the output connector of | negeLoad.

b. Keep the left mouse button pressed while dragging the connection to the input connector of Vi ew2D
(white line).

c. Check that the connection is well-defined (green line).

d. At the input connector of Vi ew2D, release the mouse button and establish the connection (blue
line).

22

Loading and Viewing Images

Figure 3.15. Setting up the Connection

View2D View2D View2D

A
N L3

ImagelLoad Imageload ImagelLoad

Although the connection is established, no image rendering has started yet. To initialize rendering,
open the Vi ew2D panel by double-clicking the Vi ew2D module in your network. As you can see, the
default panel is the viewer itself.

Figure 3.16. Panel of View2D

iii Panel View2D
Headd_t1_mprage_sag_2_ac |CAI -UNIVERSITAT BREMEN

20000101 F Allegra
/ MR

ViewzZD

P —

¥

Imageload |

Slice: 25

Timepoint: 0
119,119, 74, Grey. 1

21542154 2154 MR Mode
Courtesy of ZeN, Bremen Scan: 2004040
MeVisLab LUT C/W:51.29/

The View2D panel provides a standard viewer with many features, like slicing, zooming, windowing,
annotations, slab view, cine mode, and many more. A full description of all supported features and

how to use them can be found on the Vi ew2D help page which you can open from the module's
context menu.

The Vi ew2D module offers various settings. As the default panel is the viewer, the Settings panel
needs to be opened explicitly from the context menu via Show Window - Settings.

23

Loading and Viewing Images

Figure 3.17. Opening the Settings Panel of View2D

Show Inkernal Metwork, '

LN
-

Panel

YiewzD Cptions s Aukomnatic Panel

Edit Instance Mame Viewer

Show Example Metwork M

Show Help

Reload Definition
Felated Files k

Debugging r

Add to Mew Group

Figure 3.18. Settings Panel of View2D

il Settings View2D Q@@

F Allegra Main | Appearance I Cineh 1»
of ZeN, Bremen MR

prage._: ac {CAI -UNIVERSITAT BREMEN

Inventor Input
[Inventor Input Fields

Settings
Viewz2D
Start Slice: 25
S v—
Slat: 1

Blend Mode: Replace -

Tirne Point: [u}
W May Time Point; 1}

Imageload '

woxel filter: Linear Ed

[Use Trace Colors

[Snap to center

v Standard keys

As you can see on the Settings panel, the Vi ew2D module also offers Inventor inputs that are usually
hidden. Take a look at the module's example network (context menu, Show Example Network) for
the usage of these Inventor inputs connectors. Another module that might get connected here is the
Vi ew2DExt ensi on macro module, which extends the viewer for drawing (image overlays, contours,
ROIs), measuring and more.

Note

A module always has one automatic panel and may have an arbitrary number of
additional panel windows, as defined in an MDL file (in the . scri pt file by default). The
automatic panel lists all variables, fields and inputs/outputs of the module; the scripted
panels may only include a fraction of these fields (see also Section 2.6, “User Interfaces
Controls”).

24

Loading and Viewing Images

Figure 3.19. Automatic and Settings Panel of View2D

id Settings View2D =13
Main | Appearance | CineI'N
~Inventor Input

[~ Inventor Input Fields

~Settings

Start Slice:

Slab:

Blend Mode:

il Panel View2D

Parameters | Inputs | Qutputs |

Tame | Twpe | In | Out | Yalue
instanceMame String Yiew 2D
inventorInputon Bool FALSE
view2DExtensionsOn Bool TRUE

startSlice Irnteger 25

numslices Integer 1

numxSlices Integer 1

sliceStep Inteqer 1

slab Irteger 1

blendiiode Enuim BLEMD_REPLACE
timePoint Integer u]
maxTimePoint Integer u]

filterrode Enuim FILTER_LIMEAR
standardkeys Bool TRUE

startCine Trigger I'rjga
stopCine Trigger Irigo

3. Now is a good time to save your network as MyFi r st Net wor k. ni ab. You can do this in several ways:

* Select File » Save or press the respective keyboard shortcut (for a list for all operating systems,
see the MeVisLab Reference Manual, chapter “Shortcuts”).

¢ Click the disk symbol in the toolbar.

The network modules and all module parameters are stored. Next time you open the network, you
will get access to the loaded image at the output of the | mageLoad module immediately.

Tip
You can quickly re-open the last twenty networks via the menu bar, File - Recent Files.
Tip
If the option Auto save MeVisLab documents in the Preferences is selected, MeVisLab
networks are auto-saved as <Net wor kNane>. nl ab. aut o upon major changes. This

allows for restoring in case of system crashes. Auto-saved copies are deleted when the
according networks are saved.

3.4.2. Adding the View3D Module

The Vi ew3D macro module is an easy-to-use application of the SoGvRvol uneRender er module, which
is a high-end, hardware-based image rendering module using 3D textures. Adding the Vi ew3D module
to the network, we get access to a 3D scene of our example image.

25

Loading and Viewing Images

Figure 3.20. Connecting the View3D Module

View2D View3D

F AN

¥

Imagel.oad

Figure 3.21. The View3D Panel

il Panel View3D

Fleadd t1_mpra 2 ac CAI-UNIVERSITAT BREMEN General | LUT | Hlumination | Clippi <[>
Courtasy of Zal, F Allzgra - Viewer
20000101 M Wiew all | Auto view all
Axial | Sagittal | Coronal | Profile ‘
Time Point: I—Dil
Mode
Mode: ’W
Interactive Quality: ’m
Quality: s
Orientation
v On
Madel m

Projection Type: Perspective 2
Location Lower Right =

Settings

v Background
Screenshot

I Annotations

119,119,74,Grey,1

2.154,2.154,2.154
Courtesy of ZeN, Bremen acquisition: 20048

In addition to the 3D display offered by the Output Inspector, the View3D viewer comes with several
panels on which you can set display details or even record a movie.

3.5. Alternative Ways to Load Images

Besides the way described above, there are variations.

3.5.1. Dragging Images onto the Workspace

Instead of adding the module, you can drag the image file

» onto the workspace: An | mageLoad module is created automatically in the current network when you
drag a DICOM or TIFF image file from a file browser onto the MeVisLab workspace. The dragged file
is loaded automatically and available at the image output connector of the created | mrageLoad module.

26

Loading and Viewing Images

Tip

This mechanism also works for WEM files (creates a WEMLoad module) and CSO files
(creates a CSOLoad module). For these module classes, see Chapter 13, Developing
Inventor, WEM and CSO Modules.

» onto an existing | mageLoad module
« onto the filename field of an existing | mageLoad module

3.5.2. Adding Images via the DICOM Browser

For loading DICOM files (or DCM/TIFF pairs, see Section 10.7, “Data Types for DICOM and TIFF"), you
can use the Di conBr owser module.

With the Di conBr owser , DICOM images can be sorted by DICOM tags like institution, patient, modality
etc. The default browser path is set to the MeVisLab image path at $(| nstal | Di r)/ dat a. You can set
your own default DicomBrowser path in the Preferences, section “Paths”.

Figure 3.22. DICOM Browser

il Panel DicomBrowser

Browser l Settings]

Root Path: PisLab[ResoLjrces/‘DemoData Browse... | Sort By: |Institution - Reload

CAI -UNIVERSITAT B,i‘ PatientsMarme |PatientiD | PatientsBirthDat
= -Head4_t1_mpra

*-2005.03.22 13

Klinikum Bremen Mit

Head4_tl_rprage_sag_2_asc Courtesy of ZeM, Brernen 2000.01.01

= -Anonymized, Y14

--2008.06.18 13
LAHEY CLINIC CT2 ™
. S BT | o
Preview Mame:
Filename: =moData/DemoDataOnco TREAT ALungenrundherde/SMS_TumorPatS__0004.dcm

3.5.3. Using the Locallmage Module

Instead of using the | mageLoad module, you can use Local | mage.

Local I nrage is a macro module that allows for image selection based on relative paths. This method
is recommended for image referencing because it enables an easier exchange of networks between
cooperating parties. On the panel, the list of supported variables and their meaning is displayed.

27

Loading and Viewing Images

Figure 3.23. Locallmage Module

i Panel Locallmage

Marme: I t£(DemoDataPath)/Bone. tiff Browse. .,

True Mame: - 3VCBPackages MeisLab/Resources,DemoDats,/Bone. tiff
¥

Locallmage

~Examples

£ (NETWORK) /test tif for images relative to this network
£ (HOME)/images,/test.tif for images in users hame directory
t({DemoDataPath)/Mest.tif for images local to varisble in mevislab.prefs

Status: File open

Macro modules are a combination of an internal network and a script. You can open the internal network
via the module's context menu or by pressing SHIFT and double-clicking the module.

Figure 3.24. Show the Internal Network

h, f

Locallmage

Show Internal Metwork,

i
Shiot YWwindow

Edit Instance Mame

Shows Example Mebwork,

In the case of Local | mage, the internal network consists of an | mageLoad only. The difference to that
module is only in the scripting that offers relative instead of absolute paths to the file.

Figure 3.25. Internal Network of the Locallmage Module

28

Loading and Viewing Images

3.6. A Note on Importing DICOM Images

MeVisLab works with its own 3D file format which stores the image values and the image DICOM
tags separately in two files with same name but different extensions: <filename>.tiff and
<f i | enane>. decm Withoutimporting your DICOM slices to MeVisLab DICOM/TIFF format, the MeVisLab
image loading modules will only be able to load single DICOM slices separately. For further information,
see the chapter Chapter 10, Excursion: Image Processing in ML.

The DICOM import is provided by the module Di com nport .

1. Add the module to the network via the quick search or the menu bar, Modules - File - DICOM -
DicomlImport. Open the module panel with double-click on the module.

Figure 3.26. DicomIimport

il Panel Dicomlmport g@@
Input
Source Path: |C:{tmpfinput_dic0m Browse...
Output
DicomImport Target Path: |C s ftmpfoutput_dicam Browse. ..
Options
Options: |-r -vl Default | Help |
Import

2. Enter the necessary data.

a. Select the Sour ce Pat h where your DICOM slices are located. In the MeVisLab installation path
you can find some example DICOM slices in the $(I nstal | Di r)/ MeVi sLab/ dat a/ denpdat a/
Brai nT1Di com directory. All subdirectories will be scanned recursively and each series will be
converted into the 3D DICOM/TIFF format.

b. Select the Target Pat h where your imported DICOM/TIFF files will be stored in. If you want
to import the example DICOM slices, we suggest using the $(Instal | Di r)/ MeVi sLab/ dat a/
denodat a path.

c. Click the Import button. A window pops up showing the import progress. Close the window when
the import has been finished (Successful Iy termni nat ed).

Depending on how much series have been imported, you will find one or more DICOM/TIFF
file pairs in the Target Path. For the example slices import, two files should have been created:
Test Patien_i dO__0001. dcmand Test Pati en_i dO__0001.tiff .

If your DICOM import fails, check if some optional flags in the Opti ons field are missing. You can find
more information either via the options description (Help button in the module panel) or via the module's
help page (context menu, Show Help).

Tip

DICOM multi-frame files can be opened directly in MeVisLab; therefore, the import step
is not necessary for displaying the data. (For image processing, it is still recommended to
import the files.)

29

Chapter 4. Implementing a Contour
Filter

In this chapter we will introduce to you how an image processing pipeline is implemented by means of a
MeVisLab network. We are going to implement a contour filter which is based on the elementary image
processing steps average, dilation and subtraction. To get a visual impression of what the filter is doing,
we will also implement two synchronized render pipelines with 2D viewers for the filter in- and output.

Following this chapter you will get an idea about how to

» implement an image processing pipeline (see Section 4.2, “Implementing the Contour Filter”).

» synchronize parameters between different modules by establishing parameter connections (see
Section 4.3, “Parameter Connection for Synchronization”).

This will be our resulting network:

Figure 4.1. Example Network Contour Filter

Avrithmatic2
A Ao

b

Marphology
A

¥

Convolution

A

¥

Locallmage

4.1. Loading the Input Image

First, we need an image as input. This image will be used as the input image for the normal viewer as
well as as the input and filter image for the image processing pipeline.

1. create a new network (File - New) and save it to disk.

2. Find and add the Local | mage module via the Quick Search. As image input, use an image from the
default MeVisLab demo data path.

3. Choose an image filename by opening the module's panel and set the module parameter Name
to the value $(DenoDat aPat h) / Head4_t 1. smal | . dcmor to any other image name located in the
$(DemoDataPath) directory.

4. For the output, find and add the Vi ew2Dmodule via the Quick Search and connectitto the Local | mage
output. Double-click Vi ew2D to see the original image. Later, we will compare this output with the
image resulting from the filter process.

30

Implementing a Contour Filter

Figure 4.2. Viewing the Input Image for the Contour Filter

il Panel View2D

ZeMN, Bremen

View2D

Localimage

MR Mode
0040

Tip
To see an immediate (albeit small) preview of the input image, you can enable the preview
modus in the menu bar, Extras - Show Image Connector Preview.

4.2. Implementing the Contour Filter

We want to implement a contour filter that is composed of the following image processing pipeline:

1.
2.
3.
4,

5.

Take an input i mage a.

Smooth the input image with an average kernel: Aver age[i mage a] -> i mage b.

Dilate the smoothed image by means of a morphological kernel operation: Di | ate[i nage b] ->
i mge c.

Subtract the smoothed image from the dilated and smoothed image: Subt ract [i nage c, i nage b]
-> inage d.

Output the filter output i mage d.

For this processing pipeline we need the following basic image operators:

Average operator: a search yields the module Convol uti on. From the description: “Simple constant
convolution filters like Average, Gauss, Sobel, Laplace.”

Dilation operator: a search yields the module Mor phol ogy. From the description: “Implements dilation
and erosion filters that separately act on single bits.”

Subtraction operator: a search yields various arithmetic modules. How to decide which module is the
correct one? When you add the modules and have a look at the modules' help, you will find that
ArithneticO is for arithmetic operations on scalars or 3D vectors, Arithmeticl is for arithmetic
operations on a single image, and Ari t heti c2 is for arithmetic operations on two images. As we
want to subtract two images, Arit heti c2 is the correct module.

31

Implementing a Contour Filter

Proceed as follows:
1. Add the modules Convol uti on, Mor phol ogy, and Ari t hnet i c2 to the network.

Alternatively you could find and add the modules to the network via the Modules menu:
a. via Modules - Filters — Kernel - Convolution,
b. via Modules - Filters - Morphology — Morphology and

C. via Modules - Analysis — Arithmetic — Binary — Arithmetic2.

The image we use as input has to be processed first via the Convol uti on module. After that, the
resulting convoluted image will be processed and also output directly to the Arit hnmeti c2 module
where the two images will be subtracted.

For the subtraction, the following information is offered in the help of Ari t hnet i c2: “The input image
1 decreased by inputimage 2 is passed to the output.” Therefore, it is important to connect the images
in the correct order, otherwise the result will look rather strange.

2. Open the panels of Convol uti on, Mor phol ogy and Ari t hmeti c2 by double-clicking the modules.
Then adjust/check the default values of the following parameters:

a. Module Convol uti on: Keep the default kernel type "3x3 Average Kernel" for pr edef Ker nel .
b. Module Mor phol ogy:
i. Inthe field Filter Mde, keep the default value "Dilation".
ii. Forthe Kernel Geometry, use a kernel of the size 3x3x3.
c. Module Ari t hmet i c2: Inthe field Funct i on, change the default value "Add" to the value "Subtract”.

Figure 4.3. Adjust Filter Parameters

i Panel Morphology

Interval Filtering |
~Filter Mode

Uszg: IDiIatiDn 'I)
P Arithmetic2
~Input Kernel Constart: | 0

Use External Kernel: [~

[Auto replicate
External Kernel: s elwlnl

—~Border Handling

Border Handling: IPad Src Clamp j

Fill Yalue: I u]

~Kernel Geometr;\

Kernel: I 3 33

Kernely:

i Panel Convolution

Main | Advanced |

Predefined Kernel
Lize: |3x3 Awerage Kernel j

Border Handling

Kernelz:

Kermelc: | 13

KernelT:

Kernell: Barder Handling: IPad Src Clamp j

Spherical [Fill Yalue: |]

Tip

You can view and edit module field values also in the Module Inspector View. On the
Fields tab, all fields of the currently selected module are listed by names and values.

32

Implementing a Contour Filter

Note

Field names (in the module) and field labels (in the interface of the module panel) do not
have to be the same. To find the field name, right-click the field label on the panel; the
field name is listed as first entry of the context menu.

3. To view the results of every step in the processing pipeline, use the Output Inspector, which can be
opened via the menu bar, View - Views. Click each connector to follow the image processing.

