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Chapter 1

Introduction

When we started the Gmsh project in the summer of 1996, our goal was to
develop a fast, light and user-friendly software to easily create geometries and
meshes that could be used in our three-dimensional finite element solvers [?],
and then visualize and export the computational results with maximum flex-
ibility. At the time, no open-source software combining a CAD engine, a
mesh generator and a post-processor was available: the existing integrated
tools were expensive commercial packages [?], and the freeware or shareware
tools were limited to either CAD [?], two-dimensional mesh generation [?],
three-dimensional mesh generation [?, ?, ?], or post-processing [?]. The need
for a free integrated solution was conspicuous, and several projects similar
in spirit to Gmsh were also born around the same time—some of them still
actively developed today [?, ?]. Gmsh however was unique in its design: it
consisted of a very small kernel with four modules (geometry, mesh, solver
and post-processing), not tied to any particular computational solver, and
designed from the start to be driven both using a user-friendly graphical
interface (GUI) and its own scripting language.

The first public release of Gmsh occurred in 1998. This version was
Unix-only, distributed over the internet in binary form, with the graphics
layer based on OpenGL [?] and the user interface written in Motif [?]. After
several updates and a short-lived Windows-only fork in 2000, the whole user
interface was rewritten using FLTK [?] in early 2001, and the code, still in
binary-only form, was released for Windows and a variety of Unix operating
systems. In 2003 the full source code was released under the GNU General
Public License [?], and it was modified to provide native support for all major
operating systems: Windows, MacOS and all Unix/X11 variants. In the
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6 CHAPTER 1. INTRODUCTION

summer of 2006 Gmsh underwent a major rewrite, which led to the release
of version 2 of the software in February 2007. About 50% of the code in
version 2 is new: an abstract geometrical and post-processing layer has been
introduced, the mesh data structures and algorithms have been rewritten
from scratch, and the graphics layer has also been completely overhauled.

Today Gmsh enjoys a thriving community of several hundred users and
developers worldwide. It is driven by the need of researchers and engineers in
academia and industry alike for a small, open-source pre- and post-processing
solution for grid-based numerical methods. The aim of this paper is not to be
a user’s guide or a reference manual—see [?] instead. Rather, it is to present
the philosophy and the original features of Gmsh which make it stand out
from its free and commercial alternatives.

The paper is structured as follows. In Section 1.1 we outline the overall
philosophy and design goals of Gmsh, as well as the main technical choices
that were made in order to achieve these goals. Sections ??, ??, ?? and ??
then respectively describe the geometry, mesh, solver and post-processing
modules. The paper is concluded in Section ?? with perspectives for future
developments.

1.1 The Design of Gmsh

Gmsh is built around four modules: geometry, mesh, solver and post-processing.
Each module can be controlled either interactively using the GUI or using
the scripting language.

The design of all four modules relies on a simple philosophy—be fast,
light and user-friendly.

Fast: on a standard personal computer at any given point in time Gmsh
should launch instantaneously, be able to generate a “larger than aver-
age” mesh (compared to the standards of the finite element community;
say, one million tetrahedra in 2008) in less than a minute, and be able to
visualize such a mesh together with associated post-processing datasets
at interactive speeds.

Light: the memory footprint of the application should be minimal and the
source code should be small enough so that a single developer can
understand it. Installing or running the software should not depend on
any non-widely available third-party software package.
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User-friendly: the graphical user interface should be designed in such a way
that a new user can create simple meshes in a matter of minutes. In
addition, the code should be robust, portable, scriptable, extensible and
thoroughly documented—all features contributing to a user-friendly
experience.

In the following sections we describe the technical choices that we made to
achieve these sometimes conflicting design objectives. Although major parts
of the code have been rewritten over the years, the overall initial architecture
and design from 1996 have always stayed the same.

1.1.1 Fast and Light

In order to be fast and light in the sense just described above, Gmsh is entirely
written in standard C++ [?]—both the kernel and the user interface.

