
Chapter 2

Two-Dimensional
Programming in OpenGL

OpenGL is a three-dimensional system. From an application programmer’s
perspective, OpenGL primitives describe three-dimensional objects that exist in a
three-dimensional world. But some objects reside in a plane, and these two-
dimensional problems are a special case of three-dimensional problems. This special
case is important because many applications are two dimensional. For these
applications, it is easier to work directly in two dimensions, something that OpenGL
allows. We start with these simpler problems as a straightforward way of getting
started with OpenGL.

In this chapter, we start by dissecting a very simple program to understand the
basics of an OpenGL program. Then we enhance the program, introducing additional
OpenGL functions. Finally, we introduce the full set of basic OpenGL primitives.

2.1 A Simple Program
Program 2.1 draws a white rectangle on a black background. Although it makes
heavy use of default values for many parameters, the program nonetheless
illustrates the structure of most OpenGL programs.

The program consists of two functions: main() and display(). The main()
function initializes OpenGL, and display() defines the graphical entity to be
drawn. First, we examine main(). Although OpenGL contains no input or
window commands, any user program must interact with the window system,
and interactive programs have input from such devices as the mouse and the key-
board. However, the user interface to window systems is system dependent. A
program for Windows 98/NT differs from one with the same functionality written

11

Angel_Ch02.qk 5/18/01 7:31 AM Page 11

for the X Window System under Linux. We can interface with these systems by
using a minimum amount of “glue” contained in system-specific libraries: GLX for
X Windows, wgl for Windows, agl for the Macintosh. There is an alternative
path through the GLUT library.

2.2 GLUT
The OpenGL Utility Toolkit (GLUT) is a library of functions that are common to
virtually all modern windowing systems. GLUT has been implemented on all the
popular systems, so programs written using the GLUT API for windowing and

12 Chapter 2 Two-Dimensional Programming in OpenGL

/*simple.c */

#include <GL/glut.h>

void display()

{

glClear(GL_COLOR_BUFFER_BIT);

glBegin(GL_POLYGON);
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();

glFlush();

}

int main(int argc, char** argv)
{

glutInit(&argc,argv);
glutCreateWindow("simple");
glutDisplayFunc(display);
glutMainLoop();

}

Program 2.1 simple.c

Angel_Ch02.qk 5/18/01 7:31 AM Page 12

input can be compiled with the source code unchanged on all these systems. We
use GLUT throughout this book.

Starting with the first function in main(), glutInit(), we see that the name
for all GLUT functions begins with the letters glut. Although we can pass in com-
mand line arguments from main(), their interpretation within GLUT is
implementation dependent. We shall not use implementation-dependent
arguments in our examples. The function glutCreateWindow() puts a window on
the screen in a default position—at the upper-left corner—and at a default size—
300 ! 300 pixels. The argument allows us to put a title on the top border of the
window.

Altering the defaults in GLUT is discussed later.

2.3 Event Loops and Callback Functions
Most interactive programs are based on the program’s reacting to a variety of dis-
crete events. Events include mouse events, such as moving the mouse or clicking a
mouse button; keyboard events, such as pressing a key; and window events, such
as the user resizing a window or the covering up of a window by another window.
The programming paradigm used to work with them is to have events handled by
the operating systems and placed in an event queue. Events are processed sequen-
tially from the event queue. The application programmer writes a set of callback
functions that define how the program should react to specific events. In GLUT,
the most common events are recognized. The application program can define its
own callback functions, rely on default callbacks for a few events, or do nothing,
in which case events without callbacks are ignored.

2.3 Event Loops and Callback Functions 13

void glutInit(int argc, char **argv)

Initializes GLUT and should be called before any OpenGL functions: glutInit()
takes the arguments from main() and can use them in an implementation-
dependent manner.

int glutCreateWindow(*char title)

Creates a window on the screen with the title given by the argument. The
function returns an integer that can be used to refer to the window in multiwin-
dow situations.

Angel_Ch02.qk 5/18/01 7:31 AM Page 13

Program 2.1 contains only a single callback, the display callback, which is
invoked whenever OpenGL determines that the display has to be redrawn. One
such time is when the window is first opened. Consequently, if we put our graph-
ics in the display callback, we can be assured that they will be drawn at least once.
Note that the form of the display function, a function with no arguments, is fixed
by GLUT.

If we wish to pass values to the display callback function, we must use globals
in our programs. After the callbacks have been defined, the program enters the
event loop by executing the function glutMainLoop(). Once we have entered the
loop, we cannot escape except through a callback or an outside intervention, such
as pressing a “kill” key. Any code after this call will never be executed.

The form of GLUT callback functions is fixed. Consequently, global variables may
be necessary to pass values between functions.

2.4 Drawing a Rectangle
Now we have to define our display callback, which we have chosen to name
display. First, note that we include the file glut.h, which is usually stored in a
directory named GL wherever the standard include files are stored. This file
contains the prototypes for the GLUT functions and the #defines for a variety of
constants that are used in OpenGL programs. This file also contains the following
lines to include similar definitions for the OpenGL and GLU functions and
constants.

#include <GL/gl.h>
#include <GL/glu.h>

Alert!

14 Chapter 2 Two-Dimensional Programming in OpenGL

void glutMainLoop()

Causes the program to enter an event-processing loop. This statement should be
the last one in the main() function.

void glutDisplayFunc(void (*func) (void))

The function func() is called each time there is a display callback.

Angel_Ch02.qk 5/18/01 7:31 AM Page 14

The fundamental entity for specifying geometric objects is the vertex, a loca-
tion in space. Simple geometric objects, such as lines and polygons, can be
specified through a collection of vertices. OpenGL allows us to work in two, three,
or four dimensions through variants of the function glVertex*().

We shall use the notation glVertex*() to refer to all these variants. Thus, for
example, glVertex2f(x, y) defines a vertex in two dimensions at the point (x, y),
where x and y are floats, whereas glVertex2fv(p) specifies a vertex at the first
two locations of an array of floats, that is, (p[0], p[1]).

Because vertices can define a variety of objects, we must tell OpenGL what
object a list of vertices defines and where the beginning and the end of the list
occur. We make this specification through the functions glBegin() and glEnd().