Figure 4.4. Constructing the Filter Pipeline — Convolution Output

2D l a | »
1 mprage s8... H VIR

K

Convolition

%

Locallmage

Figure 4.5. Constructing the Filter Pipeline — Morphology Output

T

x|

L]

20 | sp |

4 _t1_mprage s... H

Convolution '

Locallmage

33

Implementing a Contour Filter

Figure 4.6. Constructing the Filter Pipeline — Arithmetic2 Output

Output Inspector @

20 | 30 | v

Arithm&ic2
A A

4 t1_mprage s... H

¥
Marphology

A

¥

Convaolution

A

i

Locallmage

4. To distinguish the image processing pipeline, you can create a group for it. For that:

a. Select the three modules, for example by dragging a selection rectangle around them, or by single-
selecting the modules while pressing SHIFT.

b. Right-click the selection to open the context menu and select Add to New Group.
c. Enter a name for the new group, for example “Filter”.

Figure 4.7. Creating a New Group

Show Window »
Edit Instance Mame

Shiow Example Metwork,
Shows Help

Feload Definition

Related Files »

Cebugging

&dd ko Mew Graup

Locallmage

The new group is created and displayed as a green rectangle. The group allows for quick interaction;
for example, a double-click on its title bar zooms in and centers the group; a right-click on the title

34

Implementing a Contour Filter

bar opens a menu for editing and deleting the group. You can also change the default color in the
Preferences. For further information on groups, please refer to the MeVisLab Reference Manual.

5. For the output, add another Vi en2D module, either via the quick search or by selecting the existing

Vi ew2D module in the network and duplicating it (via Edit - Duplicate or by pressing the keyboard
shortcuts given there).

Figure 4.8. Resulting Contour Filter Network

. ==
- e ... 8 Parel ¥ =1akx

A

Arithmetic2
AA

¥
Marphology

A

¥

Convolution

A

¥

Locallmage

Tip

The filter can be tuned via some parameters given in the Convol uti on and Mor phol ogy
modules. Changing the convolution kernel size (field pr edef Ker nel of the Convol uti on
module) and/or the dilation kernel (fields ker nel X, ker nel Y, ker nel Z of the Mor phol ogy
module) will enhance contours at different scales.

In a final step, we will synchronize the Viewers of the two Vi ew2D modules by establishing parameter
connections between them.

4.3. Parameter Connection for
Synchronization

Besides data connections between module inputs and outputs (Image, Inventor and Base connectors)
there is also the possibility to connect module fields via a parameter connection. The values of connected
fields are synchronized, that means when changing the value of one field, all fields connected to this
field will be adapted to the same value.

Some important points:

 Fields can be connected to an arbitrary number of other fields as source, but only once as destination.
(Similar to data connections, for which an output connector can be connected to an arbitrary number
of other connectors but an input connector can only be connected once.)

» Connections between fields may be unidirectional or bidirectional.

Unidirectional: Field A is the output and field B the input. Changes in field A reflect in field B but
changes in field B have no effect on field A.

35

Implementing a Contour Filter

Bidirectional: Field A is the output and field B the input and vice versa (two parameter connections).
Changes in field A reflect in field B and changes in field B reflect in field A. (This is the setting we
will use in our example.)

Tip
MeVisLab prevents the creation of infinite loops.

Not all connections between all fields are sensible. Usually the connected fields should be of the
same type.

Parameter connections may be established both between fields within the same module and between
fields of different modules.

On the MeVisLab user interface, parameter connections are established by dragging fields onto the
labels of automatic panels (and most scripted MDL panels, see the MeVisLab Reference Manual,
chapter “Parameter Connections Inspector” for details).

In our example, a bidirectional parameter connection is the way to synchronize the Vi ew2D modules so
that the same slice is rendered in both viewers. To establish this, proceed as follows:

1.

Right-click each Vi ew2D module to open the context menu and select Show Window — Automatic
Panel (alternatively, press ALT and double-click the module). The field that controls the currently
rendered slice in a SoVi ew2D module is the start Sl i ce field.

. On the SoVi ew2D panel, select the label of the start Sl i ce field and drag the (invisible) connection
onto the label of start Sli ce field on the Sovi ew2D1 panel. The connection is drawn as thin grey
arrow with the arrowhead pointing to the module that receives the parameter as input.

. Repeat the process in the other direction by dragging the st art Sl i ce field from the SoVi ew2D1 panel
to the SoVi ew2D panel. The bidirectional connection is drawn as a thin, grey double arrow.

Tip

Another typical way of notating the fields is “InstanceName.FieldName”, for example
SoVi ew2D. start Sli ce. You will find this notation when you right-click the parameter
connection to open its context menu, in which you can disconnect single or all parameter
connections.

Figure 4.9. Establishing the Parameter Connections

q

i - [B]x] i AEE)
Parameters I Inputs] Outputs] Parameters \ Inputs] Outputs]

Mame |Type |In |Out |\falue 1; Mame |Type |In |Out |\-'a|ue -
instancerame String Yiew20 instanceMarme String Yiew201
irvertorInputCn Bioal Vk@r—| }] Bioal FaLSE

view ZDExtensionsOn Bool TRUE view2DExteNsioNs TRUE

startSlice) Ineger B B 31
rumslices Integer "\
rurmxSlices Integer 1

{startSlice
numslices
== -

Integer 21

36

Implementing a Contour Filter

Figure 4.10. Resulting Network

Filter: ia Panel View2D1

ia Panel View2D

As a result, moving through the slices with the mouse wheel (“slicing”) in one of the viewers synchronizes
the rendered slice in the second viewer.

Tip
A list of all parameter connections is displayed in the Parameter Connections Inspector

View (which can be opened via the menu bar, View - Views - Parameter Connections
Inspector). Right-click the connections for a context menu with various options.

For further information on parameter connections, please refer to the MeVisLab Reference Manual.

This is the end of this example. The full network is delivered with the demos of MeVisLab (available
via Help - Welcome).

37

Chapter 5. Defining a Region of
Interest (ROI)

In the following chapter, we will walk through the creation of a network that allows defining a 2D region
of interest (ROI), that is by selecting a region of the image in the first viewer, the selected region is
displayed as a subimage in a second viewer.

» Section 5.1, “Creating a Viewer with a Selection Rectangle”: adding a first viewer with a selection
rectangle

» Section 5.2, “Adding a Second Viewer for the Subimage”: adding a viewer for a subimage

» Section 5.3, “Adding the Interactivity for the Viewers”: adding interaction between the viewers

The resulting network looks as follows:

Figure 5.1. Example Network ROISelection

i Panel View2D

v

Locallmage

In this chapter, we will use the terms “world position” (absolute) and “voxel position” (relative to the
image), which are discussed in detail in the chapter Chapter 10, Excursion: Image Processing in ML.

38

Defining a Region
of Interest (ROI)

5.1. Creating a Viewer with a Selection
Rectangle

The first part is building a simple network with an image load module, a viewer, and a module that allows
for drawing a selection rectangle.

1. Add Local | mage and the Vi en2D module to the new network and connect their image connectors.
2. To display the usually hidden Inventor inputs of Vi ew2D, right-click Vi ew2D and select View2D
Options — Show Inventor Inputs

3. Add the Open Inventor module SoVi ew2DRect angl e and connect its output to the first Vi ew2D Open
Inventor input connector.

The module help offers the following purpose for the module: “The SoView2DRectangle module
allows for a drawing and interactive adjustment of a 2D rectangle in a 2D viewer. Note: although this
module is called SoView2DRectangle, it actually draws a 3D box.” (The latter is the reason why the
world positions are given in 3D.)

A double-click on SoVi ew2DRect angl e opens its panel. For displaying the subimage, the world
positions will be crucial.

Figure 5.2. Viewer with Selection Rectangle

I - [olx]

Buttons

Buttnnl: [Pressed | Shift [ignored |

Buttnnz: [lgnored | Control: [ignored |

Buttnnd: [Ignored

Position

StartWhoridPos: [« -36.3534 [y -37.227 [z -45.6945

-, End World Fos [x 59707 [y S44426 [z -65.1795

SoView2DRectangle

Editing
M Editing on

I Cooperatve ™ Create Mode Create

I~ FixZ I Allow drag " Select outside:

— —
Locallmage Selection Tolerance; 4

Appearance

M Drawingen Color: Shade Exterior; | 0
BlndInside: | 02 LineBlend Insicke: | 0.5
Bendono: | 05 LineBlend Onto: | 0.7
Blend Ouside: | 0 Line Blend Outside: | O

5.2. Adding a Second Viewer for the
Subimage

Add the second viewer part, which consists of two modules:

* a Subl mage module for cutting out the selected region

» and another Vi ew2D module.

The module help of Subl mage offers the following purpose and usage tips for the module: “This module

extracts subimages from its input image. [...] Connect an input image, set the coordinate mode and the
size and position of the subimage.”

39

Defining a Region
of Interest (ROI)

Figure 5.3. Viewer for the Subimage

i B[=1E9

View2D View2D1
A A A A

L] ¥
SoViewZDRectangle Sublmage
A

i B=1EY

Parameters

Mode: Woxel Start & End - | Fill Value: 1]

Subimage

Boix Input: ‘D goooo0-1-1-1-1-1-1 Apply Box | [Auto apply box

b

Locallmage

Startx: | 28 Endx: [73 ¥ Modiy
Sartv: | 0 Endw [31 P modify
Sartzi [0 Endz; [31 M Modify
startc: [o Endc: [0 T modify
sartT. [0 EdT [0 P modify
Start U: ’70 End L: litl [~ Modify Full Size:

Apply [~ Auto apply

Of course, since we have not yet defined how the world positions of Sovi ew2DRect angl e are connected
to the subimage, nothing is displayed.

5.3. Adding the Interactivity for the Viewers

In the third step, we add the interactivity. The problem in connecting the modules SoVi ew2DRect angl e
and Subl mage is that the world positions offered by the first modules need to be translated to voxels
positions for the latter.

For such translation tasks, there are several modules that convert values from one type to the other.
1. As we need world and voxel, enter those words in the quick search to find the module:

Figure 5.4. Searching for World to Voxel Conversion

Help

| W't ﬂ <

world nyert
0 Setvworldratrix rMLModule WaorldvoxelConvert
SoMLoxelTowarld author Tobias Boskamp
SoMLorldTovoxel status stable
fnefto\-'oxel\-'alue package MeVisLab/Standard
MergeRegions comment Convert world in voxel coordinates and vice versa,
MadiFyRegion DLL MLCoordUtils1
SoSelection? genre Coordinate
SwnchroViemzD kevywords World voxel coordinate transform

seedlso SoViewZDPosition SetiworldMatrix: SoMLTransFarm
SoMLyoxelTawaorld SoMUwWorldTavoxel

@9 Y @

40

Defining a Region
of Interest (ROI)

Wor | dVoxel Convert converts world into voxel positions (or vice versa), either as vector or as single
float values.

Figure 5.5. WorldVoxelConvert Panel

il Panel WorldVoxelConvert
Keep Constant:

—~Voxel Position

vector: |x oy

Single: % | oy |

[T Integer Voxel Coordinates

~World position

Wiector Ix

Single: X |

In our case, we need two conversions, for the start and end positions separately.
- Add wor | dVoxel Convert a second time by selecting the module and duplicating it, either via Edit -
Duplicate or by pressing the respective keyboard shortcut.

. Name the instances accordingly, for example “startPos” and “endPos”. For this, select Edit Instance
Name in the module's context menu.

Tip

Alternatively, use the shortcuts F2 (Windows and Linux) or ENTER (Mac OS X). For a
complete list, see the MeVisLab Reference Manual, chapter “Shortcuts”.

. Both wor | dVoxel Convert modules need the original image for obtaining the world-to-voxel matrix, so
connectthemto Local | rage (the image output can be connected to an unlimited number of modules).

41

Defining a Region
of Interest (ROI)

Figure 5.6. WorldVoxelConvert Modules Added

¥

A&

5. For the parameter connections, proceed as follows:

a. Connect the SoVi ew2DRect angl e Start World Position to the Wor | dVoxel Convert (st art Pos)
Word Position Vector.

b. Similarly, connect the SoVview2DRectangle End World Position to the
Wor | dVoxel Convert (endPos) Word Position Vector.

c. Connect the converted values from Wor | dVoxel Convert (st art Pos) , that is the Single X, Single
Y and Single Z values, to the respective Subi mage Start X, Start Y and Start Z values.

d. Similarly, connect the converted values from Wor | dVoxel Convert (endPos), that is the Single X,
Single Y and Single Z values, to the respective Subi mage End X, End Y and End Z values.

42

Defining a Region
of Interest (ROI)

Figure 5.7. Adding the Parameter Connections

14 Panel WorldVexelConvert(stariPos)

Keep Constant: [vovel =

Voxel Position

vertor: [28,7187 [y 514604 |2 0.5

Single: xJb 27187 V| siee04 zl| 05
I Integer rolinates

World posi

vertor 0 [x 125908 |2 -so.9311

z | -sosm

ié Panel SoView2DRectangle
| Button:

Buttonl

i Panel Sublmage

,__[s s Parameter:
Fressed »| shift Ignored v o

Mode voxel Start & End | Fill Value: [
Buttor2: [ignared =] g Ignored ¥

Subi
Buttord: [lgrored ~

BoxInput; [000000-1-1-1-1-1-1 apply Box | I~ Autn apply box

. [V Modify

-Position

ya
Startwnr\dPns:ﬂx -62.1258 |y -12.5908 |2 -50.9311

End Wbrld Pos

. Editing

¥ Modify

a3l [y 997044 [z 748002

v Modify

¥ Editing on ™ modify

[~ Cooperatve [Crigte Mode Create I_U End T v Modify

I Fxz ™ Alow ™ Select outsice [0 e [0 modfy Fulsze

Seiection Tolerance: | 4. ilii Panel WorldVoxelConvert(endP=s) FEX apply | ™ o apay

~Appearar Keep Constant;
W Drawingon Color S Bxterioll - Voxel Position

Blend Inside 0.2 Line Blend Indige: Vector: |x 9105 |y 108.606 [z 0500001
Blend onto; 0.5 Line Blend onto: single: x> 738105 ¥ 108.606 2 0.500001

Blend Outside: 0 Ling Blend Outside:

Integer vaxel Coordinates

Id position

o

286631 [y 997044 [z 748002

singk:x | zseear v [o974 z [amo0z

6. Atlast, check the option Auto apply on the Subl mage panel (bottom right corner), so that any changes
of the selected region in the first viewer are updated automatically in the second viewer.

Now the network is fully functional.

43

Defining a Region
of Interest (ROI)

Figure 5.8. Example Network ROI Selection

il Panel View2D

This is the end of this example. The full network is delivered with the demos of MeVisLab (available
via Help - Welcome).

44

Chapter 6. Creating an Open Inventor
Scene

In the following chapter, we will walk through the creation of an Open Inventor scene.

¢ Section 6.2, “Creating the Applicator”

¢ Section 6.3, “Creating the Interaction”

¢ Section 6.4, “Creating the Anatomical Image”

¢ Section 6.5, “Finishing the Complete Open Inventor Scene”

Here a look at what we want to accomplish: a dynamically definable applicator shall be placed at a
position and an angle relative to the rendering of an anatomical image:

Figure 6.1. Example Network: Open Inventor Result

il Viewer SoExaminerViewer

45

Creating an Open Inventor Scene

Figure 6.2. Applicator Only

il Viewer SoExaminerViewer |Z| |E| [Z|

OOPP

a1
&

mo
L}

Rab Roty Zoorm

The applicator shall be able to be moved within the viewer (navigation) and also be able to be
repositioned (interaction) with the tip pointing to the body.

The data shall be displayed in 3D mode. In addition, the output shall have the windowing functionality
of the standard Output Inspector.

In the resulting network, modules will be grouped; however, this has no effect on the functionality we
will build.

6.1. Introduction to Open Inventor

Open Inventor is an object-oriented 3D toolkit developed by Silicon Graphics (SGI) offering a
comprehensive solution to interactive graphics programming problems.

Inventor scenes are organized in structures called scene graphs. A scene graph is made up of nodes,
which represent 3D objects to be drawn, properties of the 3D objects, nodes that combine other nodes
and are used for hierarchical grouping, and others (cameras, lights, etc). These nodes are accordingly
called shape nodes, property nodes, group nodes and so on. Each node contains one or more pieces
of information stored in fields. For example, the Sphere node contains only its radius, stored in its radius
field.

The MeVisLab implementation of Open Inventor is based on the original SGI source code that was
released to the public in 2000. It is suited for use with MeVisLab but can also be used independently.
The MeVisLab modules can be used for rendering and viewing both image data and arbitrary Open
Inventor objects as well as for interacting with images. Inventor modules function as Inventor nodes, so
they may have input connectors to add Inventor child nodes (modules) and output connectors to link
themselves to Inventor parent nodes (modules).

Characteristics of an Open Inventor scene graph:

46

Creating an Open Inventor Scene

» Scene objects are represented by nodes.

 Size and position is defined by transformation nodes.

» A rendering node represents the root of the scene graph.
* Nodes are rendered in the order of traversal.