The kernel uses BLAS [?] (through the GSL, the GNU Scientific Li-
brary [?]) for most of the basic linear algebra. To keep them easy to under-
stand the algorithms have not been overly optimized for speed or memory
usage, yet Gmsh currently generates about a million tetrahedra per minute
and per 150 Mb of RAM on a standard personal computer, which makes it
powerful enough for many academic and engineering applications.

The graphical interface is built using FLTK [?] and OpenGL [?]. Using
FLTK instead of a larger or more complex widget toolkit, like for exam-
ple Java, TCL/TK, GTK or QT, allows to link Gmsh statically with the
toolkit. This tremendously reduces the launch time, memory footprint and
installation complexity (installing Gmsh requires copying a single executable
file), as well as the build time—a statically linked, ready to use executable is
produced in a few minutes on a standard personal computer. Analogously,
directly using OpenGL instead of a more complex graphics library like In-
ventor [?] or VTK [?] makes Gmsh lightweight, without sacrificing rendering
performance (Gmsh makes extensive use of OpenGL vertex arrays).

The design of the solver and scripting interfaces follows the same strat-
egy: the solver interface is written using standard Unix and TCP/IP sockets
instead of, e.g., Corba [?], and the scripting interface is built using Lex/Flex
and Yacc/Bison [?] instead of using an external scripting language like, e.g.,
Python.
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1.1.2 User-friendly

Although Gmsh can be built as a library (which can then be linked with other
software tools), it is usually distributed as a stand-alone software, ready to
be used by end users. This stand-alone version can be run either interactively
using the graphical user interface or in a non-interactive mode—either from
the command line or via the scripting language.

Achieving “user-friendliness” has been an important driving factor behind
key technical choices. We detail some of these choices hereafter, focusing on
the list of desirable features given at the beginning of the section.

Robustness and Portability

To achieve robustness, i.e., working for the largest possible range of input
data and being as tolerant as possible to erroneous user input, we use robust
geometrical predicates [?] in critical portions of the algorithms, and strive to
provide useful error messages when an unmanageable exception is triggered.

In order to easily produce a native version of the code on all major
operating systems, Gmsh is written entirely in standard C++, and uses
portable toolkits for its GUI (FLTK) and graphics rendering (OpenGL).
Open-sourcing Gmsh under the GNU General Public License [?] also helped
portability, as the code was made part of several official Linux distributions
(most notably Debian [?]), and thus benefited from their extensive auto-
mated testing infrastructure. Either with the graphical user interface or in
batch mode, the same version of Gmsh now runs on most computers, from
laptops to workstations and large HPC clusters.

Scriptability

Gmsh is scriptable so that all input data can be parametrized, and so that
Gmsh can be easily inserted as a component inside a larger computational
chain. As mentioned above, scripting is implemented in Gmsh using Lex
and Yacc. The tight integration with the resulting language means that full
access to internal capabilities is provided, including bidirectional access to
more than 500 internal options fine-tuning the behaviour of the four modules.
The scripting language allows for example to fully parametrize all geometrical
entities, to interface external solvers without modifying the source code, or to
automate all post-processing operations, e.g., to create complex animations
or perform off-screen rendering [?].
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Extensibility

We tried to ease the modification and addition of features by users and devel-
opers. Such extensibility takes different forms for each of the four modules:

Geometry: the abstract, object-oriented geometry layer permits to write
all the algorithms independently of the underlying CAD representa-
tion. At the source code level Gmsh is thus easily extensible by adding
support for additional CAD engines. Currently two engines are inter-
faced: the native Gmsh CAD engine and OpenCascade [?]. Adding
support for other engines like, e.g., Parasolid [?], can be done simply
by deriving four abstract classes—see Section ??. At the scripting level
users can then transparently mix and match geometrical parts repre-
sented internally by different CAD engines. For example, it is possible
to extend an OpenCascade model of an airplane with a terrain model
defined in the scripting language.