Don’t forget to include the glEnd() after a list of vertices.

Using these three functions, we can define our rectangle as follows:

glBegin(GL_POLYGON);
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();

Alert!

2.4 Drawing a Rectangle 15

void glVertex{234}{sifd}(TYPE xcoordinate, TYPE
ycoordinate,....)

void glVertex{234}{sifd}v(TYPE *coordinates)

Specifies the location of a vertex in two, three, or four dimensions with the types
short (s), int (i), float (f), or double (d). If v is present, coordinates is a
pointer to an array of the type specified.

void glEnd()

Specifies the end of a list of vertices.

void glBegin(GLenum mode)

Specifies the beginning of an object of type mode. Modes include GL_POINTS,
GL_LINES, and GL_POLYGON.

Angel_Ch02.qk 5/18/01 7:31 AM Page 15

Note that before we draw the rectangle, we clear the color buffer, where OpenGL
puts the rendered image through the function glClear().

After we finish specifying our one object, we force the renderer to output the
results by issuing a glFlush(), in case the implementation is buffering commands
for efficiency.

Figure 2.1 shows the output from our program. Although the program obvi-
ously produces an image, we need to address a variety of questions.

! What do we do if we want the image to be a different size?
! What do we do if we want the image to appear in a different place on the

screen?
! Why does the white rectangle occupy half the area in the window?

16 Chapter 2 Two-Dimensional Programming in OpenGL

Figure 2.1 Output from simple.c

void glClear(GLbitfield mask)

Clears all buffers whose bits are set in mask. The mask is formed by the logical OR
of values defined in gl.h. GL_COLOR_BUFFER_BIT refers to the color buffer.

void glFlush()

Forces OpenGL commands to execute.

Angel_Ch02.qk 5/18/01 7:31 AM Page 16

! Why is the background black and the rectangle white? How can we use
other colors?

! Can we end the program other than by using the kill box provided by the
window system?

! How do we define more complex objects?

2.5 Changing the GLUT Defaults
First, let’s add a few GLUT functions that will give us a little finer control over the
image that appears on our screen. The functions glutInitDisplayMode(),
glutInitWindowSize(), and glutInitWindowPosition() allow us to define
what type of window we want, its size, and its position. Generally, an implementa-
tion will support a variety of properties that can be associated with a window on
the screen. An application program, through the function
glutInitDisplayMode(), requests the type of window that it requires. The most
common window properties to specify are what type of color we wish to use and
whether we need double buffering. The defaults in GLUT are RGB color and sin-
gle buffering, which can be specified explicitly by the function call

glutInitDisplayMode(GLUT_RGB | GLUT_SINGLE);

The function glutInitWindowSize() specifies the size of the window on the
screen, and glutInitWindowPosition() gives its initial position.

2.5 Changing the GLUT Defaults 17

void glutInitDisplayMode(unsigned int mode)

Requests a display with the properties in mode. The values of mode are
combined by using the logical OR of options, such as color model (GLUT_RGB,
GLUT_INDEX) and buffering of color buffers (GLUT_SINGLE, GLUT_DOUBLE).

void glutInitWindowSize(int width, int height)

Specifies the initial height and width, in pixels, of the window on the screen.

void glutInitWindowPosition(int x, int y)

Specifies the top-left corner of the window, measured in pixels, from the top-left
corner of the screen.

Angel_Ch02.qk 5/18/01 7:31 AM Page 17

2.6 Color in OpenGL
OpenGL supports two colors models: RGB, or RGBA, mode and color-index
mode. In RGB mode, each color is a triplet of red, green, and blue values. The eye
blends these primary colors, forming the color that we see. If we use real numbers
to specify colors, 0.0 is none of a primary, and 1.0 is the maximum amount of that
primary. Thus, the RGB triplet (1.0, 0.0, 0.0) is a bright red, (0.5, 0.5, 0.0) is a dark
yellow, (1.0, 1.0, 1.0) is white, and (0.0, 0.0, 0.0) is black. In RGBA mode, we use a
fourth color component, A, or alpha, which is an opacity. An opacity of 1.0
means that the color is opaque and cannot be “seen through,” whereas a value of
0.0 means that a color is transparent. We will not need opacity until much later. If
we use an integer type to specify a color, the range is from 0 to the maximum
value of the type. If, for example, we use unsigned bytes, the color values are from
0 to 255.

In color-index mode, colors are specified as indices into a table of red, green,
and blue values. In this mode, we form a table of the allowed colors, usually with
256 possible colors. This mode is not the common one used at present and also
requires more detailed interaction with the windowing system than does RGB
color. Hence, we shall always use RGB or RGBA color.

2.6.1 Setting Colors
In Program 2.1, we used the default values for our colors. The default color for
clearing the screen was black and the default drawing color—the color that was
used to fill the polygon—was white. These definitions can be changed by the func-
tions glColor*() and glClearColor().

18 Chapter 2 Two-Dimensional Programming in OpenGL

void glColor3{b i f d ub us ui}(TYPE r, TYPE g, Type b)
void glColor3{b i f d ub us ui}v(TYPE *color)
void glColor4{b i f d ub us ui}(TYPE r, TYPE g, Type b,

TYPE a)
void glColor4{b i f d ub us ui}(TYPE *color)

Specifies RGB and RGBA colors, using the standard types. If the v is present, the
color is in an array pointed to by color.

void glClearColor(GLclampf r, GLclampf g, GLclampf b,
GLclampf a)

Specifies the clear color (RGBA) used when clearing the color buffer.

Angel_Ch02.qk 5/18/01 7:31 AM Page 18

2.6.2 Color and State
In OpenGL, our colors become part of the state. We can think of there being a
present drawing color, which we set by glColor*(), and a present clear color, set by
glClearColor(). These colors remain the same until we change them in the
application program. Thus, colors are not attached to objects but rather to the
internal state of OpenGL. The color used to render an object is the present color.
In the code, it may appear that colors are associated with objects and their
vertices. But in fact, OpenGL uses the present state to find the color at the time
the program defines a vertex. Application programmers must be very careful
about where in the code colors are changed. Later, we shall learn how to bind col-
ors more closely to our objects.