* Nodes on the same level are traversed from left to right.

» All modules that are derived from SoG oup offer a basically infinite number of input connectors (a new
connector is added for every new connection).

Figure 6.3. Traversing in Open Inventor

¥

SoExaminerViewer

Typical functions of Open Inventor modules are:

» Draggers and manipulators

» Group nodes

* Light sources

* Transformations

» Cameras

» 3D Viewers

» Geometric objects (Cone, 3D Text, Nurbs, Tri.Meshes, etc.)

» Object properties (Textures, Colors, Materials, etc.)

The order of traversal is very important, and its effects will be shown in detail in the following example.

For further information on Open Inventor modules in MeVisLab, please refer to the Inventor Reference
and the Inventor Module Help. For information on Open Inventor, we recommend the following literature:

e The Inventor Mentor by Josie Wernecke (ISBN 0-201-62495-8: This book provides basic information
on programming with Open Inventor. It includes detailed program examples in C++ and describes
key aspects of the Open Inventor toolkit, including its 3D scene database, node kits, interactive
manipulators, the Inventor Component Library, which contains editors and viewers, and the Open
Inventor file format.

» The Inventor ToolMaker by Josie Wernecke (ISBN 0-201-62493-1): The Inventor Toolmaker provides
advanced information on extending Open Inventor by creating new C++ classes and customizing
existing classes. Detailed examples and discussion show how to create new nodes, actions, elements,
fields, node kits, draggers, manipulators, engines, and components.

47

Creating an Open Inventor Scene

Tip

For online links to these books and other resources, see the MeVisLab website (http://
www.mevislab.de).

6.2. Creating the Applicator

1. As afirst element, we need the shaft of the applicator. For this, start by adding a SoCyl i nder module.

2. As we want to keep the applicator shaft and tip basically independent, we can already add a
SoSepar at or module here which comes with an in-built viewer. Connect the two modules and set
the parameters for the cylinder.

Tip
Several Open Inventor modules come with an in-built viewer, like SoSepar at or, SoGr oup,

SoRender Ar ea and more. For a complete viewer experience, use SoExani ner Vi ewner
and its associated macro module Scenel nspect or .

‘ Note
Each of the viewers have their own persistent settings. So if you copy and paste such
modules into another network, the zoom settings etc. will be those of the previously used
state! If confused, always add fresh modules via the search or the Modules menu.

Figure 6.4. Creating the Applicator Shaft

I
/ -
shaft
SoSeparator
[
v
SoCylinder
i S(=]E3
Parts: ALL
.
Rotr Roty Dol by A ’—1
Height: 20

3. Usually, such Open Inventor objects will be colored. Add the SoMaterial module before the
SoCyl i nder module and edit the material settings. Feel free to play around with the color settings.

48

Creating an Open Inventor Scene

Figure 6.5. Coloring the Applicator Shaft

L J
h shaft
SoSaeparator
[
L L J
SoMaterial SoCylindar
BEIEY - [B]x]
I

Ambient Color: .
Rote Roty |IRNNTNNANNNTRN Parts: Al

Diffuse Color:

Radius: 1
Erissive Coor: | N

Height: 20
Speculzr Colcr: |
Shininess: —
Transparency: |

4. In a next step, we will create the applicator's tip. For this, add a SoCone module and also another
SoMat eri al and SoSepar at or module to build a construction similar to the shaft.

Figure 6.6. Adding an Applicator Tip

-
shaft
SoSeparator

tip
SaSeparator

Parts: W
Bottom Radius: ’_1
Height: ’_3 SuMa:ariaH

L J L
SoMaterial SoCylinder

- B[]
&
9
%
9
@
<
v

Rat Roty Doy | R Fo ey

To combine the two independent elements (shaft and tip), we have to a) combine them and b)
translate the tip (or shaft) in relation to the other, otherwise the two Open Inventor elements would
be placed at the same position, namely the origin of the Inventor's world coordinate system [0,0,0].
(For more information on coordinate systems, see Chapter 10, Excursion: Image Processing in ML.)

5. For the translation, add a SoTr ansl at i on module in front of to the cone, and set the translation to (in
this case) “11.5". The SoG oup module has an in-built viewer, so that you can preview the resulting
applicator. It can be rotated in the viewer.

49

Creating an Open Inventor Scene

Figure 6.7. Adding Translation and Grouping

il Viewer SoGroup(applicator) |z”§”zl

ia Panel SoTranslation ‘Z”i”z‘

ok

6. For a finishing touch, add a SoExani ner Vi ewer for display and a SoBackgr ound. The latter adds a
grey gradient background that gives a more 3-dimensional impression of the rendered Open Inventor
scene.

7. For easier handling, create a group for the two parts of the applicator. Select the modules that belong
to the applicator, right-click them and select Add to New Group. Enter an appropriate name like
“applicator”. The new group appears in the workspace.

Figure 6.8. Finishing the Applicator

il Viewer SoExaminerViewer ‘;HE”X'

Applicatar;

G
*
%
9
&
@

6.3. Creating the Interaction

Although the applicator created in the last section is complete, it is not yet functional so that you can
easily point the tip to a position. For this, some interactivity must be enabled.

The first module necessary for this is SoCent er bal | Mani p. In the Inventor Reference, the following
information can be found for this module:

“SoCenterballManip is derived from SoTransform (by way of SoTransformManip). When its fields
change, nodes following it in the scene graph rotate, scale, and/or translate. [...] On screen, this
manipulator will surround the objects influenced by its motion. This is because it turns on the
surroundScale part of the dragger. ”

This means that once we put an object in the middle of the sphere opened by this module, it can be
moved around with it.

50

Creating an Open Inventor Scene

1. To keep the interaction separate from the applicator, add another separator.

2. Then add the modules SoCenterbal | Manip and SoTransl ation. The translation module is
necessary to position the centerball (as the latter is foremost intended for rotation and not perfect
for translation).

Figure 6.9. Using SoCenterballManip

il Viewer SoExaminerViewer1

ia Panel SoCenterballianip : : : va Panel SoTranslation1 ‘ZHEHX|

Translation: ®-B0.16E |y 34535 |z -18.21
ROtation: [i -05as[yn.7ssec|z n.e2z|r z.asc apoy
Scale Factor: % 10 |y0.9999¢ |z 1

Scale Orientation: [x-0.507% [y0.8594¢ [2-0.080% [ro.6151¢ Apply

Center: ¥ 22,155 |y -9.1735 |2 1.3155°

3. To connect the translation of the modules, a parameter connection has to be established between
the Cent er field of SoCent er bal | Mani p and the Tr ansl at i on field of SoTr ansl ati on. This is done
by opening the panels, clicking near the Cent er field and dragging it onto the other panel until a little
plus sign appears. The parameter connection is drawn as a thin line between the modules, always
starting at the modules' side (never on top or bottom, like data connections do).

Tip

For an overview of all parameter connections, open the Parameter Connections
Inspector via the menu bar, View — Views — Parameter Connection Inspector.

51

Creating an Open Inventor Scene

Figure 6.10. Connecting Parameters

14 Viewer SoExaminerViewer1

il Panel SoCenterballiManip i@ Panel SoTranslation1 ‘z“i“z‘

Translation: ® -83.2z |y 20.08¢ |z -19.10: Translatlnn:' ¥ 22,2 |y -7.163 2538390

Rotation: | 0.941zfyn.1388: |z -0.307 |r 205 apply
Scale Factor: i 9.9 |y0.99993¢ |z 1

Scale Orientation: [x-0.5562 |y0.8300¢ 2-0.0401|r 0.6385 Apply
Center: I-' ¥ 2229z |y -7.16 |z 5.383C

4. Now we can combine the interaction part and the applicator. For this, connect the applicator to the
second separator.

Figure 6.11. Combining Interaction and Applicator

ili Viewer SoExaminerViewer

9B PP

a
a

3
o

g M | @ < &

Interaction

Applicator

The applicator can now be rotated or dragged into any direction by using the handles on the
manipulation sphere.

52

Creating an Open Inventor Scene

6.4. Creating the Anatomical Image

Last not least we need the 3D image at which the applicator shall be positioned.

1. As first step, add a Local | rage module. Select an image from the demo data folder, for example a
liver set. You can view the result in the normal Output Inspector.

Figure 6.12. Loading a Local Image

Oukput Inspeckar (-4

20 | ap |

VENOUSA. ..

Image outImage
size: 93,93,61,1,1,1
kype: unsigned ink16

ojf

2. For the 3D display, add a SoGVRVol uneRender er module. Behind this hides a rather potent module
called GigaVoxel Renderer. It comes with many features — open its panel to have a look at the
options.

Figure 6.13. Adding the GigaVoxel Renderer

Oukput Inspeckar (4

Locallmage

/L‘ Options =
| »

53

Creating an Open Inventor Scene

For the windowing, we need two modules: SoMbuseG abber and SoRLLookUpTabl e module. Instead
of building this functionality from scratch, we can take the easy way and copy those modules and
their parameter connection from the internal network of the Vi en3D module.

3. Add a Vi en3D module via the quick search and open its internal network (via the context menu).
Select the two modules and copy them. This will also copy the parameter connection between them.

Figure 6.14. Copying the Windowing Modules from View3D

SoSeparator

~ f]] HF 1 1 L

v
Lor

|t
SoRlLLookUpTable

A |

SolLUTEditor

4. Then add the modules to your applicator network and connect them to the SoG oup module, in front
of the rendering module.

Figure 6.15. Adding the Windowing to the Applicator

(<

il Viewer SoGroup

]
a

JoseP

F
o

Afterwards, delete the Vi ew3D module.

54

Creating an Open Inventor Scene

6.5. Finishing the Complete Open Inventor
Scene

The three elements of the scene — applicator, interaction and anatomical image, preferably grouped,
now have to be combined to result in one Open Inventor scene.

1. First, connect all three groups to the same SoExani ner Vi ewer . Make sure that the applicator and its
interaction sphere are connected via a separator.

Figure 6.16. Combining the Groups

Anatomical Image

|teraction

|~ pplicator

Note
Because the scene with the anatomical image can be rendered with transparencies, add

it right-most to the viewer so it is rendered last.

55

Creating an Open Inventor Scene

Figure 6.17. Combined Graphic Elements

I8 Viewer SoExaminerViewer =] |E| [Z|

Rate Roty [N A0 AT Dally

GPH PP

ol
o]

rL]
L}

Q@D

2. Alook at the viewer tells us that the relative sizes of the graphic elements need to be aligned. This
can be done by adding the scaling module SoScal e, either to the applicator or the image. In our case,
we will add it to the applicator, that means to the SoSepar at or module. A scale factor of 10 in all
directions is sufficient.

56

Creating an Open Inventor Scene

Figure 6.18. Adding the Applicator Scaling

il Panel SoScale

Scale Factor: Ix

1w Viewer SoExaminerViewer

© 545

5
]

Applicator

-]
[

| @OK

3. At last, take the applicator and move it to the body to point at whatever spot you want to point at.

Figure 6.19. Original Applicator/Interaction Arrangement

il Viewer SoExaminerViewer

57

Creating an Open Inventor Scene

Looking at the result, it might not be the best idea to have the applicator tip at the edge of the sphere
which is always aligned by its center. It may be sensible to place the tip into the sphere's center
instead.

4. Add another SoTr ansl ati on module. It needs to have an effect on the applicator, so it needs to be
added to the applicator's SoG oup module.

Figure 6.20. Improved Applicator/Interaction Arrangement

14 Panel SoTranslation2 |Z\ |E||X|

Translation: [0y -11 Iz o

14 Viewer SoExaminerViewer ‘Z”E‘lzl

This is the end of this example. The full network is delivered with the demos of MeVisLab (available
via Help - Welcome).

Tip

In the chapter Chapter 9, Developing a Macro Module for an Applicator, the applicator
modules will be used as the starting point for programming a Python macro.

58

Chapter 7. Starting Development with
Package Creation

7.1. What are Packages

As of MeVisLab 2.0, modules and projects come in a package structure, which offers an improved
modularity and granularity.

A package is a self-contained directory structure that contains the following components:
» PackageGroup
* PackageName
« Package.def
* Modules
* Sources
 Configuration
» Documentation
* lib
* bin
Figure 7.1. Example for a Package Tree

=l |) MyPackageGroup
+) Inkernal
+ |) Playground
+ |) Research
=l |) YetdnotherPackage
) bin
+ [} Configuration
+ [) Documentation
1 lib
+) Modules
+ |) Sources

In this example, we have a PackageGroup "MyPackageGroup". Below it, four packages can be found
(Internal, Playground, Research, YetAnotherPackage). Below each package, the typical folders can be
found. (This example was generated with the Project Wizard in MeVisLab.)

A PackageGroup can contain any number of packages, and of course there can be different
PackageGroups.

The Packagelndentifier is defined by "PackageGroup/PackageName", e.g. the MeVisLab Standard
Package has the identifier "MeVisLab/Standard".

' Note
For more detailed information on packages, see the Package Structure documentation.

MeVisLab reads packages in the following order:

59

Starting Development
with Package Creation

 the Packages directory in which MeVisLab was installed
« the directories given in the PackagePaths settings of the nevi sl ab. pref s file
» the UserPackagePath (as set in the MeVisLab Preferences dialog

Scanning is always two levels deep, never deeper. If a package with the same Packageldentifier is found
more than once, the last package found will overwrite the earlier packages (in the order given above).
This way, your packages given by mevi sl ab. prefs or your user packages can overwrite installed
packages.

You can check your effective package structure in two ways:

* by using the ToolRunner, a meta-tool delivered with MeVisLab 2.0. See the ToolRunner
documentation for details.

» by checking the MeVisLab Preferences, section “Packages”.

Figure 7.2. Preferences — Packages

il MeVisLab Preferences

(CEiizgary | Packages
~General
= ges TypefPath Package | Cwner
~Module Groups =l User Packages
CifTempfDepartmentfStudents Department/Students MeVis Developer
- Supportive Programs C:Temp{MyPackageGroup/Internal MyPackageGroup,Internal Meis Developer
Paths 3 Temp/MyPackageGroup)vet AnatherPackage MyPackageGroup)fetAnotherPackage Mevis Developer
D I I TempfMyPackageGroup/Research MyPackageGroup/Ressarch MeVis Developer
eveloper i TempfMyPackageGroupfPlayground MyPackageGroupPlayground Melis Developer
Python D ferunkMevisLabfIDE MevisLabfIDE Metis Medical Sol
Metwark D /Birgit/kempGeneralzjmyownpackages/ General myownpackages/General MeVis Developer
D:JBirgit/tempGeneral2/myownpackagesYetAnother Test myownpackages/Yetanother Test MeVis Developer
GUI Appearance |- Installed Packages
- CoutfCerr Redirection = C:,l’ngrammEfME\{isLahZ.Da\l‘CB,l’Pa(kagEs . .
. MeWis Foundation Mevis/Foundation MeVis Medical Sol.
- Symbal Controlled Debugging Mewisi ThirdParty Mevis ThirdParky MeWis Medical Sol.
~Exceptions / Tracing Metis Medical Sol.
Syl ternal MewisLab/Private MevisLabPrivate Melis Medical Sol
tyles (nternal) MeWisLab/Resources MevisLab/Resaurces MeVis Medical Sol.
~-Debugging (Internal) MevisLab/Standard MeVisLabjStandard Meis Medical Sol.
1 | i
Create Mew Package... Add Existing User Packages... | Remove |
Changing parameters in this panel overwrites settings from your mevislab.prefs file!
Restore Defaults Ok | Apaly | Cancel |

In this dialog, the sequence of display is as follows (from top to bottom; higher entries overwrite lower
entries):

» User Packages: packages found in the user path (packages in other paths can be added manually).
These are the default packages for user-defined modules.

* mevislab.prefs: packages resulting from the paths given in the . pr ef s file.
 Installed Packages: packages resulting from an installation of e.g. MeVisLab SDK.

If a package with the same Packageldentifier is found more than once, the last package found will
overwrite the previously loaded packages. These will be greyed out and labeled “(Overwritten)”.

You can:

60

Starting Development
with Package Creation

Create New Package: Opens the Package Wizard (see Section 7.2, “Creating a User Package for Your
Project”).

Add Existing User Packages: Opens the default file browser so that you can add a user package.
Folders are read recursively and all packages below them are automatically included.

Remove: Removes the selected user package from the path of MeVisLab. (Installed packages cannot
be removed.) Removed user packages can always be re-added later.