Mesh: using the abstract geometrical interface it is also possible to interface
additional meshing kernels. Currently, in addition to its own meshing
algorithms (see Section ??), Gmsh is interfaced with Netgen [?] and
Tetgen [?].

Solver: a socket-based communication interface allows to interface Gmsh
with various solvers without changing the source code; tailored graph-
ical user interfaces can also easily be added when more fine-grained
interactions are needed.

Post-processing: the post-processor can be extended with user-defined op-
erations through dynamically loadable plug-ins. These plug-ins act on
post-processing datasets (called views) in one of two ways: either de-
structively changing the contents of a view, or creating one or more
views based on the current view.

All source code-level extensions can be enabled or disabled at compile time
thanks to an autoconf-based build mechanism [?], which selects which parts
of the code to include/exclude.

Documentation and Open File Formats

Documentation is provided both in the source code and in the form of a
reference manual, including several hands-on tutorial examples and a com-
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prehensive web site with several mailing lists and a wiki.
Another important feature contributing to user-friendliness is the avail-

ability of standard input and output file formats. Gmsh uses open or de
facto standard formats whenever possible, from standard bitmap graphics
formats (JPEG, GIF, PNG) and vector formats [?] (SVG, PostScript, PDF)
to mesh formats (Ideas UNV, Nastran BDF). Combined with the open-source
release of the code this greatly facilitates the integration of Gmsh with other
computational tools.



Chapter 2

Computational Geometry
Toolbox

2.1 Delaunay and Voronöı

2.1.1 The Voronöı diagram

Let p1 and p2 be two points of R2. The mediator M(p1,p2) is the locus of
all the points which are equidistant to p1 and p2:

M(p1,p2) = {p ∈ R2, d(p,p1) = d(p,p2)}

where d(., .) is the euclidian distance between two points of R2, i.e.

d2(p1,p2) = (p2 − p1) · (p2 − p1). (2.1)

The equation of the mediator can be found out using this definition

(p1 − p) · (p1 − p) = (p2 − p) · (p2 − p)

or

(p1 − p2) ·

p− 1

2
(p1 + p2)︸ ︷︷ ︸

pm

 = 0

This shows that the mediator is the orthogonal bissector of the straight edge
linking the two points. The mediator separates the plane into two regions.
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pm
p1

M

p2

p

Figure 2.1: The mediator.

The first region contains all the points that are closer to p1, the second one
contains the ones that are closer to p2. Any point of R2/M can be associated
to one of those two points.

Let us consider a set of N points S = {p1, . . . ,pN}. More specifically,
we assume that the points are in general position, by which we mean no
four points are cocircular. The Voronöı cell C(pi) associated to point pi
is the locus of points of R2 that are closer to pi than any other point pj,
j = 1, . . . , N , i 6= j.

The Voronöı cell is constructed as follow. Consider all mediatorsM(pi,pj).
Each of those mediators define a half plane. The Voronöı diagram is the part
of the space that is always closer to pi, i.e. that always associate pi to the
point p, for all possible mediators.(see Figure 2.2). The set of all Voronöı
cells is called the Voronöı diagram of S (see Figure 2.2).

Let us present some remarkable properties of the Voronöı diagram.

Property 2.1.1 Voronöı cells are convex polytopes.

By definition, each Voronoi region C(pi) is the intersection of open half planes
containing vertex pi. Therefore, C(pi) is open and convex. Different Voronöı
regions are disjoint. Voronöı cells are polygons in 2D, polyhedra in 3D and
d-polytopes in dD. Voronöı cells are either closed or open. They can only
be open for points that are located on the convex hull of the 2D domain. A
point pi of S lies on the convex hull of S if and only if its Voronöı cell C(pi)
is unbounded.
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pi

pj

pk

vI

C(pi)

Figure 2.2: The Voronöı diagram. The Voronöı cell C(pi) relative to vertex
pi is coloured.
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Figure 2.3: Two triangulations of S, both containing nt = 13 triangles.

Property 2.1.2 Voronöı points vI are always located at intersection of 3
mediators.