With glColor*(), we can set either RGB or RGBA colors, using the standard
C data types. OpenGL has only one internal form for the present color, which is in
RGBA form. Using glColor3*() is the same as using RGBA color with the alpha
value set to 1.0. The clear color specified by glClearColor() must be specified as
an RGBA color, using floats in the range (0.0, 1.0) and values of type GLclampf.

Don’t lose track of state changes, such as changing colors.

2.7 Coordinate System Differences between GLUT and OpenGL
OpenGL uses a variety of coordinates systems. Generally, users describe their
geometry in world coordinates. For two-dimensional applications, this coordinate
system has the positive x values increasing to the right and the positive y values
increasing as we go up. Thus, if we put the origin on at the bottom-left corner of
this page, all the locations the page would have positive x and y values.

Most windowing systems use a system in which the values of y increase as we
go down. In such a system, if we want all x and y values to be positive, we put the
origin in the top-left corner. In most windowing systems, the screen is displayed
from top to bottom, and the counting of rows and columns starts from the top-
left corner. Because it interacts with the window system, GLUT uses the second
form, and we should think of the origin of the screen as being in its top-left
corner and the locations of the pixels as numbered from (0, 0) going down and to
the right. For such functions as glutInitWindowPosition(), there should be lit-
tle difficulty. Later, when we use input from the mouse, we will have to work with
values in both systems, which can cause some confusion.

For two-dimensional problems, the directions of positive increments in x and y in
OpenGL are to the right and up. For input functions used in GLUT and windowing
systems, positive increments usually are down and to the right.

Alert!

Alert!

2.7 Coordinate System Differences between GLUT and OpenGL 19

Angel_Ch02.qk 5/18/01 7:31 AM Page 19

2.8 Two-Dimensional Viewing
In Program 2.1, we used the default viewing conditions. In OpenGL, programs in
two dimensions are a special case of three-dimensional programs. Two-
dimensional objects have spatial coordinates of the form (x, y), but from an
OpenGL perspective, these are three-dimensional (x, y, z) values, with z set to 0.1

Consequently, two-dimensional viewing issues, such as which objects appear on
the screen and at what size, are special cases of the same issues in three-
dimensional viewing. However, because we are interested in getting started
through two-dimensional programs, we can develop simple two-dimensional
viewing independently.

The fundamental model we use in viewing is called the synthetic-camera
model. It makes an analogy between a viewer—observer, photographer—forming
a picture of a set of objects and what we do in the computer to produce an image.
In two dimensions, we can define our objects by specifying or calculating a set of
vertices, using some combination of glVertex*(), glBegin(), and glEnd() in
our program. We can think of our code as describing objects on an infinite sheet
of paper. The viewing step is specifying what part of that virtual sheet of paper is
seen by our synthetic camera and thus appears on the screen. If we assume that
the camera is aligned with the x and y axes, we need only specify a rectangular
region through maximum and minimum values of x and y. We make this specifi-
cation through the function gluOrtho2D().

The prefix glu indicates that the function is the GLU library—because it is a
special case of the three-dimensional function glOrtho(). The rectangle defined
by gluOrtho() is called the clipping window. Objects that lie within this window
are visible, whereas objects outside are not and are said to be clipped out.

20 Chapter 2 Two-Dimensional Programming in OpenGL

1. In reality, OpenGL uses four dimensions. Three-dimensional space is a special case of four-
dimensional space, but we do not have to worry about that yet.

void gluOrtho2D(GLdouble left, GLdouble right, GLdouble
bottom, GLdouble top)

Specifies a two-dimensional rectangular clipping region whose lower-left
corner is at (left, bottom) and whose upper-right corner is at
(right, top)

Angel_Ch02.qk 5/18/01 7:31 AM Page 20

2.9 Coordinate Systems and Transformations
So far, we have seen two coordinate systems in our functions. The first, called
object coordinates, or world coordinates, is the application coordinate system
that users use to write their programs. Each application program can decide what
units it prefers and then specify values in these units in OpenGL functions such as
glVertex*(). Thus, we can use microns for problems in very large-scale integra-
tion (VLSI) design or light years for astronomical problems. The second
coordinate system, called window coordinates, or screen coordinates, uses units
measured in pixels. The allowable range of window coordinates is determined by
properties of the physical display and what part of that display is selected by the
application program.

OpenGL automatically makes a coordinate transformation from object to
window coordinates as part of the rendering process. The only information
required is the size of the display window on the screen and how much of the
object world the user wishes to display. The former is determined by
glutInitWindowSize()—and possibly modified by later interactions—whereas
the latter is set by gluOrtho2D().

The required coordinate system transformations in OpenGL are determined
by two matrices—the model-view matrix and the projection matrix—that are
part of OpenGL’s state. (We study these matrices in detail in Chapter 5.) However,
we need to use a simple projection matrix in even the most basic programs. The
function gluOrtho2D() is used to specify a projection matrix for two-dimensional
applications. The typical sequence to set either of the matrices requires that we
perform three steps.

1. Identify which matrix we wish to alter.
2. Set the matrix to an identity matrix.
3. Alter the identity matrix.

The second step is not required if we want to alter an existing matrix
incrementally. Thus, if we want to set up a two-dimensional clipping window
whose lower-left corner is at (–1.0, –1.0) and whose upper-right corner is at
(1.0, 1.0), which are the default values we used in OpenGL, we execute the
functions

glMatrixMode(GL_PROJECTION):
glLoadIdentity();
gluOrtho2D(-1.0, 1.0, -1.0, 1.0);

2.9 Coordinate Systems and Transformations 21

Angel_Ch02.qk 5/18/01 7:31 AM Page 21

Since these matrices are part of the OpenGL state, OpenGL will use their cur-
rent values whenever a primitive is defined. These matrices can be changed virtu-
ally anywhere in an application program. For our simple example, without user
interaction, we can set the matrices once as part of the initialization phase of the
program. In Chapter 3, we will change the transformations in response to user
events, such as the resizing of the screen window.