7.2. Creating a User Package for Your Project

When you create new modules with the Wizard, you need to enter their package path. For your own
modules, you always should have your own user package (and path). This is done as follows:

1. Runthe Project Wizard (File - Run Project Wizard)

2. Select New Package. The Package Wizard opens.

Figure 7.3. Package Wizard

il Packages/New Package

Package Wizard

zeneral settings for your package

Package Information

Package Group: * |

Package Mame: * | zeneral j

Package Cwner |Me\r‘is

Package Description: |
Target Directory

Target Directory: * | Browse... |

Import MeVisLab 1.6 Projects
[Immport MevisLab 1.6 UserProjectPath into this Package

Import from UserProjectsFPath; | Browse. .,

Info

Packages are the way MeVisLab organizes projects. & package can contain any number of
C++Macro Modules, Installers, Documentation etc, The creation of an own package is mandatory for
SOk users, all other wizards require a valid target package.

* . Required fields

< Back | Mext = | Create Save Setting| Close |

61

Starting Development
with Package Creation

3. Create a new package with the Package Wizard. Enter the following:

Package Group: Enter the package group in which your package should be saved. Enter a nhame,
for example your company or site name. For our example, enter “Example”.

Package Name: Enter the package name. Select a typical user package name from the list or
enter a new package name. For our example, select “General”

Package Owner: Enter a package owner (meta description without actual effect).

Target Directory: Select the target directory below which this package will be created.

4. Click Create so that the new package is created.

The new package is added to the User Package Path, including all subdirectories and files. The
information entered in the dialog is saved in the Packages. def file. As adding a new package group
alters the user package path, the module database has to be reloaded.

After reloading, your user package Example/General is ready for saving modules and projects.

62

Chapter 8. Introduction to Macro
Modules

Macro modules are implemented by means of the MeVisLab Definition Language (MDL) and the
scripting languages Python or JavaScript. A macro module behaves like any other elementary (ML or
Inventor) module in MeVisLab. However, no C++ has to be coded to implement a macro module.

Tip

Based on macro modules, stand-alone applications can be created with MeVisLab.
Prerequisite for this is a license for the Application Development Kit (ADK).

Like any other module, a macro module has to be declared within the MeVisLab module database in a
module definition file (*. def), which has to be located in the User Modul e Pat h.

The MDL script implementation of a macro module, that is its interface definition (input-, output- and
parameter fields) as well as its GUI definition, usually are written in a *. scri pt file. The scripting is
given in separate *. py/ *. j s files which need to be included in the *. scri pt module definition file.

The definition of a macro module and the creation of all necessary files is supported by the ML Module

Wizard, via File -~ Run Project Wizard (see the next chapter Chapter 9, Developing a Macro Module
for an Applicator).

What you should know about macro modules:

* In most cases, macro modules encapsulate the “macro behavior” of an image processing and/or
visualization pipeline (realized by a MeVisLab module network). Its functionality is defined by the
macro module interface with inputs, outputs and parameters (fields). The interface is built as a
combination of the interface elements of the modules in the underlying network, and of evenutally
new fields. The encapsulated module network is stored in a <Macr oMbdul eNane. m ab> file, which is
also called the macro network of the module.

Why this encapsulation?

* In many cases, a desired module function can be built by connecting some elementary modules
or macros that are already implemented.

« Certain processing pipelines may be of common use in a variety of further applications and it is
convenient to encapsulate them in macro modules which can then be added easily to any network.

* The interface of an encapsulating macro module is more compact than the sum of all interfaces
of the contained modules.

» Macro modules are defined on an abstract level. They can and do exist stand-alone without a
corresponding macro network. In those cases, the module's functionality is implemented with scripting
only. In most cases those macro modules encapsulate dynamic user interfaces without any image
processing or visualization behind it. Examples for those modules are the MDL test modules, for
example Test BoxLayout . They consist only of *. def and *. scri pt files without any internal module
network.

» Macro modules can also be defined locally to a given network document path, called 'Local Macro
Modules'. These are used in complex networks to encapsulate subnetworks as independent functional
units with a defined interface to other network components. Such local macros often carry out an
application specific function which would not be of common use for any other application, and are
therefore not added to the common MeVisLab module database (that is they are not declared in /
do not possess a *. def file).

63

Introduction to Macro Modules

Local macros are created and added with respect to the current network via the menu bar, File -
Create Local Macro and File — Add Local Macro.

Tip

However, as we will show in our example, local macros can also be promoted to global
(normal) macros.

64

Chapter 9. Developing a Macro
Module for an Applicator

In the following sections, we will create a macro module based on the applicator we have built in the
Open Inventor example chapter, adding fields and scripting for dynamic control of length and diameter
of the applicator.

* Section 9.1, “Creating a Basic Global Macro”

* Section 9.2, “Adding the Macro Parameters and Panel”

* Section 9.3, “Programming the Python Script”

* Section 9.4, “Addition: Shifting the Whole Tip”

If you have not followed our tutorial, please open the Appl i cat or Exanpl e. ni ab demo (available via
Help - Welcome) and start from there.

9.1. Creating a Basic Global Macro

1. For a start, open a new network tab (File - New or a keyboard shortcut) and copy and paste the

applicator modules (Edit - Copy, Edit - Paste or the respective keyboard shortcuts) to the new
network.

Tip
You can select the Applicator group with a double-click on its title bar and then press
SHIFT and click the group title to deselect the group and keep only the modules selected

for copying.

Figure 9.1. Starting a new Macro from the Existing Applicator

Applicator:

Salranslation2

SoMatariall

2. In the next step, clean the instance names of the modules — as they will be used for a new macro,
there is no need to have names like “SoTranslation2”. Remove all humbers and write all module
instance names starting with capital letters (if you want to) by right-clicking the module and selecting
Edit Instance Name from the context menu.

65

Developing a Macro
Module for an Applicator

Figure 9.2. Renaming Instance Names

il MeVisLab

Enter name for module SoGroup

npplicakar

Cancel

As we already have the modules for our macro, it is easiest to create a new local macro from them

first. For this, select File - Create Local Macro. The local macro can be promoted to a global macro
in the creation process.

66

Developing a Macro
Module for an Applicator

Figure 9.3. Creating a Local Macro

i@ MacroModule Creation Wizard EIE|

Create a lacal MacraMaodule

Enter a name For the new MacraMaodule:

| pplicatorMacrol

The following interface fields wil be created:

Marme |Internal name |In|:|ut |0utputs

Nofe: Fields can be renamed in the "MName" column

= Back Finish Cancel

When you promote the macro to a global macro, the Macro Module Wizard starts.
3. Enter the properties for your new module.
* Name:

Enter the module name Appl i cat or Macr o here. It has to be a unique name within the MeVisLab
module database (including the SDK module database).

» Author

Enter your name or initials. The author entry is mandatory and will be used in module searches.
» Comment

Enter a short description for the module. The comment entry is mandatory.
» Keywords

The optional keywords should be the terms other users might search for, e.g. “applicator” in this
case.

» See Also
The optional See Also entries should list other, related modules that might be of interest for a user.
* Genre

Enter the genre. Genre entries are mandatory; they defines the place of the module in the Modules
menu and the Module Browser. For suggestions, check out similar modules in the database.

67

Developing a Macro
Module for an Applicator

Tip

To find a fitting genre, you might have a look at the Genre. def file in the Standard/
IDE package. In our case, Visualization/Misc might be a good choice, which is (slightly
confusing) the genre “Visualization” in the genre definition file.

Figure 9.4. Selecting a Genre

& |ister - [d:\dev_ALL\MeVisLab\Standard\Modules\MDE\Genre. def]
Datei Bearbeiten Optionen Hilfe

b

Genre WEMRendering {
title = "Rendering"

H
Yy J7 Genre WEH

Genre Interaction
Genre = Heasurement

Genre WVisualization ¢
title = Hisc
H

v /7 Genre UisualizationMain

Genre InventorMain £
title = “0Open Inventor”
Genre InventorHodesAutomatic {
title = Hodes

The genres are not carved in stone but developed over time, so there might be more
than one fitting choice for your module. You may even want to add a new genre in
Genre. def or define an own user genre.
» Add reference to example network:
Each module should be completed by an example network to explain its function and usage in
an exemplary application. Check to create an empty example network Exanpl eModul eName. m ab
which may be edited later (optional).
* Project:

User defined modules are grouped in projects. Enter a new project name here: “ApplicatorMacro”.
The module will be installed in the Proj ect Pat h in the subdirectory Pr oj ect Nane.

» Target Package:
Select a Target Package from the list, for this example “MyPackageGroup/Research” ?7?.
Click Next.

4. Click Create. You are asked whether the original local macro files should be removed. Accept with
OK, because the local macro files are obsolete with the promotion to global.

68

Developing a Macro
Module for an Applicator

Figure 9.5. Module Properties

i Modules (Scripting)/Macro Module E”E”E'

Module Properties

Enter the general properties of the maodule.

General Module Properties

Mame: * |ﬁ.pp|i|:ah:|rMa|:rD Apthor: * |JDDE

Comment: |E-ui|d5 an applicator {length/diameter editable),

keywords: |
See Also: |
Genre: |'v'isua|izati|:|r|| v add reference to example network
Project Properties i Macro Module Wizard
Project; * |ﬁ.pp|icab:urMan:rD ? . Really remove ariginal local macra Files?
v Include project files h
0] 4 Cancel |
Select Target Package
Target Package: * |ExamplefGeneraI j
* 1 Required fields
< Back Mext = Create Save Setting | Cloge |

Now that the macro module and its necessary files are created, the file browser (depending on
your system) will open and display the folders and files. In our example, we have a package group

“Example” with the package “General” and in the folder Modules/Macros the new Appl i cat or Macr o
with the files

» . def: module definition file, for registering the module(s) to the MeVisLab module database.
* . nl ab: network file which includes the modules and their settings.

» .script: MDL script file for the panel and from which other scripts (Python or JavaScript) may
get called.

69

Developing a Macro
Module for an Applicator

Figure 9.6. File Browser with the New Macro Module Files

Ordner x Mame -+
= |5) Example || [Cinetworks
= |5 =eneral =] ApplicatorMacro. def

ApplicatorMacro. mlab
ApplicatorMacro, scripk

|2 Configuration
|2 Documentation

= lib
= 3 Modules
= [Macros
S) 5 nplicakorMacro
I3 netwarks
ML

I5) sources
On the workspace, the previously visible network is now displayed as a macro module.

Figure 9.7. ApplicatorMacro as Macro Module

ApplicatorMacro

5. To display the internal network on a second tab, right-click the module and select Show Internal
Network from the context menu. Alternatively, you can hold Shift and double-click the macro module.

9.2. Adding the Macro Parameters and Panel

So far, the macro module has no points of interaction. Therefore, the input/output, the parameters/fields
and the scripting need to be added.

1. To edit the panel and its underlying scripting, right-click the Appl i cat or Macr o module and select

Related Files - ApplicatorMacro.script to open the file in the in-built text editor Mate. Since we
just defined this macro module, the script file is basically empty except for some placeholders.

Figure 9.8. ApplicatorMacro.script in Mate

il MeVisLab Mate - [ApplicatorMacro.script - C:/fTemp/MyPackageGroup/Research/Modules/Macros/ApplicatorMacro]

7% File Edit Wiew ‘Window Extras Help

Attached Module: - | Create

Cutling g X ‘_'E; ApplicatorMacra,def ‘_'E; ApplicatorMacra, script ;E;

Interface 1 [Interface {

2 Inputs = ™"
| Cutputs = "r
4 Parameters = "M
5
&
7

Mate comes with some special features like autocompletion, syntax highlighting,
indentation, etc. for MDL, Python and JavaScript. For an extensive list, see the MeVisLab
Reference Manual.

70

Developing a Macro
Module for an Applicator

We want three sections in the . scri pt file:

a. I nterface: defines the inputs and outputs of data connections for the macro. In our case, the
macro has no inputs from other modules, but one output which is the Inventor scene.

b. Commands: defines the scripting file to be executed upon the activity of defined fields.

c. W ndow: defines the panel of the macro to set the parameters. In our case, length and diameter.
This is an optional entry; if not defined, only the automatic panel is available.

Note
The window section of the GUI could also be implemented in the . def file. If you want
to implement an enhanced GUI and add more fields that only exist for scripting, use the
.script file and reference that from your . def file. The advantage of splitting the GUI
definition from the module announcement is a faster MeVisLab startup (because only the
. def fileis read). Further information on this subject can be found in the MDL Reference. .

. First we will define the interface. As no inputs are needed, keep this line as it is. For the output, we
address the output of the SoG oup module named Appl i cat or Macr o. The following lines will result
in an output field that will "deliver" the applicator.
Interface {

I nputs = ""

Qut puts {

Field Scene { internal Name = "Applicator.self" }
}

Par aneters = ""

}

Enter the lines in Mate and save the script file.

. Then reload the module by right-clicking the macro module and selecting Reload Definition to apply
the changes. The Appl i cat or Macr o module now shows an Open Inventor output connector.

Figure 9.9. ApplicatorMacro Module with Output Connector

w
Applicatorfacro

The internal network of the macro shows the output placeholder. In the mouse-over, the output field
name is displayed.

71

Developing a Macro
Module for an Applicator

Figure 9.10. Internal Network of the ApplicatorMacro Module

Seang

Appli h arflacro.Scens
Garaup

4. As next step, we will define the parameters for our interface. In this example, we want to have two
parameters:

¢ Lengt h: this shall be the overall length of the applicator.
« Di anet er : this shall be the diameter of the applicator.

These two parameters need to be added to the | nt er f ace part of the script file. Besides setting the
parameter type (t ype) and the default value (val ue), you can also add a minimum and a maximum
value to limit the range to sensible values.

Interface {
I nputs =
Cut put s {
Field Scene { internal Nane = "Applicator.self" }
}

Par amet ers {
Field Length {

type = float
val ue = 20
mn = 1
max = 50

}

Field D anmeter {
type = float
value = 3
mn = 0.1
max = 10

}

}

Once again, save the script and reload the macro module.

5. Open the automatic panel, either by double-clicking the module, by holding ALT and double-clicking

the module, or by right-clicking the module and selecting Show Window - Automatic Panel from
the context menu. The new parameters are visible in the automatic panel. They can also be edited
there by clicking on each value field and editing the value.

72

Developing a Macro
Module for an Applicator

Figure 9.11. Automatic Panel of the ApplicatorMacro Module

ia Panel ApplicatorMacro

Mame Type ok | Walue

instanceMame Siring ApplicatorMacro
Length Float 20
Diarmeter Float 3 ApplicatorMacro

In principle, this would be enough to enter the values. However, usually a more user-friendly panel
should be offered. In the panel, values can be sorted by correlation or importance and distributed on
various tabs. It is also possible to leave rarely used parameters out of the panel to make it slimmer; as
the automatic panel of a module is always available, the user can always view and edit all parameters
there.

. To create a panel for the two parameters, the new section W ndow is added at the end of the script
file. Besides defining the fields in Cat egory, you can also add a step value which will regulate how
large the step is when moving through the values with the spin box arrows or the mouse wheel (with
the mouse cursor over the field). As the diameter is smaller than the length, it makes sense to set
a smaller step size here.

Interface {
I nputs =
Cut put s {
Field Scene { internal Nane = "Applicator.self" }
}

Paramet ers {
Field Length {

type = float
val ue = 20
mn = 1
max = 50
}
Field D anmeter {
type = float
value = 3
mn = 0.1
max = 10
}
}
}
Conmmands {
}
W ndow {
Cat egory {

Field Length { step =1 }

73

Developing a Macro
Module for an Applicator

Field Dianeter { step = 0.1 }
}

Save the script and reload the macro module.

. Now open the panel, either by double-clicking the module (because the panel is the new default

panel) or by right-clicking the module and selecting Show Window - Panel from the context menu.
The new parameters are visible in the panel and can be edited manually (or by using the spin arrows
or the mouse wheel).

Figure 9.12. Panel of the ApplicatorMacro Module

G - [Blx]

Length: 20 % —
ApplicatorMacro

Ciameter ; 3 El:

All parameters are defined and the panel is ready for entering values — however, we still do not have
any interaction. So the last section Command needs to be added, in which the respective scripting file
(in our case, a Python file) and the fields this scripting file should “look at” need to be entered

The source will be a local file which we will add manually, with the name Appl i cat or Macr o. py by
convention.

To relate to the scripting, we need two field listeners that listen to fields and call the script command
given in the command tag when the field changes. The functions Adj ust Lengt h and Adj ust Di anet er
used in the code do not exist yet but will be defined by us in the Python file.

Interface {
I nputs = ""
Qut puts {
Field Scene { internal Name = "Applicator.self" }
}

Par aneters {
Field Length {

type = float
val ue = 20
mn = 1
max = 50
}
Field D aneter {
type = float
value = 3
mn = 0.1
max = 10
}
}
}
Commands {
source = $(LOCAL)/ Appl i cat or Macr o. py
Fi el dLi stener Length { command = Adj ust Length }
Fi el dLi stener Dianeter { comand = AdjustD aneter }
}

74

Developing a Macro
Module for an Applicator

8.

W ndow {
Cat egory {
Field Length { step
Field Dianmeter { step

o P
=
——

}
Save the script and reload the macro module. If the Python file or the scripting commands do not

exist yet, errors messages will appear in the Debug Output of Mate. Do not be concerned — we will
add everything we need for real interactivity in the next section.