Property 2.1.2 is only true if there exist no quadruplets of points in S that
are cocircular. If such a set exists, it may happen that a vertex of the Voronöı
is at the the intersection of more than 3 mediators. Consider the example of
Figure 2.2 where vi is at the intersecion of C(pi), C(pj) and C(pk). Voronöı
point vI is loacted at the center of the unique circle passing through pi, pj
and pk.

2.1.2 The Delaunay Triangulation

We first define what is a triangulation of S: it is a planar subdivision whose
bounded faces are triangles and whose vertices are the points pi of S. Note
that all triangulations do not cover the same subset of R2. In what follows,
we consider that the domain to triangulate is the convex hull of S.

Even with the same domain to cover, several triangulations are possible
(see Figure 2.3). Yet, every triangulation has the same number of triangles
and edges!

Property 2.1.3 Let S be a set of N points in the plane, not all collinear,
and let Nh denote the number of points in S that lie on the convex hull of



2.1. DELAUNAY AND VORONOÏ 15

S. Then any triangulation of S has nt(N,Nh) = 2N − 2−Nh triangles and
ne(N,Nh) = 3N − 3−Nh edges.

Proof Consider first that all the points in S are in the convex hull: N = Nh.
A triangulation consist simply in triangles tI(p1,pi,pi+1), i = 2, . . . , N − 1.
The number of triangle is therefore nt = N − 2 wich is consistent with the
formula. The number of edges in the triangulation is calculated as follows:
Nh = N edges on the convex hull and N − 3 internal edges wich gives
ne = N +N − 3 = 2N − 3 which is again consistent with the proposition.

The rest of the proof works using a recurrence argument. Assume that
formulas are true for N . Let us now consider one new vertex pN+1 that
lies inside the convex hull. This new vertex lies inside one of the exist-
ing triangles, say tI(pi,pj,pk). We remove tI and replace it by three new
triangles tJ(pi,pj,pN+1), tJ(pj,pk,pN+1), tJ(pk,pi,pN+1). We have there-
fore nt(Nh, Nh) = Nh − 2 and nt(N + 1, Nh) = nt(N,Nh) + 2 which gives
nt(N,Nh) = Nh − 2 + 2(N − Nh) = 2N − 2 − Nh. Similarly, three new
edges have been added in the process. Then, ne(Nh, Nh) = 2Nh − 3 and
ne(N+1, Nh) = ne(N,Nh)+3 which gives ne(N,Nh) = 2Nh−3+3(N−Nh) =
3N − 3−Nh.

Consider a triangulation T with nt triangles. This triangulation has 3nt
internal angles. Consider the vector of angles A(T ) = (α1, . . . , α3nt) sorted
by increasing values. We can define such a vector for any triangulation of the
convex hull of the domain. Each of those vectors has the same length and
it is therefore possible to compare them, e.g. lexicographically. We say that
one given triangulation T is angle-optimal if A(T ) ≤ A(T ′), ∀T ′. According
to that criterion, left triangulation of Figure 2.3 is better than the right one.

Angle-optimal trianglations have interresting interpolation properties and
it is therefore useful to find methods that allow to construct such triangula-
tions.

For a given set of points, the (unique) angle-optimal triangulation is the
triangulation that has the highest minimal angle. Let us see now how to
build such a triangulation.

Consider now the edge e(p4,p6) of Figure 2.4. This edge is surrounded by
two triangles t1(p4,p6,p1) and t2(p4,p6,p2) . An edge swap is a local mesh
modification operator that consist in changing locally the triangulation by re-
placing edge e(p4,p6) by e′(p1,p2). Triangles t1(p4,p6,p1) and t2(p4,p6,p2)
are replaced by t′1(p1,p2,p4) and t′2(p1,p2,p6). Figure 2.4 illustrate the edge
swap operation.
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t2
α5

α6

t1

p2

p4

p6

p1

e

α1

α2

α3

α4 α3α′5

t1

e′

p2

p4

p6

p1

α1α′2

α′6

α′3

t′2

Figure 2.4: Edge swap.