2.10 Second Version of a Simple Program
We can now incorporate all these changes into our program. The resulting
program, Program 2.2, will behave the same as Program 2.1, but the structure of
Program 2.2 is more general and characterizes more complex two-dimensional
applications.

Program 2.2 illustrates the organization we use for almost all our programs in
this book. Our programs consist of four major parts:

1. A main() function that initializes GLUT, puts a window on the screen,
identifies the callback functions, and enters the main loop

2. An init() function that sets state variables to their initial values
3. A display callback, display(), that contains the code describing our

objects
4. Other callbacks that deal with input and window events

Although other structures are possible, this organization has some advantages.
The main() function is almost the same from program to program. Differences
are usually related to which callbacks and menus are used in a particular applica-
tion. Using init() allows us to place a lot of detailed state information and
desired parameters in one place, separate from the geometry—which is in the dis-
play callback—and from the dynamics of animated and interactive programs,
which usually are in the callbacks.

22 Chapter 2 Two-Dimensional Programming in OpenGL

void glMatrixMode(GLenum mode)

Specifies which matrix will be affected by subsequent transformation functions.
The mode is usually GL_MODELVIEW or GL_PROJECTION.

void glLoadIdentity()

Initializes the current matrix to an identity matrix.

Angel_Ch02.qk 5/18/01 7:31 AM Page 22

2.10 Second Version of a Simple Program 23

/* simple.c second version */
/* This program draws a white rectangle on a black background.*/

#include <GL/glut.h> /* glut.h includes gl.h and glu.h*/

void display()

{
/* clear window */

glClear(GL_COLOR_BUFFER_BIT);

/* draw unit square polygon */

glBegin(GL_POLYGON);
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5)
glVertex2f(0.5, -0.5);

glEnd();

/* flush GL buffers */

glFlush();

}

void init()
{

/* set clear color to black */

glClearColor(0.0, 0.0, 0.0, 0.0);

/* set fill color to white */

glColor3f(1.0, 1.0, 1.0);

/* set up standard orthogonal view with clipping */
/* box as cube of side 2 centered at origin */
/* This is default view and these statements could be removed */

Program 2.2 Second version of simple.c Continued on next page.

Angel_Ch02.qk 5/18/01 7:31 AM Page 23

2.11 Primitives and Attributes
Primitives are the atomic entities that we work with in our graphics system. In the
one primitive we have seen so far, a polygon, is defined by a set of vertices. The
polygon is a geometric primitive. That is, the polygon exists in a space, usually a
two- or three-dimensional user-defined space, and can be imaged by our viewing
process. Later, we shall see that OpenGL allows us to apply transformations to
geometric primitives so that we can move them, resize them, and reorient them.
OpenGL also has nongeometric primitives, such as pixels, that are dealt with in
quite a different manner. Those primitives are introduced in Chapter 7.

The three basic types of geometric primitives in OpenGL are points, line seg-
ments, and polygons. More sophisticated objects can be built out of these
primitives, or we can use OpenGL curves and surfaces (Chapter 9). The basic
primitives are all determined by vertices. Thus, they are specified as was the poly-
gon in simple.c, but the type parameter in glBegin() varies.

Each primitive has attributes, properties that determine how it is displayed by
OpenGL. For example, the polygon in our simple program was drawn in white. A
line segment might be drawn in green and be thick or thin. In Chapter 6, we

24 Chapter 2 Two-Dimensional Programming in OpenGL

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(-1.0, 1.0, -1.0, 1.0);

int main(int argc, char** argv)
{

/* Initialize mode and open a window in upper left corner of
/* screen */
/* Window title is name of program (arg[0]) */

glutInit(&argc,argv)
glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize(500, 500);
glutInitWindowPosition(0, 0);
glutCreateWindow("simple");
glutDisplayFunc(display);
init();
glutMainLoop();

}

Program 2.2 Second version of simple.c (continued)

Angel_Ch02.qk 5/18/01 7:31 AM Page 24

introduce more sophisticated attributes, called material properties, that determine
how light interacts with the primitive.

It is important to remember that although we conceptualize attributes as
being associated with objects—a red line, a blue point—in fact, OpenGL regards
attributes as part of its state. Thus, when we produced a white polygon in
simple.c, the whiteness of the polygon was determined by the present color,
which was part of the state, being white. In Chapter 3, we shall learn how the pro-
grammer can better bind attributes to objects.

2.11.1 Points
Points are the simplest primitive. The type in glBegin()is GL_POINTS (see
Figure 2.2, a). Each vertex determines a point; points that are within the clipping
window are displayed using the present point size attribute, which is set by
glPointSize() and the present color.

We can thus use the same four vertices we used for our polygons but display those
vertices as points in four different colors with the code

glPointSize(2.0);
glBegin(GL_POINTS);

glColor3f(1.0, 1.0, 1.0);
glVertex2f(-0.5, -0.5);
glColor3f(1.0, 0.0, 0.0);
glVertex2f(-0.5, 0.5);
glColor3f(0.0, 0.0, 1.0);
glVertex2f(0.5, 0.5);
glColor3f(0.0, 1.0, 0.0);
glVertex2f(0.5, -0.5);

glEnd();

Note that glPointSize() is one of the functions that cannot go between a
glBegin() and a glEnd().

2.11.2 Lines
There are three choices for type (see Figure 2.2, b, c, and d) for line segments. We
can use GL_LINES, GL_LINE_STRIP, and GL_LINE_LOOP, to define one or more line
segments between a glBegin() and a glEnd().

2.11 Primitives and Attributes 25

void glPointSize(GLfloat size)

Sets the point size state variable. Size is measured in pixels on the screen, and the
default is 1.0.