Tip

Panels can have a more complex design; for the possibilities, see the MDL Reference
and the MDL panel example modules (search for modules starting with “Test...").

9.3. Programming the Python Script

1.

If not yet existing, create the Python file. For this, select File - New in the Mate menu bar and save
the new file as Appl i cat or Macr o. py in the same folder as the other module files.

. For the header of the file, take a look at other existing macro modules. What we need, besides the

comment lines in #, is a line for importing the MeVis Python modules.

This file inplements scripting functions for the ApplicatorMacro nodul e
#

\file Appl i cat or Macr 0. py

\author JDoe

\date 01/ 2009

MeVi s nodul e i nport
frommevis inport *

. Then we need to add two functions, one for each scripting command

def Adj ustLength():
return

def Adj ustDi aneter():
return

‘ Note
In Python, block structure is defined by indentation. Therefore it is important to indent the
lines as shown in the code examples. In the Mate editor, this will happen automatically.

. Let us have a look at the diameter adjustment. The diameter is given by the Di anet er field. This is

written as follows:

def Adj ustDi aneter():
diameter = ctx.field ("D aneter"). val ue
return

To have both an effect on shaft and tip likewise, the diameter parameter of both must be set to the
value of the Di anet er field. A look at the automatic panels of SoCone and SoCyl i nder shows that
both modules offer a radius parameter.

75

Developing a Macro
Module for an Applicator

Figure 9.13. Parameters for Diameter Setting

Satylindar

i Panel SoCone : : : 14 Panel SoCylinder |:||E”X|

Parameters | Outputs | Parameters | Outputs |

Mame Type n ok | value Marme Type In | Qut | value

instanceMame Siring SoCane instanceMarme String SaCylinder
parts String parts String ALL
bottomFadius - Float radius % Float 1

hieight Float 20

These radius parameters need to be set to di anet er :

di anmet er
di anmet er

ctx.field("SoCone. bottonRadi us"). val ue
ctx.field("SoCylinder.radius") .value

As the radius is half the diameter, a correcting factor of 0.5 has to be added to the diameter equation.

def Adj ustDi aneter():
diameter = ctx.field("D anmeter").value * 0.5

di anmet er
di anmet er

ctx.field("SoCone. bottonRadi us"). val ue
ctx.field("SoCylinder.radius") .value
return

. To test if the diameter adjusting works, add a Scenel nspect or module to the network and connect
its input to the output of your Appl i cat or Macr o module. Double-click the Scenel nspect or to open
its viewer. When you change the diameter setting of the macro, the diameter of the applicator is
changed accordingly.

76

Developing a Macro
Module for an Applicator

Figure 9.14. Changing the Diameter of the Applicator

i Panel Scenelnspector

Scanalnspector

Options -

w
ApplicatoriMacro '

ia Panel ApplicatorMacro |:||E||X|

Length:
T
Diameter:

6. Adjusting the length is a bit more complicated. The length change should have the following effects:
¢ The Lengt h parameter gives the overall length.
¢ Only the shaft should be extended, not the tip.
¢ The adjustment should be done in a way that the point of the tip is not translated, that is that the
tip points to the same position as before. Therefore, we need to increase the applicator length in

the direction away from the tip.

We can define an overall length, a tip length and a shaft length. They can be calculated as follows:

def Adj ustLength():
overal |l Length
ti pLength

ctx.field("Length").val ue
ctx.field("SoCone. hei ght"). val ue

shaftLength
return

overal | Length - tipLength
The original translation factor for the tip (which is the relevant factor) was given by half the shaft
length (*10”) plus half the tip length (“1.5"). This can be written in a general way.
ti pTransl ati on = shaftLength*0.5 + tipLength*0.5
The shaftLength defines the height of the SoCyl i nder cone to

ctx.field("SoCylinder.height").value = shaftlLength

77

Developing a Macro
Module for an Applicator

The resulting code lines for the length adjustment look as follows:

def Adj ustLength():
overal |l Lengt h
ti pLength

ctx.field("Length").val ue
ctx.field("SoCone. hei ght"). val ue

shaft Lengt h
tipTransl ation

overal |l Length - tipLength
shaft Length*0.5 + tiplLength*0.5

ctx.field ("SoCylinder.height").value = shaftLength
return

Add this code to the Python script, save, and reload the definition. A test shows a funny effect: the
shaft length is changed independently of the tip.

Figure 9.15. Strange Behavior of the ApplicatorMacro

ia Panel Scenelnspector

(scanalnspectol

Options - |

ia Panel ApplicatorMacro |Z||E||X|

Applicatoriacro

Length:

Diameter;

This is due to not having connected the calculated ti pTransl ati on with the Transl ationTip
module yet.

7. To solve this problem, add the SoConposeVec3f module to the internal network of the macro and
assign to its translation in y direction the calculated value tipTranslation.

ctx.field("SoConposeVec3f.y").value = tipTranslation

8. In a last step, this translation needs to be connected to the tip's SoTransl ati on module via a
parameter connection in the network.

78

Developing a Macro
Module for an Applicator

Figure 9.16. Adding the Correct Tip Translation

ia Panel SoTranslation

Translatiory & I}{

ia Panel SoCr riposeVec 3f

a0L-O0mposavacal

Here the network and complete Python script of the ApplicatorMacro example:

Figure 9.17. Complete ApplicatorMacro

This file inplements scripting functions for the Local Fil eName nodul e
#

79

Developing a Macro
Module for an Applicator

\file Appl i cat or Macr o. py
\author JDoe
\date 01/ 2009

MeVis nodul e i nport
frommevis inport *

def AdjustDi ameter():
diameter = ctx.field("Diameter").value * 0.5

ctx.fiel d("SoCone. bottonRadi us") . val ue
ctx.field("SoCylinder.radius") .value
return

di anet er
di anet er

def AdjustLength():
overal | Lengt h
ti pLength

= ctx.field("Length").val ue

= ctx.field("SoCone. hei ght"). val ue
shaf t Lengt h

ti pTransl ati on

overal | Length - tipLength
shaftLengt h*0.5 + tipLength*0.5

ctx.field("SoCylinder. height").val ue
ctx.field("SoConposeVec3f.y") .val ue
return

9.4. Addition: Shifting the Whole Tip

In the example above, the change in length will be translated into an overall change with the center of
rotation as overall center. However, it might be preferable to keep the tip in place and change the length
of the shaft into the other direction.

shaft Length
ti pTransl ati on

Basically, this is the same problem as the length calculation we made in the Python script. However,
instead of calculating it in the macro scripting, we can also use a module for the calculation.

For this, the following modules need to be added:
e SoCal cul at or : For calculating the length of the shatft.

» SoConposeVec3f : For applying the translation of the float value to the vector of the overall translation
in Transl ati onAppl i cator.

The SoCal cul at or module offers input and output of floating values and vectors.

80

Developing a Macro
Module for an Applicator

Figure 9.18. Feeding the SoCalculator Module

iat Panel SoCalculator |:||E| IE

~Float Input—— Vector Input

=¥ 15 || va I}{] hf 0 Iz]

’; 4 || vh Ix 0 hf a Iz 0

£ O || wvc I}{ Dly 0 Iz 0

O | wd I}{ Dly DIZ 0

0 | we I}{ Dly DIZ 0

I o || wf I}{ Dly IIIIZ 0

/|
e— /
il Panel SoCylinder M=1ERA ° | 0w [x oly ofz o

Parts: I ALl Expression Apply

Radius: oa = -{0.5%a + 0.5*%)

Height:

ia Panel SoCone
Parts;
Bottom Radius:

Height:

Dal-b I -9.5

o3 I}{] Iﬁ,r 0 Iz]

~Float Dutput—‘ {Vector Qutput

Some important points:

¢ In the Expr essi on field, mathematic formulas can be entered; the name of the input values and the
name of the output have to be given.

« More than one expression can be entered. For that, end each line with a semicolon ;
¢ For the expression to be calculated, you need to click Apply.

For calculating the translation from the input values of cone and shaft height, use the SoCal cul at or
module and set up parameter connections

1. Connect SoCyl i nder . hei ght to SoCal cul ator. a
2. Connect SoCone. hei ght to SoCal cul ator. b

3. Enter the calculation: oa = - (0.5*a+0.5*b) (a negative sign needs to be added; otherwise, the
end of the applicator is fixed and the tip side grows).

81

Developing a Macro
Module for an Applicator

To apply the new translation, we need another SoConposeVec3f module. It allows for converting the float
value y into a vector translation in y direction. For this, it needs to receive the output of SoCal cul at or
and deliver the input for the SoTr ansl ati on module.

1. Connect SoCal cul at or . oa to SoConposeVec3f 1.y
2. Connect SoConposeVec3f 1. vect or to SoTransl ati on. transl ati on
Tip
You can find the names of the connected parameters by right-clicking the parameter

connections. For an overview of all parameter connections in a network, use the Parameter
Connections Inspector View.

The resulting macro network looks as follows:

Figure 9.19. Improved Applicator Macro Module

1a Panel SoTranslation(Tran... ‘Z,‘E,‘X,

Transjgtion:D lﬁ m lﬁ i@ Panel SoCylinder o =1ES

il Panel SoCone ‘Z| ‘i| ‘X|
Parts: ALL

Bottom Radius: 1
/ 4

ia Panel SoCa ulator \;.‘E.‘X.

:

ia, “anel SoComposeVec3f1 ‘;|‘E|‘X|

Expression

0z = -(0.5%a + 0.5*h)

Float Qutput- - Vector Qutput
I-’l -105 | ova |x 0 |y] |z]
ob | 0 | |ovb |x a |y a |z a

When to choose calculating values in scripts and when via modules? This is not an easy question.

¢ The advantage of the script is that it is easily changed and extended. This might be harder with
modules

¢ The advantage of the modules is that the connections between modules are visible as parameter
connections (which can be changed and removed).

In the end, it comes down to your current network and your design decisions which way to choose. Or
you might combine them, like we did in our Appl i cat or Macr o network.

82

Developing a Macro
Module for an Applicator

What else could you do now? You could, for example, make sure that the shaft length cannot be shorter
than the tip length (which looks strange in the Open Inventor scene). You could also make the colors
parametrizable, or add new features for the applicator.

This is the end of this example. The full network is delivered as example ($(1 nst al | Di r) Packages/

MeVi sLab/ St andar d/ Modul es/ Exanpl es/ Get ti ngSt art ed/ Appl i cat or Macr o), so feel free to check
it out and play around with it.

83

Chapter 10. Excursion: Image
Processing in ML

10.1. Some Advanced Information on Image
Processing

In this chapter you will find a brief survey of some more advanced image processing concepts used in
MeVisLab. Many of them are also discussed in the MLGuide, chapter 5 “Image Processing Concepts”.
Please refer to this document for further information.

10.2. Structure of MeVisLab

In the following figure, the basic structure MeVisLab is shown:

Figure 10.1. MeVisLab Structure

MeVisLab IDE User-defined
Application
Networks, GUI Scripting
Macros (MDL Scripting) Python/
JavaScript

MeVisLab Module Abstraction

Open Inventor

OO0

N /
A" !
<Dwn modules C++>

MeVisLab is based on C++ objects called modules which either belong to the ML type system developed
at MeVis or to the Open Inventor type system from SGI. Both module types offer a generic parameter
field system for parametrization and change notification. Open Inventor modules together form a scene

84

Excursion: Image
Processing in ML

graph for interaction and rendering in OpenGL, while the ML modules can be connected to form an
image processing pipeline.

Image processing in the ML is demand-driven (in that only the required parts of an image output are
calculated) and tile-based (this is used for caching of results). As an additional benefit, many classes
from the ITK and VTK libraries are provided in the ML type system through code-generated wrapper
modules.

Mixed modules belong to either system but can take input from the other system, thereby serving as
a bridge between systems.

MeVisLab unifies these two module systems with another internal layer that abstracts away the
differences between these systems. Stacked upon that layer is

e asystem to turn whole module networks into new macro modules with an interface of their own. Macro
modules may be built upon other macro modules.

» a GUI system where the elements are generated from a hierarchical description file, automatically
providing access to the parameter fields of the modules if desired.

* an interface to the scripting languages Python and JavaScript with full access to the modules and
GUI widgets, including the ability to generate new modules or widgets.

Based on these functionality one can build, test and evaluate own applications with the integrated
development environment and — with the proper license — generate own installers with standalone
applications.

10.3. Coordinate Systems

In MeVisLab, three coordinate systems exist next to each other:
* World coordinates
» Voxel coordinates

» Device coordinates

Figure 10.2. Coordinate Systems

Ay A

=
v

<Y
Sl
)
<

world (mm) voxel device (pixel)

pWorldToVoxel
mapVoxel ToWorld

oxelToDevice

viceToVoxel

The blue rectangle shows the same region in the three coordinate systems.
World coordinates are:
» Global: Combine several objects in a view

» Absolute: Measure distances and angles

85

Excursion: Image
Processing in ML

* Isotropic: All directions are equivalent

» Orthogonal: Coordinate axes are orthogonal to each other
Voxel coordinates are:

» Relative to an image

» Dependent on voxel spacing

» Continuous from [0..x,0..y,0..z], voxel center at 0.5

» Often non-isotropic, sometimes non-orthogonal

Direct relation to voxel location in memory
Device coordinates are:

» 2D coordinates in OpenGL viewport

* Measured in pixel

» Have their origin (0,0) in the top left corner of the device (with x-coordinates increasing to the right
and y-coordinates increasing downwards)

10.4. Affine Transformations

For mapping e.g. world to voxel coordinates, or device to world coordinates, affine transformations have
to be applied. This is done with homogeneous coordinates:

» Extend the (x,y,z) triple by an artificial coordinate with a fixed value 1.
 Affine transforms can then be represented by a single matrix multiplication.
Why not a 3x3 matrix? Two reasons:

1. One cannot construct a 3x3 matrix that will translate the point (0,0,0). The zeroes in the coordinate
vector cancel out all the coefficients.

2. Transformations could not be combined by multiplying the matrices.

Affine transformations have these elementary transforms:

Translation (moves an object along a direction vector)

Rotation (rotates the object around an axis vector)

Scaling (shrinks/grows the object size)

Shearing (deforms the object; rare in medical image data)

Figure 10.3. Matrix Multiplication

ULIB ta: Uz
/

v, | _ M ty Uy

v; t, Uy
1 000 1 1

86

Excursion: Image
Processing in ML

Tip

Look at the example Chapter 5, Defining a Region of Interest (ROI) for the module
Wor | dToVoxel in action.

The voxel coordinate system is a continuous coordinate system. Voxel boundaries are at integer values,

voxel centers are 0.5 off. To transform integer voxel indices to voxel centers in world coordinates, either

add the value “0.5” to voxel indices or check the option Integer Voxel Coordinates in the modules

Wor | dVoxel Convert, SOM.Tr ansf or m and others.

Common pitfalls

» Computing the voxel volume: getVoxelSize() returns voxel spacing in X, y and z. The product of these
values is not the voxel volume if the voxel-to-world-matrix is not orthogonal. Solution: Use the absolute
value of the matrix determinant instead.

* Inventor using row vector conventions: ML and MeVisLab use the widespread column vector
conventions, that is vectors are written as columns and matrices are applied by left-multiplication.
Open Inventor, in contrast, uses row vector conventions, that is vectors are written as rows and

matrices are applied by right-multiplication. Solution: Use the matrix transposition to convert a matrix
from one convention to the other.

10.5. DICOM Data and Coordinates

A mixed type are DICOM "coordinates". They are mostly world coordinates but refer to the patient axes.
» Based on the patient's main body axes (axial/transverse, coronal, sagittal)

* Measured as 1 coordinate unit = 1 millimeter

* Right-handed

» Not standardized regarding their origin

87

Excursion: Image
Processing in ML

Figure 10.4. World Coordinates in Context of the Human Body

Sagittal plane

Coronal plane

Transverse plane

The DICOM (Digital Imaging and Communications in Medicine) standard is a data format that groups
information into data sets. This way, the image data is always kept together with all meta information like
patient ID, study time, series time, acquisition data etc. The image slice itself is essentially just another
tag with pixel information.

DICOM tags have unique numbers, encoded as 2x4 numbers in hexadecimal notation (0000,0000). The
first four numbers are the data group, the second four numbers the data set/tag.

Note
&
Although DICOM is a standard, often the data that is received / recorded does not follow

the standard. Wrongly used tags or missing mandatory tags may cause problems in data
processing.

Some typical modules for DICOM handling:

¢ With Di com nport you import DICOM files and convert them into a 4D-TIFF image and a DICOM
header file for the use in MeVisLab.

« In addition, Di com nport offers features for sorting; click the help button for an overview of possible
options.

¢ You can view the image-wide DICOM tags with the module Di coniTagVi ewer .