It is indeed possible to use the edge swap operator in order to build angle-
optimal triangulation. In that purpose, we can simply decide to swap edge
e if

min (α1, . . . , α6) < min (α′1, . . . , α
′
6).

Such an edge is said invalid. Given a finite set of points, there is a finite
number of possible triangulations. When the angle criterion is applied, every
edge swap produce a new triangulation that is better than the actual one.
Therefore, building the angle-optimal triangulation consist in looping over
all the edges of the mesh and swap them until the optimal configuration is
attained i.e. when no invalid edges remain in the triangulation. Figure 2.5
illustrate that procedure.

Yet, computing angles is a costly operation and it is possible to use a
simpler and cheaper rule to verify the validity of an edge.

Property 2.1.4 Let C be a circle, l a line intersecting C in points p4 and p6

and p1, and p2, p3 and p5 points lying on the same side of l . Suppose that
p2 and p3 lie on C, that p5 lies inside C, and that p1 lies outside C. Then
(see Fig. 2.6):

α1 < α2 = α3 < α5.

Property 2.1.5 [Lawson’s Criterion] Consider an edge e with its two neigh-
boring triangles t1 and t2. Consider the circumcircle C of triangle t1 and point
p that belongs to t2 but not to t1. Edge e is invalid if p ∈ C.
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Figure 2.5: Building an angle-optimal triangulation using swaps.

p6

p3p5

α2

α3
α5

p1 p2

p4

α1

C

l

Figure 2.6: Theorem of Thalès



18 CHAPTER 2. COMPUTATIONAL GEOMETRY TOOLBOX

C ′

α′

α

C

p2

p4

p6

p1

e

e′

Figure 2.7: Lawson’s criterion

Property 2.1.5 has been demonstrated by Sibson in [?]. Consider Figure 2.7.
The proof consist in demonstrating that α′ > α if p1 ∈ C. The demonstration
make use of property 2.1.4 (Thalès’s Theorem).

Note that, when two neighboring triangles separated by an edge e form
a concave quadrilateral, edge e is always valid.

Procedure described in Figure 2.5 allow to build angle-optimal triangu-
lations. Yet, it can be shown that such an algorithm is slow in practice.

There exists a much faster manner to build angle optimal triangulations
of S that is based on the Voronöı diagram. This triangulation DT (S) is
called the Delaunay triangulation and its construction works as follows.

First recall that each Voronöı cell C(pi) is associated to one only point
pI of S.

Consider a Voronöı point vI that at the meeting point of 3 Voronöı cells
C(pi), C(pj), C(pk). Beacuse of the Voronöı property, point v is at the
circumcenter of triangle tI(pi,pj,pk). Triangle tI ∈ DT (S) is one of the
triangles of the Delaunay triangulation.

The resulting figure is a triangulation (see Figure 2.8).

Property 2.1.6 Let S be a set of points in the plane.

(i) Three points pi , pj and pk ∈ S are vertices of the same triangle tI of
the Delaunay triangulation if and only if the circumcircle C(tI) contains
no point of S in its interior.
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Figure 2.8: The Voronöı diagram and its associated Delaunay triangulation
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v′

p3

C(t)

la

lc

lbb
c

v

t

ap1

p2

Figure 2.9: Illustration of why property (i) of 2.1.6 is true.

(ii) Two points pi and pj ∈ S form an edge eI of the Delaunay triangulation
if and only if there is a closed disc C that contains pi and pj on its
boundary and does not contain any other point of S.

Proof Property (i) of 2.1.6, also called the incircle property, is a simple
consequense of the properties of construction of the Voronöı diagram. Figure
2.11 show one triangle t and its circumcenter v. If a point like a exist in
S, triangle t is cannot be in the Delaunay triangulation because point a is
closer to v that at least one of the three points p1 p2 or p3. Therefore, as
it is drawn in the Figure, mediator la crosses another mediator at point v′

inside the triangle, which is impossible.