Angel_Ch02.qk 5/18/01 7:31 AM Page 25

GL_LINES: Each successive pair of vertices between glBegin() and glEnd() defines a
line segment. Thus, the following code defines two line segments: the first from
(-0,5, -0.5) to (-0.5, 0.5) and the second from (0.5, 0.5) to (0,5, -0.5):

glBegin(GL_LINES);
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();

GL_LINE_STRIP: The vertices define a sequence of line segments with the end point
of one segment starting the next line segment. Thus, the following code defines
three line segments: the first from (-0.5, -0.5) to (-0.5, 0.5), the second from
(-0.5, 0.5) to (0.5, 0.5), and the third from (0.5, 0,5) to (0.5, -0.5):

glBegin(GL_LINE_STRIP);
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();

GL_LINE_LOOP: The vertices connect the line segments as in GL_LINE_STRIP, but
in addition, the last vertex is connected to the first. Thus, the following code
defines a square:

glBegin(GL_LINE_LOOP);
glVertex2f(-0.5, -0.5);
glVertex2f(-0.5, 0.5);
glVertex2f(0.5, 0.5);
glVertex2f(0.5, -0.5);

glEnd();

26 Chapter 2 Two-Dimensional Programming in OpenGL

GL_POINTS

p2
p1

p0

p7
p6

p3

p4

p5

GL_LINES

p2
p1

p0

p7
p6

p3

p4

p5

GL_LINE_STRIP

p2
p1

p0

p7
p6

p3

p4

p5

GL_LINE_LOOP

p2
p1

p0

p7
p6

p3

p4

p5

(a) (b) (c) (d)

Figure 2.2 Point and line types

Angel_Ch02.qk 5/18/01 7:31 AM Page 26

The attributes for line segments are the color, the line thickness, and a pattern,
called the stipple pattern, that allows us to create dashed and dotted lines.

For example, the following commands set the drawing color to yellow, define lines
as two pixels wide, and define a dashed stipple pattern in which groups of six pix-
els are not colored and the following six pixels are rendered in yellow:

glColor3f(1.0, 1.0, 0.0);
glLineWidth(2.0);
glLineStipple(3, 0xcccc);

2.11.3 Enabling OpenGL Features
Stippling is one of many OpenGL features that have to be enabled specifically. The
renderer has many capabilities, such as lighting, hidden-surface removal, and tex-
ture mapping, although generally each feature will slow down the rendering pro-
cessing. A user program can turn on—enable—or turn off—disable—each of
these features individually with the application program. Some features, such as
lighting, may be required in one part of a program but not in others.

Line stippling is enabled by

glEnable(GL_LINE_STIPPLE);

2.11 Primitives and Attributes 27

void glLineWidth(GLfloat width)

Sets the width in pixels for the display of lines. The default is 1.0.

void glLineStipple(GLint factor, Glushort pattern)

Defines a 16-bit pattern for drawing lines. If a bit in pattern is 1, a pixel on the
line is drawn. If the bit is 0, the pixel is not drawn. Successive groups of 1s and 0s
in pattern are repeated factor times for values of factor between 1 and 256.
The stipple pattern is repeated as necessary to draw the line. The bits are used
starting with the lowest-order bits.

void glEnable(GLenum feature)
void glDisable(GLenum feature)

Turns the OpenGL option feature on or off.

Angel_Ch02.qk 5/18/01 7:31 AM Page 27

Don’t forget to enable features you want to use. Setting the parameters is not
sufficient if the feature has not been enabled.

2.11.4 Filled Primitives
The polygon primitive with which we started is one example of a filled primitive,
that is, a primitive with an interior that can be filled with a color or a pattern.
Figure 2.3 shows the six filled primitives with the type parameters.

GL_POLYGON: Defines a polygon by a sequence of glVertex*() calls between and
glBegin() and glEnd().

GL_QUADS: Successive groups of four vertices define quadrilaterals.

GL_TRIANGLES: Treats each successive group of three vertices between a
glBegin() and a glEnd() as a triangular polygon. Extra vertices are ignored.

GL_TRIANGLE_STRIP: The first three vertices after a glBegin() define the first tri-
angle. Each subsequent vertex is used with the previous two to define the next tri-
angle. Thus, after the first polygon is defined, the others require only a single
glVertex*() call.

GL_QUAD_STRIP: The first four vertices define a quadrilateral. Each subsequent
pair of vertices is used with the previous pair of vertices to define the next quadri-
lateral.

GL_TRIANGLE_FAN: The first three vertices define the first triangle. Each
subsequent vertex is used with the first vertex and the previous vertex to define
the next triangle.

Alert!

28 Chapter 2 Two-Dimensional Programming in OpenGL

GL_TRIANGLESGL_QUADSGL_POLYGON

p2
p1

p0

p7
p6

p3

p4

p5

p2
p1

p0

p7
p6

p3

p4

p5

p2
p1

p0

p7
p6

p3

p4

p5

GL_QUAD_STRIPGL_TRIANGLE_STRIP

p1 p3 p5 p7

p0 p2 p4 p6

p1 p3 p5 p7

p0 p2 p4 p6

GL_TRIANGLE_FAN

p0

p1
p3

p5

p7

p2

p4

p6

Figure 2.3 Filled types

Angel_Ch02.qk 5/18/01 7:31 AM Page 28

These multiple polygon types have two advantages. First, a particular OpenGL
implementation may have special software and hardware to render triangles or
quadrilaterals more quickly than general polygons. Second, many CAD applications
generate triangles or quadrilaterals with shared edges. Strip primitives allow us to
define these primitives with far fewer OpenGL functions calls than if we had to treat
each as a separate polygon. In Chapter 4, we introduce vertex arrays as another way
that we can reduce the number of function calls required to define complex objects
that share vertices.

2.11.5 Rectangles
OpenGL provides a function, glRect*(), for drawing two-dimensional filled rec-
tangles aligned with the axes.

2.11.6 Polygon Stipple
All the filled types are treated as polygons by the rendering process and thus have
the same attributes. The simplest way to display a polygon is to fill it with a solid
color. As we saw in simple.c, we can obtain a solidly colored polygon by using
glColor*(). We can also fill the polygon with a stipple pattern by enabling poly-
gon stipple by

glEnable(GL_POLYGON_STIPPLE);

We then set the pattern by glPolygonStipple().

The pattern is used as in line stipple but is two dimensional and is aligned
with the window. Thus, if we rotate the polygon by changing its vertices and
redrawing it, the stipple pattern will not be rotated.