88

Excursion: Image
Processing in ML

* You can view and cut out frame-specific tags with the module Di confr aneSel ect .
* You can modify DICOM tags with the module Di coniraghbdi fy.

* You can also create a new DICOM header for an image file with the | mageSave module, tab Options,
Save DICOM header file only.

Tip

For handling and manipulating DICOM data, the DICOM toolkit “DCMTK” (DICOM@offis)
is recommended. Parts of this toolkit are also used in MeVisLab.

Figure 10.5. The DICOM Tag Viewer

i Panel DicomTagViewer g@g|
Read Tags All Tags

All Tags:

{0002,0000% MetaElementGrouplength: 190 -
{0002,0001) FileMetalnfor mationersion:

{0002,0002% MediaStorageSOPClassUID: 1.2.840.10003.5.1.4,1.1.4
{0002,0003) MediaStorageSOPInstancelID:
1.2.276.0,25,3.0,14,1, 28253, 20050322 132325209

{0002,0010% TransferSyntaxJID: 1.2.840,10008.1.2.1

{0002,0012% ImplementationClassUID: 1.2.276.0,7230010,.3.0.3.5.2
{0002,0013) ImplementationversionMame: OFFIS_DCMTE_352
{0002,0000% IdentifyingGrouplength: 510

{0008,0005) SpecificCharacterSet: IS0 _IR 100

{000g,0008) ImageType: DERIVEDYSECOMDARYWOTHER\MEVISLAR
{000g,0016% SOPClassUID: 1.2.840,10008.5.1.4.1.1.4

{0008,0018) SOPInstancel)ID:
1.2.276.0,25,3.0,14,1, 28253, 20050322 132325209

{0002,0020% StudyDate: 20040407

{0002,0021) SeriesDate: 20040407

{0008.0022% AcquisitionDate: 20040407 f
[Show private tags Tag List Subset: (Al Tags - Dump Tags
et Values

10.6. Coordinate Systems in the MeVisLab
GUI

You can find information about the voxel and world matrix in the image properties on the Output
Inspector View.

The easiest (ideal) image is when the world and the voxel matrix correspond, so that one voxel is one
world unit, and the world matrix is coronal (not tilted in any way). In case of an image taken in the sagittal
position, voxel sizes may be different and the world matrix may be tilted.

89

Excursion: Image
Processing in ML

Figure 10.6. Image Properties for an Ideal Image

Oukpuk Inspeckar

2> | ap |

v
Image Properties

Image Size: 64, 64,64, 1,1, 1
Page Size: 64,64,1,1,1,1
Data Type: unsigned
intlé Range: [0,
4095]
Wowel Sizer 1,1, 1

Warld Matriz:1 0 0 0
o1 00
o010
o001

Options

[Snap to image center Save Bs...

Figure 10.7. Image Properties for a Sagittal Image

Output Inspector

20 | ap |

_mprage s... H

v
Image Properties
Image Size: 119, 119, 74,1,1, 1
Page Size: 64,64, 1,1,1,1
Dakta Type: unsigned intS Range: [0, 100]
Yoxel Size; 2,154, 2,154, 2,154

Wiarld -0.075190 -2.153 82.02
Makriz:
2153 0 -0.07519-139.4
0 -2.1540 112.4
0]] 1

Options

[Snap ko image center Save As...

90

Excursion: Image
Processing in ML

‘ Note
In DICOM, the voxel thickness does not necessarily correspond to the distance between
slices. In MeVisLab however, the calculated voxels close the slice distance.

Tip

Also see the I nfo module and its help for further information on the displayed data,
especially the calculation of the slice thickness z.

Figure 10.8. Image Properties in the | nf o Module

il Panel Info g@@l

Main Advanced | Time Points | Type Information] Internal]
World Matrix

a00: -0.0751887 a01: 0O a02: -2.15312 a03: 82.0239
alo: 215312 al1: o aiz: -0.0751887 al3: -139.417
320: 0O a21: -2.15443 322: 0o 223 112.36
a20: 0 a31: o a32: o =333 1
Wior | Matrix

-0.07518873363733292 0 -2.1521214714035029 82,02391815185547
2,153121471405029 0 -0.07518873363733292 -139,41706584814453
0 -2.15442330656582923 0 112,3599166270117

ooo1

CITIU-Dim Info
C: LUMINANCE

T: 2004-04-07 15:51:54.438
Il

10.7. Data Types for DICOM and TIFF

The DICOM standard does not support pixel data types other than signed and unsigned integer, and
the maximum bit depth is 16. This is the reason why in MeVisLab, the data is saved as float and (u)int32
data in DCM/TIFF format. This data type is correctly encoded in the TIFF format, and the DICOM file
is written as if it was an (u)int16 image.

The data is saved as follows:

e The TIFF file stored as part of a DCM/TIFF pair is a fairly standard TIFF file. For storing 3D images,
the SGI 3D TIFF extension is used. 4D images are stored as 3D, the time dimension being unfold
into the z-dimension.

e The DCM file in a DCM/TIFF pair is a fairly standard DICOM file, except that it does not contain the
pixel data tag. The contents of such a file can be read with the dcndunp tool by DICOM@offis, for
example. Some information gathered during the original DICOM import, such as the individual time
points in a 4D data set and the values of frame specific tags, are stored in private DICOM tags. There
is no official documentation of these private tags.

91

Excursion: Image
Processing in ML

In MeVisLab, the libraries i btiff and dcnt k (by DICOM@offis) are used to read these files. The
following applies:

* When opening such a DCM/TIFF pair, the data type stored in the TIFF file has precedence over the
one in the DCM file. This mechanism is described in the help pages of the | regeSave and | mageLoad

modules.

» If a DICOM file contains illegal values, the data is not regarded as valid DICOM and is completely
ignored. The TIFF file is handled as if the DICOM file did not exist.

The MeVisLab binding (e.g. as used in | mageSave and | mageLoad) does not support the double image
data type for TIFF.

As consequence, images with data of the type double cannot be saved as TIFF by | mageSave.
As a workaround, you can either convert the data type to float or use M.I nageFor mat Save and
M.I mageFor mat Load.

However, the images can be saved as RAW images with double data type (not long double).

®
®

Tip

For loading several TIFF files, use the module | mageLoadMul ti. This should not be
confused with loading a multi-page TIFF file (in which several images are saved); that format
is not supported by MeVisLab.

Tip

The page size delivered by the | mageLoad module is actually not determined by the
pageSi zeHi nt field, but by the file format module reading the image data. Only if the
file format allows reading the image data in different (or even arbitrary) pages, the
pageSi zeHi nt is used. (That is why it is called page size hint and not page size.) For the
TIFF format, the page size is fixed by the size of the tiles in the TIFF file holding the image
data. To change the page size for successive modules, | ragePr opert yConvert needs to
be used. For RAW images, the page size hint can be set.

10.8. Image Processing Concepts: Pages,
Slices, VirtualVolumes and more

In MeVisLab, a variety of image processing concepts is available. They differ in scope:

Page-based approaches:

» Page-based

» Voxel-based

» Slice-based

» Kernel-based

Semi-global approaches:

» Random Access (Tile requesting)

» Sequential Image Processing

 Virtual Volume

Global approaches:

92

Excursion: Image
Processing in ML

» Temporary Global

* Global

* Memory Image

All those concepts are discussed in detail in the MLGuide, chapter 5 “Image Processing Concepts”.

When choosing your approach, keep in mind that some of the concepts are not scaling well for larger
images. For example, the page-based approach can only be beneficial if the pages are of a size so
that they actually fit into memory, or can be administered by the internal ML host / cache. Always
try to set the page sizes to some reasonable values, like 128x128x1x1x1x1. You can do this with
| magePr oper t yConvert modules (insert them right after the loading modules in your network).

Tip

The ITK modules frequently produce memory allocation problems for large images because
they try to load the entire image at once. You can find out about the memory management
in the ITK module help. Look for something like PageExt =I ngExt or global “memory
management”. If you find these, the module cannot work page-based.

93

Chapter 11. Introduction to C++
Modules

There are different types of modules that may be developed by the user of MeVisLab:
» Macro modules

» Image processing (ML) modules

» Open Inventor modules

There are several noticable characteristics for all these modules types, and it is not always easy to
choose the best way of implementing a new project.

11.1. Module and Connection Specifics on
the C++ Level

ML modules on the C++-level:

» Image processing modules are objects derived from class BaseOp defined in the ML library and
therefore are also called ML modules.

* Image inputs and outputs are connectors to objects of class Sublmage, which are defined in the ML
library.

 Inputs and outputs for abstract data structures are connectors to pointers of objects derived from
class Base and are called Base objects.

Inventor modules on the C++-level:

* Most Inventor modules are objects derived from class SoNode defined in the Open Inventor library.

 Inventor inputs and outputs are connectors to objects derived from class SoNode defined in the Open
Inventor library. Many Inventor modules will return themselves as outputs (“self”). On inputs, they may

have connectors to child Inventor modules.

« Some Inventor modules are objects derived from class SoEngine. They are used for calculations and
return their output not via output connectors but via fields.

 Inventor modules may also have input and output connectors to Base objects and Image objects.

* All standard Inventor nodes defined in the Open Inventor library are available in MeVisLab as Inventor
modules.

Modules

In Section 2.3, “MeVisLab Modules”, we introduced modules by their functions and looks. Here a brief
look at their programming basis:

1 Inventor Modules: green. Objects derived from class SoNode or SoEngine defined in the Open
Inventor library.

2 ML Modules: blue. Objects derived from class BaseOp defined in the ML library.

3 Macro Modules: brown. MeVisLab intern objects of the type MLABMacroModule.

94

Introduction to C++ Modules

There is no special module type for MLBase objects.
Module Inputs/Outputs

1 Inventor: Inputs/Outputs: half-circles. Connectors from/to objects derived from class SoNode defined
in the Open Inventor library .

2 Image: Inputs/Outputs: triangles. Connectors from/to Image objects of type Sublmage defined in the
ML library.

3 Base: Inputs/Outputs: squares. Connectors from/to objects derived from class Base defined in the
ML library.

11.2. Some Tips for Module Design

11.2.1. Macro Modules or C++ Modules?

Advantages of macros:
1. Macros are useful for creating a layer of abstraction by hierarchical grouping of existing modules.
2. Scripts can be edited on the fly:

» no compilation and reload of the module database necessary

* scripting possible on the module or network level

* scripting supported by the Scripting Assistant View (basically a recorder for actions performed
on the network)

Disadvantages:

With macros, only existing functionalities and algorithms can be used.

Conclusion:

 For rapid prototyping based on existing image processing algorithms, use macros.

» For implementing new image processing, write new ML or Open Inventor modules.

11.2.2. Combining Functionalities

It is possible to have ML and Open Inventor connectors in the same module. Two cases are possible:

» Type 1: ML -> visualization: Image data or properties are displayed by a visualization module. Usually
a SoSFxVI mage field gets random access to an ML image by get Til e(). Examples: SoVi ew2D,
d obal Statistics.

» Type 2: visualization -> ML: Modules generate an ML image from a pixmap (sequence). Examples:
SoExam ner Vi ewer , SoShadowi ewer .

Generally, however, it is not always a good solution to combine that, as the processes of image
processing and image visualization are usually separated.

Therefore, rather separate the ML and Open Inventor functionalities into two modules. This way,
« functionality is encapsulated and can be reused as module

» modules for the single steps may already be available in MeVisLab and spare you a new development

95

Introduction to C++ Modules

11.2.3. Tips for Module Testing

After being done with the usual module and macro tests, make sure to stress your network's algorithms
and processing speed by testing with

* large data sets

» images with anisotropic voxels

» images with non-trivial world matrix (translated or rotated)

Many of the possible problems will only occur with these kinds of data.
In addition, keep in mind that modules

* need to run platform-independent

 should work on 32 and 64 bit

 should offer a well-designed panel for future users

 should come with a useful help and example network

11.3. Programming Examples

Besides the examples in the next chapters, several programming examples are available in the
MeVisLab software development kit.

For these modules to be available, the module group “Module Examples” has to be enabled, see
Preferences —» Module Groups.

The module data can be found at

» Sources: Packages\MeVisLab\Standard\Sources\Examples\ML\...

» Modules: Packages\MeVisLab\Standard\Modules\Examples\ML\...

Some modules are combined in one DLL, like the MLExample modules.
Tip

See the chapter Section 12.3, “Combining Two Modules in One Project” on how to combine
modules into one DLL.

Here is an overview of the most important example modules, listed by module name.
* AddExanpl e (Class: ml AddExanpl e; DLL: MLExample)
Startup example for ML module programming.
» BitlmageExanpl e (Class: nl Bi t | rageExanpl e; DLL: MLExample)
This module demonstrates the Bi t | nage class of the ML Tools project.
* Fi el dExanpl e (Class: m Fi el dExanpl e; DLL: MLExample)

An example module which simply creates most ML fields and adds them to a module interface. It also
uses the new Vec8Field also derived in this library.

* d obal Pagedl mageExanpl e (Class: ml G obal Pagedl nageExanpl e; DLL: MLExample)

96

Introduction to C++ Modules

This module demonstrates how a Vi r t ual Vol ume and/or a TVi r t ual Vol urre instance can be used
to get a random read/write access to an input image during page-based processing and to demand
driven image processing.

Ker nel 31 n2Qut Exanpl e (Class: ml Ker nel 31 n2Qut Exanpl e; DLL: MLKernelExamples)

Example class to demonstrate the implementation of a kernel-based algorithm with three inputs and
two outputs in the ML.

Ker nel Exanpl e (Class: m Ker nel Exanpl e; DLL: MLKernelExamples)

Example class to demonstrate the implementation of a kernel-based algorithm in the ML.
Mar ker Li st Exanpl e (Class: m Mar ker Li st Exanpl e; DLL: MLExample)

Example module generating an equally spaced linear set of XVar ker objects.

Qbj Vol unme (Class: M.Qbj Vol une; DLL: MLObjVolume)

Example module to store and retrieve volume information in a hard-coded oj Myr information cell.
For details see the MeVisLab SDK.

ProcessAl | PagesExanpl e (Class: nl ProcessAl | PagesExanpl e; DLL: MLExample)
This is an example module to demonstrate how to process all pages of one or more (input) images.
Separ abl eKer nel Exanpl e (Class: M Separ abl eKer nel Exanpl e; DLL: MLKernelExamples)

Example class of the implementation of a kernel-based algorithm in the ML which implements
separable kernel filtering.

Smal | | magel nt er f aceExanpl el, Smal | | magel nt er f aceExanpl e2 (Class:
m Smal | | magel nt er f aceExanpl e; DLL: MLSmallimagelnterfaceExamples)

Example modules to demonstrate the class Smal | | nagel nt er f ace which provides a very simplified
image processing interface for educational use. See the MeVisLab SDK for details.

Spar sel mageExanpl e (Class: m Spar sel mageExanpl e; DLL: MLExample)

Defines an example module which uses a Vi rt ual Vol une as a sparse image.

TypeAddExanpl e (Class M_.TypeAddExanpl e)

Example class to demonstrate the integration of a new voxel data type in the ML.
Tip

Similar examples are available for MDL panels; for those, search for modules starting with
“Test...”.

97

Chapter 12. Developing ML Modules

In the following chapter, the development of ML modules will be shown in three examples.

1. An ML module that allows adding a user-defined constant value to image voxels, see Section 12.1
“Creating a New ML Module for Adding Values”.

2. A more complex ML module that calculates a simple average over voxel values of an entire image,
see Section 12.2, “Creating an ML Module For Simple Average”.

3. Combining the two ML modules in one project (which results in one DLL), with a discussion of the
pros and cons of such combinations, see Section 12.3, “Combining Two Modules in One Project”.

The following examples are developed very explicitly to give you some insight into the ML, the MeVis
image processing library. Another useful way to start with module development is to copy the source
code of an existing module that might already have some of the wanted functionality and adapt it to your
needs. For further information, please refer to the MLGuide.

' Note
Developing C++ modules requires a C++ development environment being available on your
computer, e.g. Visual C++ on Windows and Xcode on Mac OS X.

12.1. Creating a New ML Module for Adding
Values

In the following chapter, we will create a new ML module with the functionality of adding a value to all
voxels, in the following steps:

» Section 12.1.1, “Creating the Basic ML Module with the Project Wizard”

» Section 12.1.2, “Preparing the Project”

Section 12.1.3, “Programming the Functions of the ML Module”

Section 12.1.4, “GUI Creation/Optimizing”

Section 12.1.5, “Creating an Example Network and Help File”

Tip

This example is delivered with MeVisLab (. def file in $(1nstall Dir)Packages/
MeVi sLab/ St andar d/ Modul es/ Exanpl es/ Getti ngSt art ed/ M.Si npl eAdd, source files in
$(Instal |l Di r)Packages/ MeVi sLab/ St andar d/ Sour ces/ Exanpl es/ Getti ngSt art ed/

M.Si nmpl eAdd). The module can be added via quick search. As module names have to be
unique, choose another name when trying to recreate this example, e.g. MLM/Si npl eAdd.

12.1.1. Creating the Basic ML Module with the Project
Wizard

1. First of all, make sure that you have a user package defined as described in Section 7.2, “Creating
a User Package for Your Project” or create it now.

2. Then run the Project Wizard and select the link ML Module. This starts the Wizard for C++/ML
Modules. Enter the following:

98

Developing ML Modules

* Name: SimpleAdd

« Comment: Adds a constant double value to each voxel.

See Also: Arithmeticl
* Project: SimpleAdd
» Target Package: Example/General

Click Next to proceed.

Figure 12.1. Entering the ML Module Properties |

isi Modules (C++)/ML Module

Module Properties

Enter the general properties of the module.

General Module Properties

Mame; * |5impleﬁ.dd athor: * | JDoe

Cormrment: |ﬁdd5 a constant double value to each voxel

keywords: |

See Also: |Ariﬂ’|metic1

Genre: | v add reference to example network

Project Properties

Project: * |5impleﬁ.dd Prefix: ML
W Include project files

Select Target Package

Target Package: * |[SEELalEREEREE]
* 1 Required fields

< Back Mext = Create Save Setting Cloge

3. On the dialog Additional Module Properties, the inputs and outputs as well as possible sample
code can be added to the ML module.

99

Developing ML Modules

Figure 12.2. Entering the ML Module Properties Il

il Modules (C++)/ML Module

Additional Module Properties

Enter additional properties of the module.

Num. Input/Qutput Images
Inputs: 1 El: Outputs: 1 EI:

Image Processing Methods
v add calcOutSubImaged) template
[Add calcInSubImageRox()
v add voxel loop to calcOutSubImage ()

[add calcInSubImageProps () - T
Uze type free [oop

Parameter Handling
W add attachField-statements
W Add handleMotification () [Add activatesttachments ()
[Add handlelnput!)
Documentation / GUI
[Add more detailed comments

v add MOL window with fields
[Add configuration hints

< Back Mext = Create Save Setting Cloge

Most of the settings can be kept. Enter/change the following:

* Inputs: 1

e Outputs: 1

» Add configuration hints: Uncheck (otherwise your code will be full of text).
* Add calcinSublmageBox: Uncheck (as we will not work with subimages).

4. On the dialog Module Field Interface, the fields of the module can be defined (more fields can be
added later but this is the easiest way to add fields).

100

Developing ML Modules

Figure 12.3. Entering the ML Module Properties — Fields

il Modules (C++)/ML Module

Module Field Interface

Add fields to the interface of the module,

Mame Type | Comment Yalue | Enum Yalues
constantyalue Double This constant value is added to each voxel,

Mevw Femove Femaove All

Field Mame: |cunstanWaIue Field Type: |D|:|uble j

Field Carmrment: |Thi5 constant value is added to each voxel,

Field valus: |III|

Enurm Yalles: |

< Back Mext = Create Save Setting Cloge

Click New to create a new field, then enter the following:
» Field Name: constantValue
» Field Type: Double
» Field Comment: This constant value is added to each voxel.
* Field Value: 0.
5. Click Create to create the module.
In the default file browser of your system, two folders are opened:
« folder with the source code: path \Example\General\Sources\ML\MLSimpleAdd

« folder with the module's GUI definition: path \Example\General\Modules\ML\MLSimpleAdd

Note
For a full list of all created files and their contents, refer to the MLGuide, chapter “B.2.

Files in an ML Project”.

The foundation of the module has been created with the Wizard. From here on, the programming starts.

101

Developing ML Modules

Tip
The Wizard will not close automatically. This way, you can change settings or fields and

create the module once more.

After module creation, the module database needs to be reloaded.

12.1.2. Preparing the Project

Out of the MeVisLab . pro files, the system-dependent project files (release and debug) have to be
created. How this is done depends on your operating system.

On Windows, the . vcproj file should be created automatically. (If this does not happen, double-click
the <Mbdul eNane>. bat file to create one <Modul eName>. vcpr oj project file (the debug/release status
is set in the Visual C++ environment).

Double-click the project file. Visual Studio starts, displaying a list of all project files.

Figure 12.4. Project in Visual C++ 2005

File Edt View Project Buld Debug Tools Window Community Help
SIRBEERAT=A™ = NI EEN - WA S & - | Debug + Win3z - | [valdoutBox - QA Y3 B0
Db FE =20 3 w5 Sl o
Solution Explorer - MLSimple... » B X misimpleAdd.cpp* | miSimpleAdd.h > X g
2 5 E (lobal Scope) - v g
S
[Solution 'MLSimpleadd' (1 project) I = (-}
= _ A(m
= G MiSimpleadd /71 The BL woduls class Simplehdd. =
= [Header Fies s =
! g
m misinpleAdd-h /4 \Eile mlSimpleddd. cpp
[n] MLSimpleAddinit.h ¥/ \euthor J Doe >
0] MLSimpleAddsystem.h Y Vdare Zon9-0z-18 g
= [Source Files v g
€] misimpleAdd.cpp i
&1 MLSimpleAddint.cop /; Ldds a constant double value to each voxel.
+
I
// Local includes
#include "mlSimpleddd.h”
ML_START_NAMESFACE
//t Implewents code for the runtime type system of the ML
ML_BASEOP_CLASS_SOURCE (Simplehdd, BaseOp):
o
441 Constructor
e
SimplesddExemple: : Simpleddd ()
: BassOp(l, 1)
{

ML_TRACE_IN("Simplehdel: :Sinpleddd (17); 3
cdsolti... [FClass .. [[ZPrope... € >
Output >3 x
Shaw output From; =L SNEY =
(23 Code Definition Window | #E1Call Brawser |[5] Output |[FhPending Checkins
Ttem(s) Saved Ln 27 Col25 chas INs

Note
&

If you are encountering problems with MeVisLab on Visual C++ 2005, make sure that
the Service Pack 1 (SP1) is installed. You can find all version-specific information on the
MeVisLab website (http://www.mevislab.de/), section “Download”.

On Mac:
» Restart MeVisLab.

» Double-click the <Mbdul eName>. pro file. The application MeVisLabProjectGenerator starts which
creates the two files <Mbdul eNane>. xcodepr oj and <Modul eNanme>_debug. xcodepr oj .

» Double-click one of the project files (debug or release). The application Xcode starts, displaying a
list of all project files.

102

Developing ML Modules

Figure 12.5. Project in Xcode

[aNala) MLSimpleAdd_debug O
L,
Groups & Files |Fi @
i MLSimpleAdd_debug B §= libMLSimpleAdd_debug.dylib o
» | Sources &= ML_debug 4
> [:] Headers ﬁ MLLinearAlgebra_debug o
> D Sources [gmake] &= MLMemoryManager_debug o
» | Sources [Related Files| E»] mlSimpleAdd.cpp v 4
» [External Frameworks anc D MLSimpleAdd.def
» [Products E| miSimpleAdd b
13 @ Targets . MLSimpleAdd.pro
b <4 Executables E—] MLSimpleAddinit.cpp 4 o [y
»i® E.rrols and Warnings R o= Co e] |
YQ Find Results N
» 1Y Bookmarks No Editor

piscMm W
- Project Symbaols

»> ﬁ Implementation Files

b [NIB Files

2

On Linux:

* Restart MeVisLab.

¢ Open a MeVisLab console, for example $ / hone/ .../ MeVi sLab/ MeVi sLab2. 0aGCC4. 1. 3/ bi n.

« In the console, switch to the project folder and run the <Mbdul eName>. sh shell script. This results in

two files, Makef i | e. <Mbdul eNane> and <Mbdul eNanme>. cbp. The . cbp file is a Code::Blocks project
(see http://www.codeblocks.org/ for more information).

103

Developing ML Modules

Figure 12.6. Project in Code::Blocks

AUSImple ANt Cppp (MUSImploAdd] - Cocde s Blocke 8,02 (=]
Ele fdt View Seach project Ruld Debug wxsmth Tools Plugns Settings Help
TR] g ®, MLSimpleAddinitl) : ML_START_NAMESPACE int
W Build target:| al B v]afalf: w w ™ EJ
Hanagement

L]
MLSImpleAddinit. cpp % | misimpleAdd h | MLSimpleAdd pro
Projects| Symbols | Rasources

3
a tocp
5
6
ces 7
MLsimpleaddinit.cpp :
misimpleadd epp 10
v B Headers 1
12
3
14
15
B8 Others 15
Usimpleadd pro b4
18
0
2L ML_START_NAMESPACE
2
)
21 "
=
x
27 int M.SimpleAddInit
2 M__TRACE_NI*MSimpleaddInit ()®
30
3 Simpleadd: :initclass
£l
£
: return 1
£
36
37 ML_END NAMESPACE

by Sources/ML P uTF-8 Line 1, Column 1 Insert Read/wiite | default

Note

It is recommended to open and compile the debug versions for development.

12.1.3. Programming the Functions of the ML Module
Open the file M Si npl eAdd. cpp.
Note

In the following code examples, the comment lines already available in the created . cpp
file are added for better overview.

12.1.3.1. Implementing cal cQut | magePr ops

As we add a constant value to each voxel, we need to adjust the value range of the output image, which
results in:

outMn = inMn + const Val ue
out Max = i nMax + const Val ue

In code, this is:

e L
/1! Sets properties of the output image at output outl ndex.

e L
voi d Si npl eAdd: : cal cQut | mageProps (i nt outl ndex)

{

M._TRACE | N(" Si npl eAdd: : cal cQut | mageProps ()");

/1 get the constant add val ue
const doubl e const ant Val ue = _const ant Val ueFl d- >get Doubl eVal ue() ;

// get input inmage's mn and max val ues
const doubl e i nM nVal ue = getl nl ng(0) - >get M nVoxel Val ue();
const doubl e i nMaxVal ue = get | nl ng(0) - >get MaxVoxel Val ue();

104

Developing ML Modules

/'l set the output image's nmin and max val ues
get Qut | ng(out | ndex) - >set M nVoxel Val ue(i nM nVal ue + const ant Val ue) ;
get Qut | ng(out | ndex) - >set MaxVoxel Val ue(i nMaxVal ue + const ant Val ue) ;

}

out i ndex is the index number of the output connector.

12.1.3.2. Implementing cal cQut Subl nage

1. Loop over all voxels of the output page and add the constant value. The loop is already generated
by the wizard, so only the following line has to be added at the start of the method, to obtain the
constant value in the correct data type:

/' Comput e subi mage of output image outlndex frominput subi mages.
const T constantValue = static_cast <T>(_const ant Val ueFl d- >get Doubl eVal ue());

That is the datatype of the output image which is the data type of the input image.

2. Then change the inner line of the following loop:

// Process all row voxels.
for (; p.x <= rowknd; ++p.x, ++i nOVoxel, ++out Voxel) {
*out Voxel = *i nOVoxel ;

}

Change the line

*out Voxel = *i nOVoxel ;
to
*out Voxel = *inOVoxel + constant Val ue;

so that the constant value is added to the value of the input voxel.
3. Compile the project (this includes all module files) in the development environment.

4. (Re)start MeVisLab.

' Note

If the module was edited in the debug version, MeVisLab must be run in the debug mode.
The restart is necessary
 so that the Modul eNane. def file can be found and parsed by MeVisLab.

 so that the module DLL is copied to the correct location, from a temporary source folder to the lib
folder. (If a . def file exists but no DLL is found, the module is displayed in red in MeVisLab.)

The module is now available in the (quick) search. Add it to the network.

12.1.4. GUI Creation/Optimizing

1. For optimizing the GUI of the module — that is the panel — open the . def file. You can do that in
two ways:

e Open the . def file in your development environment. The downside is that the development
environment does not support the MDL language of the . def file.

105

Developing ML Modules

* Open the . def file in the inbuilt text editor Mate, by right-clicking the module in MeVisLab and

selecting Related Files - MLSimpleAdd.def from the context menu. The advantage is that
Mate supports MDL (and Python and JavaScript). Therefore, it is recommended to edit MDL files
primarily with Mate. (More information on Mate can be found in the MeVisLab Reference Manual.)

. Add the line st ep = 100 to the definition of the field const ant Val ue in order to adjust the constant

value conveniently. (Smaller steps are barely visible in the output.)

W ndow {
Vertical {
Fi el d const ant Val ue {
tooltip = "This constant value is added to each voxel ."
step = 100 /1 big change for big effect
}
}
}

. Reload the module definition by right-clicking the module and selecting Reload Definition from the

context menu. This will only reload the GUI definition, not the module DLL.

. To check if everything worked, double-click the module to open the panel and test

Congratulations, you have now implemented your first page-based and demand-driven ML image
processing module!

As last step, we will create a little example network.

12.1.5. Creating an Example Network and Help File

1.

Load the example network of the module via File — Open. Its name is automatically constructed as
<Modul eNarme>Exanpl e. nl ab. So far, the example network only includes the module itself.

. Add two modules to the network, namely Local | mage and Vi ew2D. Connect the image input to the

bottom connector and the image output to the top connector of Si npl eAdd.

. Double-click Si npl eAdd to open its panel and Vi ew2D to open the viewer. When you now change

the steps, the image display changes.

106

Developing ML Modules

Figure 12.7. Example Network for SimpleAdd

Panel View2D

ViewZD

|
Locallmage » '
slices -
© O) Panel SimpleAddExa... TII'T‘IG[JDH"It: 0 ;

: = 5 g a eiay
Constant Value: _[1300 |- | PR RYpAn Scan

B (B sV 2 Y A G

eerVicde

4. To create the help, right-click the new module and select Create Help from the context menu. The
default HTML editor (as set in the MeVisLab Preferences) opens and displays a template HTML file.
Add the module-specific contents and save them.

Now the module is ready for usage.

The module including the example network and help file are delivered with the examples of MeVisLab,
so feel free to check it out and play around with it.

12.2. Creating an ML Module For Simple
Average

In the following chapter, we will create a new ML module that calculates an average over voxel values,
in the following steps:

¢ Section 12.2.1, “Creating the Basic ML Module with the Project Wizard”

¢ Section 12.2.2, “Editing the Header File of Si npl eAver age”

¢ Section 12.2.3, “Editing the CPP File of Si npl eAver age”

@ Tip
This example is delivered with MeVisLab (. def filein$(1 nstal | Di r) Packages/ MeVi sLab/
St andar d/ Modul es/ Exanpl es/ Get ti ngSt art ed/ MLSi npl eAver age, source files in
$(Instal |l Di r)Packages/ MeVi sLab/ St andar d/ Sour ces/ Exanpl es/ Getti ngSt art ed/
M.Si npl eAver age). The module can be added via quick search. As module names
have to be unique, choose another name when trying to recreate this example, e.g.
M.M/Si npl eAver age.

107

Developing ML Modules

12.2.1. Creating the Basic ML Module with the Project
Wizard

For the following example, we expect the user package Exanpl e/ General to be available, see
Section 12.1.1, “Creating the Basic ML Module with the Project Wizard”.

1. Run the Project Wizard and select the link ML Module. This starts the Wizard for C++/ML Modules.
Enter the following:

a. Name: SimpleAverage

b. Comment: Computes the average voxel value of an image.
c. Keywords: Stastistics Average

d. See Also: ImageStatistics

e. Project: SimpleAverage

f. Target Package: Example/General

Click Next to proceed.

2. On the dialog Additional Module Properties, the inputs and outputs as well as possible sample
code can be added to the ML module.

Most of the settings can be kept. Enter/change the following:
* Inputs: 1

e Outputs: 1

Add configuration hints: Uncheck (otherwise your code will be full of text).

Add attachField-statements: Uncheck (as no entry field will be used).

» Add calcinSubimageBox: Uncheck (as we will not work with subimages).

‘ Note
Although we will have no real "output" of the module, it is helpful to create an output

here, as this will add some of the ML methods necessary for the module functionality. It
is easier to exchange or delete some code than to add new code sections manually.

Click Next to proceed.
3. On the dialog Module Field Interface, create two new fields:
One field to keep the calculated value:
» Field Name: voxelValueAverage
» Field Type: Double
* Field Value: 0.
One field that will function as Update button:
* Field Name: update

» Field Type: Notify

108

Developing ML Modules

4. Click Create to create the module.
In the default file browser of your system, two folders are opened:
« folder with the source code: path \Example\General\Sources\ML\MLSimpleAverage

« folder with the module's GUI definition: path \Example\General\Modules\ML\MLSimpleAverage

‘ Note
For a full list of all created files and their contents, refer to the MLGuide, chapter “B.2.
Files in an ML Project”.

5. Reload the module database.

6. Prepare the project, as described inSection 12.1.2, “Preparing the Project”.

12.2.2. Editing the Header File of Si npl eAver age

1. Open the file m Si nmpl eAver age. cpp.

2. Add the following two lines to the private section

si ze_t _nunVoxel s;
doubl e _sunVoxel Val ues;

They will be used as follows: All voxel values are added (_sunVoxel Val ues) and divided by the
number of counted voxels (_nunVoxel s). Voxel values usually define brightness or color.