2.11 Primitives and Attributes 29

void glRect{sifd}(TYPE x1, y1, x2, y2)
void glRect{sifd}v(TYPE *v1, TYPE *v2)

Specifies a two-dimensional rectangle, using the standard data types by the x
and y values of the corners or by pointers to arrays with these values.

void glPolygonStipple(const Glubyte *mask)

Sets the stipple pattern for polygons. The mask is a 32 ! 32 pattern of bits.

Angel_Ch02.qk 5/18/01 7:31 AM Page 29

2.12 Polygon Types
The unfilled primitives, such as lines and line loops, pose no difficulties whether
the vertices are defined in two or in three dimensions. Such is not the case for
filled primitives, however. Consider a polygon whose edges cross as in Figure 2.4.
It is somewhat arbitrary which points we consider to be inside the polygon and
which outside. Unless polygons are simple polygons—polygons whose edges do
not cross—two different OpenGL implementations may render them differently.
OpenGL does not check whether a polygon is simple; that is left to the application
program.

Two-dimensional polygons have an additional feature: All the vertices lie in
the same plane and thus for nonsimple polygons, an interior is well defined. In
three dimensions, a set of more than three vertices need not lie in the same plane.
Once more, different OpenGL implementations might render such polygons
differently. If this situation is a potential problem, it must be dealt with within the
application program.

A third issue is that even when all vertices lie in the same plane, rendering a
complex polygon with many vertices can present problems for the implementa-
tion. Convex objects are ones for which if we connect any two points in the
object, the entire line segment connecting these points lies inside the object
(Figure 2.5). Convex polygons are much easier to render. Because triangles are
always convex and every triangle is planar, graphics systems usually work best
with triangles.

In OpenGL, a polygon can be displayed in three different ways: filled, by its
edges, or just as a set of points (the vertices). In addition, because our two-dimen-
sional polygons are really three-dimensional polygons that are restricted to the
plane z = 0, they have two faces: a front face and a back face. OpenGL can render
either or both faces.

30 Chapter 2 Two-Dimensional Programming in OpenGL

Figure 2.4 Nonsimple polygon

Angel_Ch02.qk 5/18/01 7:31 AM Page 30

A front face is one in which the order of the vertices is counterclockwise
when we view the polygon. A back face is one in which the vertices are specified
in a clockwise order. These definitions make sense for convex polygons. Defining
front and back for nonconvex polygons may have difficulties, but OpenGL does
not promise anything for such polygons, anyway.

The function glPolygonMode() lets us tell OpenGL how to render the faces.

We can also not render either or both faces by culling the front- or back-facing
polygon using glCullFace().

Culling must be enabled by

glEnable(GL_CULL_FACE);

OpenGL allows us to change the definition of front and back facing through
the function glFrontFace().

2.12 Polygon Types 31

p1

p2

Figure 2.5 Convex polygon

void glPolygonMode(GLenum face, GLenum mode)

Specifies how the faces (GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK) are to be
rendered (GL_POINT, GL_LINE, or GL_FILL). The default is to fill both faces.

void glCullFace(GLenum mode)

Causes the faces specified by mode (GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK)
to be ignored during rendering.

Angel_Ch02.qk 5/18/01 7:31 AM Page 31

Suppose that we want to display a polygon both by filling it and by displaying
its edges. For example, we might want to display a polygon with yellow edges and
filled in red. In OpenGL, the edges of a polygon are part of the inside of the poly-
gon, so we cannot show both the edges and the inside with a single rendering.
Instead, we can render the polygon twice: first with the polygon mode set to
GL_LINE and the color set to yellow and then with mode set to GL_FILL and the
color set to red, as in the code

glPolygonMode(GL_FILL);
glColor3fv(yellow);
square();
glPolygonMode(GL_LINE);
glColor3fv(red);
square();

In this code, the colors are in arrays, and the polygon is defined in the
function square(). But we have a potential problem here. The two renderings of
the polygon are on top of each other and even though the edge is drawn after the
fill, small numerical errors in the renderer can cause parts of the yellow edge to be
hidden by the red fill.

To solve this problem, we can ask OpenGL to move the lines slightly forward
by the function glPolygonOffset(). The offset is a linear combination of the two
parameters weighted by two internal constants, so it is not simple to set in terms of
units of the application. Nevertheless, if you cannot get the desired effects without
using the offset, some trial and error with the parameters may give a better image.

Polygon offset can be enabled separately for any of the three polygon modes.
For example, the following with a positive offset should work for our example:

glEnable(GL_POLYGON_OFFSET_LINES);

32 Chapter 2 Two-Dimensional Programming in OpenGL

void glFrontFace(GLenum mode)

Allows the specification of either the counterclockwise (GL_CCW) or clockwise
(GL_CW) direction for defining a front face.

void glPolygonOffset(GLfloat factor, GL float units)

Sets the offset for polygons. The offset can be positive or negative and can be
enabled for any of the polygon modes.

Angel_Ch02.qk 5/18/01 7:31 AM Page 32

2.13 Color Interpolation
The color used to render a polygon is the present value of the color state variable.
When we change colors between calls to glVertex*(), we change the state but
conceptually are associating the new color with the next vertex. In OpenGL, we
often refer to vertex colors when we use them in this manner.

Suppose that we have a line segment defined by

glBegin(GL_LINES);
glColor3f(1.0, 0.0, 0.0);
glVertex2f(1.0, 0.0);
glColor3f(0.0, 0.0, 1.0);
glVertex2f(0.0, 1.0);

glEnd();

The vertices are defined as red and blue, but in what color will OpenGL render the
points between the vertices? The default is to use smooth shading, whereby
OpenGL will interpolate the colors at the vertices to obtain the color of intermedi-
ate points. Thus, as we go along the line, we see the color starting as red and then
passing through various shades of magenta before becoming blue.

For polygons, the same is true except that the interpolation formula must
interpolate the vertex colors across the interior of the polygons. Usually, OpenGL
renders polygons as a set of triangles, using a simple two-dimensional
interpolation formula called bilinear interpolation. Interpolating vertex
properties will arise in other contexts later, such as in texture mapping and using
material properties.