3. Remove the following lines.

/1! Sets properties of the output image at output outlndex.
virtual void cal cQutl nageProps (int outlndex);

The virtual function calling cal cQut | ragePr ops has to be removed because there will be no image

output. If the line is not removed, a warning will be generated by the compiler. (However, the
cal cQut Subl mage template is necessary.)

12.2.3. Editing the CPP File of Si npl eAver age

Open the file M Si npl eAver age. cpp.

‘ Note
In the following code examples, the comment lines already available in the created . cpp
file are added for better overview, when necessary.

1. Change the constructor call of the superclass from BaseQp(1, 1) to BaseOp(1, 0) .
This leaves our module with one input and no output image.

2. Add the following code in the method handl eNot i fi cati on(Fi el d* field).

/1 Handl e changes of npdul e paraneters and connectors here.
if (field == _updateFl d) {

_nunVoxel s
_sunVoxel Val ues

0;
0;

processAl | Pages() ;

109

Developing ML Modules

doubl e result = O;

if (_nunVoxels > 0) {
result = _sumVoxel Val ues / static_cast<doubl e>(_nunVoxel s);

}

_voxel Val ueAver ageFl d- >set Doubl eVal ue(resul t);

}

The code includes the important ML BaseQp method processAl | Pages(). This method can be
used in algorithms that only extract information from an image (but do not modify it). As the
extraction of information is not driven by demand, the loop over all pages has to be implemented with
processAl | Pages() . For further information, see the ML Guide.

. Remove the following lines, as no image will be output by this module.

/1! Sets properties of the output image at output outl ndex.
voi d Si npl eAver age: : cal cQut | mageProps (i nt outl ndex)
M__TRACE | N(" Si npl eAver age: : cal cQut | mageProps ()")

/1 Change properties of output inmage outlndex here whose
/1 defaults are inherited fromthe input image (if there is one).

}

. In the method cal cQut Subl mage(...), remove out Subl ng and out I ndex from the method's
signature. Result:

tenpl ate <typenane T>
voi d Si npl eAver age: : cal cQut Subl mage (_TSubI ng<T>*
;ghbing<T>* i nSubl ng0
)
out | ndex would reference an output image of the module which we do not have.
. Replace the line:
const Subl ngBox val i dQut Box(out Subl ng- >get Box() .i ntersect(. ..
with the line:
const Subl ngBox i nBox = i nSubl ng0- >get Box() ;
. Remove the line
T *out Voxel = out Subl ng->get | ngPos(p) ;
. Replace all occurrences of val i dQut Box with i nBox.
. Replace the line
*out Voxel = *i nOVoxel

with the lines:

_sunVoxel Val ues += static_cast <doubl e>(*i nOVoxel) ;
++ nunVoxel s;

. At last, compile the project. Then restart MeVisLab so that the new module is registered and added
to the module database.

110

Developing ML Modules

12.2.4. Testing the Module

Now you can use the new module in MeVisLab.

1. Add your new module Si npl eAver age and a Local | mage module to a new network. Connect them
and load an image.

2. Then double-click Si npl eAver age to open its automatic panel and click the Update button on the
module panel. The calculated output of Si npl eAver age is displayed.

A module with a similar functionality is available in MeVisLab, called | mageSt ati sti cs.

Add I rageSt ati sti cs via the quick search and compare its mean value with the displayed value of
Si npl eAver age. You will find that the results are almost the same apart from the rendering error in
the display.

Tip
This test network is delivered as the example network for Si npl eAver age.

12.3. Combining Two Modules in One Project

In the following chapter, we will merge our two modules (Si npl eAdd and Si npl eAver age) into one
project, in the following steps:

e Section 12.3.1, “Copying the Souce Files”

» Section 12.3.2, “Editing and Recompiling the . pr o File”

e Section 12.3.3, “Editing the Project in the Development Environment”

» Section 12.3.4, “Editing the Module Definition (.def)”

e Section 12.3.1, “Copying the Souce Files”

Per project, one DLL (. dynlib/. so) file is created and transferred, and the modules might share
common includes etc. within one project.

Therefore, this example is a showcase on how to build a larger library by augmenting an existing project.

In this example, we will merge the Si npl eAver age module into the Si npl eAdd project. For two modules,
this is an arbitrary decision; for larger projects, always merge into the existing project.

Tip

The source code of this example is delivered with MeVisLab
(source files in $(InstallDir)Packages/ MeVi sLab/ St andar d/ Sour ces/ Exanpl es/
Get ti ngSt arted/ M_Si npl eMer ged). However, as module names have to be unique, no

. def file is delivered (so the module is not available in MeVisLab), to avoid collisions with
the examples above.

12.3.1. Copying the Souce Files

Copy the m Si npl eAver age. cpp and m Si npl eAver age. h files to the source folder of Si npl eAdd.

12.3.2. Editing and Recompiling the . pro File

1. Open m Si npl eAdd. pr o in any text editor.

2. Add m Si npl eAver age. h to the HEADERS section.

111

Developing ML Modules

3. Add nl Si npl eAver age. cpp to the SOURCES section. Make sure that the previous line is terminated
with a backslash with NO whitespaces behind it. The last line does not need to be terminated by a
backslash.

4. Recompile the . pr o file (run . bat on Windows, . sh on Linux, double-click . pr o on Mac).

For the resulting . pro file, see $(1 nstal | Di r) Packages/ MeVi sLab/ St andar d/ Sour ces/ Exanpl es/
Get tingSt arted/ M_Si npl eMer ge.

12.3.3. Editing the Project in the Development
Environment

1. Open the Si npl eAdd project in your development environment.
2. Open Si npl eAver age. h.
3. Exchange the line
#i ncl ude "M.Si npl eAver ageSyst em h"
by
#i ncl ude "M.Si npl eAddSyst em h"
4. Exchange the macro in the class definition (this handles exporting symbols under Windows)
M_SI MPLEAVERAGE EXPORT
by
M_SI MPLEADD EXPORT
The new module in this project (i.e. Si npl eAdd) needs to be initialized for the runtime-type system.
5. Open M.Si npl eAddl ni t . cpp.

6. Add the line

#i ncl ude "m Si npl eAver age. h"

below the line
#i ncl ude "m Si npl eAdd. h"
7. Add the line
Si npl eAverage: :initd ass();
below the line
Si npl eAdd: : i nitd ass();
This registers the classes to the ML runtime type system.

8. Recompile the project.

Note
&
m Si npl eAver age. cpp does not have to be edited.

For the resulting sources, see $(Instal | Di r) Packages/ MeVi sLab/ St andar d/ Sour ces/ Exanpl es/
GettingStarted/ M_Si npl eMer ged.

112

Developing ML Modules

12.3.4. Editing the Module Definition (.def)

1.

Open the file M_Si npl eAver age. def in Mate.
Copy the definition of the module Si npl eAver age into the clipboard (this is at least from the line
M_Modul e Si npl eAver age {

to the last closing curly bracket })

. Open the file MLSi npl eAdd. def .

Paste the definition of the Si npl eAver age module below the definition of the Si npl eAdd module.
Exchange the line in the definition of the SimpleAverage module

DLL = "M.Si npl eAver age"

by the line

DLL = "M.Si npl eAdd"

12.3.5. Cleaning up Folders and Example Networks

1.

Copy the example network and HTML documentation of the Si npl eAver age module to the according
folders of the Si npl eAdd module. The paths to those files should be relative, so they are still correct.

. (Re)move the old files and folders of the Si npl eAver age module from the folders / Sour ces and /

Mbdul es so that no conflicts arise.

. (Re)start MeVisLab.

Both modules can now be added e.g. via a quick search. However, you will find that in the About
information, the same DLL will appear for both modules.

113

Chapter 13. Developing Inventor,
WEM and CSO Modules

The following chapter gives a short brief overview and some references to the possibilities of developing
Inventor, WEM and CSO modules.

Tip

Additional documents on various MeVisLab features and aspects can be found in the
Toolbox Class Reference.

13.1. Inventor Modules

New Inventor modules may be added by creating some basic Open Inventor module types with the
Project Wizard and extending them. For the available options, see the MeVisLab Reference Manual,
chapter “Project Wizard”.

For documentation on Open Inventor, see the Inventor Module Help (for an introduction on Open
Inventor and module-related help) and the Inventor Reference (converted from the original man pages).

13.2. Winged Edge Mesh Library (WEM)

The approach of the WEM (Winged Edge Mesh) library is to unitize the generation, the processing and
the rendering of surface representations. The library in MeVisLab offers a basis for dealing with common
tasks: an iso surface can be generated at a certain threshold out of medical images, the resulting
surface can be reduced in its amount of primitives or can be smoothed by using different algorithms. For
rendering, the surface can be colored in order to reflect certain additional information or according to
a flexible coloring scheme out of the image data itself. Finally, all the generated and modified surfaces
can be saved and loaded with a variety of different file formats that are compliant with standard 3D
applications.

New WEM modules may be created with the Project Wizard, see the MeVisLab Reference Manual,
chapter “Project Wizard”.

‘ Note
The WEM wizard is intended for implementing ML-based modules. Although there are WEM
modules based on Open Inventor in the library, the creation of those is not documented.

For documentation on WEM in MeVisLab, see the Toolbox Class Reference, section “WEM”. The
chapter “WEM Data Structure” gives an overview of the concepts behind WEM.

For available WEM modules, enter “WEM” in the quick search. Their example networks offer insights
into the features and functionality of WEM.

114

Developing Inventor,
WEM and CSO Modules

Figure 13.1. WEM IsoSurface Example Network

1t Viewer SoLxaminerViewer1

=

x|

X

ia Viewer SoExaminerViewer

LR)
QPPD

)
a
5
@

o
o

&
o

QP
QL

S |
S [TRENI
=

™)

al
x|

iewer SoExaminerViewer3

OO®P
VO

5
@
Cl
@

&
o

QL

w
o

DK

{

Dally | {Rotx Raty

S T |
5 [T
=

Although the focus of WEM is more on calculation and display than on interaction, interactivity can be
implemented like in the following example:

Figure 13.2. WEM Extrude Example Network

i Viewer SoExaminerViewer =0 14, Viewer SoExaminerViewer1

x|

DN

s

¥

A

VARV

A
RO PED

ROFoLE R

b

o
oL

s

‘EY-"

S, s
DT S
Al ‘M}'-‘

R Tk

el % O

Zoom Zoom

115

Developing Inventor,
WEM and CSO Modules

13.3. Contour Segmentation Objects (CSO)

The CSO library provides data structures and modules for freehand drawing, semi-automatic or
automatic generation of contours in voxel images. Furthermore, these contours can be analyzed,
maintained, grouped, and converted into a voxel image again.

In the CSO library, all coordinates of the object are stored in world space. The contours themselves
are called CSO and are 3D objects. The CSOs are not attached to any special image and can freely
be interchanged between different images or the same image in different resolutions. Due to their 3D
nature, the CSOs are not restricted to the axial plane or to ortho planes in general, but can be generated
on obliqgue MPRs. In one CSOList, arbitrarily oriented CSOs can coexist.

For documentation on CSO, see the page $(I nstal | Di r) Packages/ MeVi sLab/ St andar d/ Modul es/
M./ MLCSOWbdul es/ Over vi ew/ CSQOver vi ew. ht M and also the Toolbox Reference, section “CSQO”.

CSO modules cannot be created with the wizard. For extending CSO features, see the two
base classes CSOGenerator ($(Install Dir)Packages/ MeVi sLab/ St andard/ Sour ces/ M./ MLCSO/
CSOBase/ CSOwbdul eBase/) and CSOProcessor ($(1nstall Dir)Packages/ MeVi sLab/ St andar d/
Sour ces/ | nvent or / SoCSQ CSOPr ocessor /).

For available CSO modules, enter “CSO” in the quick search. Their example networks offer insights into
the features and functionality of CSO.

Figure 13.3. Freehand Contours with the SoView2CSOEditor Example Network
ili Panel View2D - [3] i:i]

Commands Parameters

Remove All | Undo | Redo [Combine | Break cso Group Default Notifications | Selection

CS0[5] Group CSO Parameters
it [rabel [Grop || [i Jisbel Jo50 | [comman wisusks
Id: 5
Label: r—
Description: —

v Show

LSRN

v worelize

v Editable

Time Point Index 0

Delete Copy Mew Delete Copy

| | whork directly on input CSOList Undo Stack Limit 163

116

	Getting Started
	Table of Contents
	Chapter 1. Before We Start
	1.1. Welcome to MeVisLab
	1.2. Coverage of the Document
	1.3. Intended Audience
	1.4. Requirements
	1.5. Conventions Used in This Document
	1.5.1. Activities
	1.5.2. Formatting

	1.6. How to Read This Document
	1.7. Related MeVisLab Documents
	1.8. Glossary (abbreviated)
	ML, MDL, Open Inventor — Some Important Terms Explained

	Chapter 2. The Nuts and Bolts of MeVisLab
	2.1. MeVisLab Basics
	2.2. Development in MeVisLab
	2.3. MeVisLab Modules
	2.4. Networks
	2.5. Overview of Important Files
	2.6. User Interfaces Controls
	2.7. How to Find More Information on Networks and Modules

	Chapter 3. Loading and Viewing Images
	3.1. The MeVisLab GUI
	3.2. Searching and Adding Modules
	3.3. Using the ImageLoad Module
	3.4. Adding Viewers to ImageLoad
	3.4.1. Adding the View2D Module
	3.4.2. Adding the View3D Module

	3.5. Alternative Ways to Load Images
	3.5.1. Dragging Images onto the Workspace
	3.5.2. Adding Images via the DICOM Browser
	3.5.3. Using the LocalImage Module

	3.6. A Note on Importing DICOM Images

	Chapter 4. Implementing a Contour Filter
	4.1. Loading the Input Image
	4.2. Implementing the Contour Filter
	4.3. Parameter Connection for Synchronization

	Chapter 5. Defining a Region of Interest (ROI)
	5.1. Creating a Viewer with a Selection Rectangle
	5.2. Adding a Second Viewer for the Subimage
	5.3. Adding the Interactivity for the Viewers

	Chapter 6. Creating an Open Inventor Scene
	6.1. Introduction to Open Inventor
	6.2. Creating the Applicator
	6.3. Creating the Interaction
	6.4. Creating the Anatomical Image
	6.5. Finishing the Complete Open Inventor Scene

	Chapter 7. Starting Development with Package Creation
	7.1. What are Packages
	7.2. Creating a User Package for Your Project

	Chapter 8. Introduction to Macro Modules
	Chapter 9. Developing a Macro Module for an Applicator
	9.1. Creating a Basic Global Macro
	9.2. Adding the Macro Parameters and Panel
	9.3. Programming the Python Script
	9.4. Addition: Shifting the Whole Tip

	Chapter 10. Excursion: Image Processing in ML
	10.1. Some Advanced Information on Image Processing
	10.2. Structure of MeVisLab
	10.3. Coordinate Systems
	10.4. Affine Transformations
	10.5. DICOM Data and Coordinates
	10.6. Coordinate Systems in the MeVisLab GUI
	10.7. Data Types for DICOM and TIFF
	10.8. Image Processing Concepts: Pages, Slices, VirtualVolumes and more

	Chapter 11. Introduction to C++ Modules
	11.1. Module and Connection Specifics on the C++ Level
	11.2. Some Tips for Module Design
	11.2.1. Macro Modules or C++ Modules?
	11.2.2. Combining Functionalities
	11.2.3. Tips for Module Testing

	11.3. Programming Examples

	Chapter 12. Developing ML Modules
	12.1. Creating a New ML Module for Adding Values
	12.1.1. Creating the Basic ML Module with the Project Wizard
	12.1.2. Preparing the Project
	12.1.3. Programming the Functions of the ML Module
	12.1.3.1. Implementing calcOutImageProps
	12.1.3.2. Implementing calcOutSubImage

	12.1.4. GUI Creation/Optimizing
	12.1.5. Creating an Example Network and Help File

	12.2. Creating an ML Module For Simple Average
	12.2.1. Creating the Basic ML Module with the Project Wizard
	12.2.2. Editing the Header File of SimpleAverage
	12.2.3. Editing the CPP File of SimpleAverage
	12.2.4. Testing the Module

	12.3. Combining Two Modules in One Project
	12.3.1. Copying the Souce Files
	12.3.2. Editing and Recompiling the .pro File
	12.3.3. Editing the Project in the Development Environment
	12.3.4. Editing the Module Definition (.def)
	12.3.5. Cleaning up Folders and Example Networks

	Chapter 13. Developing Inventor, WEM and CSO Modules
	13.1. Inventor Modules
	13.2. Winged Edge Mesh Library (WEM)
	13.3. Contour Segmentation Objects (CSO)