OpenGL also allows us to use the color at the first vertex to determine the
properties of the entire primitive. Thus, we could have a solid blue line, or we
could obtain a green polygon, even if there were color changes between vertex def-
initions. This style is called flat shading and is set by setting the shading model by
the function glShadeModel().

Suppose that you have an application that generates nonconvex, nonplanar
polygons. What can you do? You could hope for the best, as OpenGL generally will
produce something. Or, you could break up, or tessellate, your polygons into tri-
angles within your application. But a problem arises if we wish to display only the

2.13 Color Interpolation 33

void glShadeModel(GLenum mode)

Sets the shading model to smooth (GL_SMOOTH) or flat (GL_FLAT). Smooth shad-
ing is the default.

Angel_Ch02.qk 5/18/01 7:31 AM Page 33

edges. Consider the polygon in Figure 2.6. When we break it up for display into
five triangles, we won’t have a problem if we fill the five polygons. However, if the
polygon mode is set to display edges, we want only the edges corresponding to the
original polygon to be displayed, not the new edge created by the tessellation.

We can decide which edges to display by using the function glEdgeFlag*().
If the flag is set to GL_TRUE, each vertex is considered the beginning of a line seg-
ment to be displayed. If the flag is set to GL_FALSE, the vertices do not start edges
that are to be displayed.

We also have a third option. The GLU library provides a tessellator. The tessel-
lator decides how to break up a general polygon and takes cares of such issues as
creating faces that have a consistent facing and setting the edge flags. Use of the
tessellator requires a large number of additional functions, and we will not discuss
it further.

2.14 Text
Text is not one of the OpenGL primitives. This fact may seem a bit strange, given
the importance of text in such applications as producing graphs. However, it is
important to remember that OpenGL provides a minimal set of primitives that

34 Chapter 2 Two-Dimensional Programming in OpenGL

Figure 2.6 Tessellating a polygon

void glEdgeFlag(GLboolean flag)
void glEdgeFlagv(GLboolean *flag)

Sets the edge flag (GL_TRUE, GL_FALSE) that determines if subsequent vertices
are the start of edges that should be displayed if the polygon mode is GL_LINE.

Angel_Ch02.qk 5/18/01 7:31 AM Page 34

provide building blocks for the application programmer. We could attempt to
build a set of characters from the primitives that we have seen, but that might not
be a very appealing task.

In general, text generation presents a few problems that must be confronted.
Suppose that we want to create a font, a set of characters in a given size and style,
such a 10-point Times Roman bold font. The two principal forms for generating
such characters are bitmap characters and stroke characters. Bitmap characters
are stored as rectangular patterns of bits in which if a bit is 1, it is displayed; oth-
erwise, it is not displayed. In Chapter 7, we shall study how OpenGL allows the
user to define and to output bitmaps. Such characters are very fast to generate,
since each can be requested by a single OpenGL call. However, bitmap characters
cannot be modified nicely by such operations as scaling. In addition, the patterns
will appear differently on windows of different sizes. Stroke characters are
generated by using the standard OpenGL primitives, such as lines, polygons, and
curves and can be modified by the transformations that we will discuss in
Chapter 5. However, stroke characters require more storage and are slower to gen-
erate. If you are willing to do the work, you can generate either type of characters.
OpenGL supports both.

A simpler approach might be to use the fonts that are provided by most win-
dowing systems. Programs that do so might not be portable to a different environ-
ment, but switching to another font in another system does not often present
major problems. We can obtain such a font through system specific functions.

GLUT offers a third possibility by providing a few of its own bitmap and
stroke fonts. We can obtain a bitmap character through the function
glutBitmapCharacter(), which uses the patterns from certain fonts in the
X Window System.

Thus, we can get a bitmapped Times Roman 10-point character ‘a’ by

glutBitMapCharacter(GLUT_BITMAP_TIMES_ROMAN_10, 'a');

Similarly, we can get an 8 ! 13 bit character for ‘a’ by

glutBitMapCharacter(GLUT_BITMAP_8_BY_13, 'a');

But where does the character appear on the screen? In OpenGL, bitmaps are
handled differently from our geometric primitives. Bimaps appear in the size spec-
ified at a location determined the raster position, which is part of the OpenGL

2.14 Text 35

void glutBitMapCharacter(void *font, int char)

Renders the character char, given by an ASCII code, in the font given by font.

Angel_Ch02.qk 5/18/01 7:31 AM Page 35

state. This position determines where the lower-left corner of the next bitmap will
appear on the display. We can set that position with the function
glRasterPos*().

Thus, we can set the raster position in world coordinates. The current raster
position is updated automatically so that the next character will not be rendered on
top of the previous one. GLUT provides the helper function glutBitMapWidth(),
which allows the application program to determine the width of character so that it
can determine how to change the raster position if necessary.

The corresponding functions for stroke fonts are glutStrokeCharacter()
and glutStrokeWidth().

The fonts GLUT_STROKE_MONO_ROMAN and GLUT_STROKE_ROMAN are fixed and
proportional stroke fonts. However, their sizes are not in bits. Their sizes are
approximately 100 ! 100 units in world coordinates. Because they are defined as
other geometric primitives, they pass through the geometric pipeline.
Consequently, the usual way to position stroke characters is through the OpenGL
transformations, such as scaling and translation, as discussed in Chapter 5.

36 Chapter 2 Two-Dimensional Programming in OpenGL

void glRasterPos{234}{sifd}(TYPE x, TYPE y, TYPE z, TYPE w)
void glRasterPos{234}{sifd}v(TYPE *array)

Specifies the raster position. The position is mapped to screen coordinates,
using the current model-view and projection matrices.

int glutBitmapWidth(GLUTbitmapFont font, int char)

Returns the width in pixels of char in the GLUT font named by font.

int glutStrokeWidth(GLUTbitmapFont font, int char)

Returns the width in bits of char in the GLUT font named by font.

void glutStrokeCharacter(void *font, int char)

Renders the character char, given by an ASCII code, in the stroke font given by font.

Angel_Ch02.qk 5/18/01 7:31 AM Page 36

2.15 Inquiries and Errors
Thus far, we have assumed that everything works perfectly; our programs compile
and run just as we imagined. Now let’s consider reality. We make errors; programs
may run but not give the results we expect or may run and display nothing.
OpenGL provides some error-checking facilities. It also allows us to obtain the
values of any part of the state.

The OpenGL state can be inquired through the six functions
glGetBooleanv(), glGetIntegerv(), glGetFloatv(), glGetDoublev(),
glGetPointerv(), and glIsEnabled(). The first five return a pointer to the
proper type. The application program needs to know the parameter it is seeking.
We can obtain both present values, which are part of the state, and system param-
eters. For example, the following returns the current RGBA values to the array,
which should have been allocated to hold four floats:

glGetFloatv(GL_CURRENT_COLOR, color_array);

The following call returns the number of red bits used for color in the imple-
mentation.

glGetIntegerv(GL_RED_BITS, bits);

Later, we will see a few other get functions in OpenGL.

The function glIsEnabled() allows a program to check whether a particular
feature has been enabled by a glEnable().

Error checking can be done in two parts. We can check if an error has been
made by glGetError(), which returns an error type or GL_NO_ERROR if no error

2.15 Inquiries and Errors 37

void glGetBooleanv(GLenum name, GLboolean *value)
void glGetIntegerv(GLenum name, GLint *value)
void glGetFloatv(GLenum name, GLfloat *value)
void glGetDoublev(GLenum name, GLdouble *value)
void glGetPointerv(GLenum name, GLvoid **value)

Returns values of parameters in the state or system parameters named by name to
user variables.

GLboolean glIsEnabled(GLenum feature)

Returns GL_TRUE or GL_FALSE, depending on whether feature is enabled.

Angel_Ch02.qk 5/18/01 7:31 AM Page 37

has been made. Errors are measured from initialization until this function is
called. When the function is called, the error flag is reset to GL_NO_ERROR. A string
for the particular error can be obtained by gluGetErrorString().

The error-reporting mechanism in GLUT is implementation dependent.
Generally, if you request a facility that is unsupported, the program will terminate
with an error message. GLUT provides a function, glutGet(), that lets the appli-
cation obtain information about the state of GLUT.

We can also obtain other information. We can determine depth of the color
buffer (GLUT_WINDOW_BUFFER_SIZE) or whether the current display mode is sup-
ported (GLUT_DISPLAY_MODE_POSSIBLE).

2.16 Saving the State
The OpenGL state determines how primitives are rendered. Virtually all changes
we make to attributes and to other items, such as the model-view and projection
matrices, change the state. Programs that alter these variables can spend most of
their time making state changes, many of which require recalculation of variables.
For example, we often have to compute our camera parameters or the colors we
wish to use. Rather than recalculate values we have used previously, OpenGL pro-
vides two types of stacks on we can store values for later use.

The matrix stacks store projection and model-view matrices, with a separate
stack for each type. We push and pop matrices with glPushMatrix() and
glPopMatrix(). The stack used is the one corresponding to the present matrix
mode (GL_MODELVIEW or GL_PROJECTION).

38 Chapter 2 Two-Dimensional Programming in OpenGL

GLubyte* gluErrorString(GLenum error)

Returns a string corresponding to the error returned by glGetError().

GLenum glGetError()

Returns the type of the last error since initialization or the last call to
glGetError(). If no error has occurred, GL_NO_ERROR is returned.

int glutGet(GLenum state)

Returns the state of the specified GLUT state variable.

Angel_Ch02.qk 5/18/01 7:31 AM Page 38

Matrix stacks have two major uses. When we build hierarchical models in
Chapter 5, we shall use stacks to traverse the tree data structures that we will use
to describe these models. This application involves the model-view matrix. The
second use involves the projection matrix. We often have to do a fair amount of
calculation or use user input to determine the required projection matrix.
Suppose that we then want to zoom in on the scene temporarily. We can do this
by altering the present projection matrix in a fairly simple manner. The problem is
that when we want to return to the unzoomed view, we do not want to—or may
be unable to—recalculate the original projection matrix. Saving it on the stack
before we zoom solves the problem. Thus, we often see such code as

glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glutPostRedisplay();
glPushMatrix();
/* change the projection matrix */
glutPostRedisplay();
glutPopMatrix();

Note the pairing of the push and pop operations: one pop for each push. In
hierarchical systems, not having the correct pairing can leave the stack in the
wrong state.

Pushes and pops must be paired in a program to be able to return to the desired state.

OpenGL breaks its attributes into 20 groups corresponding to sets of related
attributes. For example, all the polygon attributes are in the group GL_POLYGON_BIT.
All the line attributes are in the group GL_LINE_BIT. We can push any groups of
attributes or all attributes (GL_ALL_ATTRIBUTE_BITS) onto the attribute stack
through the function glPushAttrib() and recover them through glPopAttrib().

Alert!

2.16 Saving the State 39

void glPushMatrix()
void glPopMatrix()

Pushes and pops matrices to the stack for the present matrix mode.

void glPushAttrib(GLbitfield mask)
void glPopAttrib()

Pushes and pops groups of attributes to the attribute stack. The identifiers for
the groups are combined with logical OR to form mask.

Angel_Ch02.qk 5/18/01 7:31 AM Page 39

2.17 The Viewport
So far we have used the entire window for our graphics. We can also restrict
OpenGL to draw to any part of the window through the use of a viewport. A view-
port is a rectangular area of the window on the screen. Its size is measured in pixels.
We set the viewport by the function glViewport().

One use of viewports is to divide the window so that different types of
information can be rendered to different parts of the window. For example, in a
CAD application we might use some viewports for menus and instructions and
another for constructing the design. Each of these viewports can have its own
viewing conditions specified by its own use of gluOrtho2d(). By using viewports
that do not overlap, we can produce a complex image in a single window with
minimum complexity in the code.

In Chapter 3, we use viewports to control the appearance of our images when
the user changes the shape of the window.

40 Chapter 2 Two-Dimensional Programming in OpenGL

void glViewport(GLint x, GLint y, GLsizei w, GLsizei h)

Sets the viewport of width w and height h pixels in the window with its lower-left
corner at (x, y). The default viewport is the entire initial window.

Angel_Ch02.qk 5/18/01 7:31 AM Page 40