Property 2.1.7 Let S be a set of points in the plane in general position.
A triangulation T of S is angle-optimal if and only if T is the Delaunay
triangulation of S.

Proof We shall prove that the angle-optimal triangulation is the Delaunay
triangulation by contradiction. So assume T is a legal triangulation of S
that is not a Delaunay triangulation. By Property (ii) of 2.1.6, this means
that there is a triangle t(pi,pj,pk) such that the circumcircle C(t) contains
a point pl ∈ S in its interior. Let e(pi,pj) be the edge of t′(pi,pj,pl) such
that the triangle t′ does not intersect t. Of all such pairs (pi,pj,pk,pl) in T ,
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choose the one that maximizes the angle pi,pl,pj. Now look at the triangle
t′′(pi,pj,pm) adjacent to t along e. Since T is angle-optimal, e is legal.
By Property 2.1.5, this implies that pm does not lie in the interior of C(t).
The circumcircle C(t′′) contains the part of C(t) that is separated from t by
e. Consequently, pl ∈ C(t′′) Assume that e′(pj,pm) is the edge of t′′ such
that triangle t′′′(pj,pm,pl) does not intersect t′′. But now angle pj,pl,pm >
angle pi,pl,pj by Thalès’s Theorem, contradicting the definition of the pair
(pi,pj,pk,pl).

Note that the unicity of the Delaunay triangulation is only guaranteed
when there exists no quadruplets of points in the set S that are cocircular,
i.e. for points in general position. When S is not in general position, some
of the Delaunay triangulations may not be angle-optimal.

2.1.3 Construction of Delaunay Triangulations

There are two categories of algorithms that allow to create Delaunay trian-
gulations.

Incremental Construction of Delaunay Triangulations: the Delau-
nay kernel

We consider a triangulation Ti and a point pi+1 inside Ti. The cavity
C(Ti,pi+1) associated to Ti and pi+1 is the set of all the triangles for which
their circumsphere contains pi+1.

We consider a triangulation Ti and a point pi+1 outside Ti. The cav-
ity Cp(Ti,pi+1) associated to Ti and pi+1 is the set of all the triangles for
which their circumsphere contains pi+1 completed by all triangles that can
be formed by joining all the edges of Ti visible by pi+1.

Property 2.1.8 The cavity Cp(Ti,pi+1) is star shaped and pi+1 belong to its
Haddad kernel.

A polygon is star-shaped with respect to pi+1 if, for each point pk, k =
1 . . . , Nc of the polygon the edge e(pi+1,pk) lies entirely within the polygon.
The set of all points pi+1 with the described property is called the kernel of
the polygon, or its Haddad Kernel.

Figure ?? illustrate what we call a star shaped cavity. A convex polygons
is star shaped, but the inverse is not true. Thanks to property 2.1.8, it is quite
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C(Ti,pi+1)

pi+1

pi+1

C(Ti,pi+1)

Figure 2.10: Delaunay triangulation Ti (left). The Delaunay cavity
Cp(Ti,pi+1) is represented in both middle (pi+1 is inside Ti) and right (pi+1

is outside Ti) figures.

easy to build a triangulation of the cavity, simply by adding Nc triangles.
This set of new triangles is called the ball B(Ti,pi+1).

Let us assume that we have build the Delaunay Triangulation Ti with the
first i points of the set S.

It is possible to build iteratively the delaunay triangulation Ti+1, i.e. using
Ti and pi+1. We define the Delaunay kernel as the following procedure

Ti+1 = Ti − C(Ti,pi+1) + B(Ti,pi+1)

that consist in removing from the triangulation elements of C(Ti,pi+1) that
violate the incircle property (i) of 2.1.6 and subsequently to triangulate the
cavity with the ball B(Ti,pi+1) Figure 2.11 illustrate the Delaunay kernel.

Property 2.1.9 if Ti is the Delaunay triangulation of the convex hull of the
i first points of a set S, then Ti+1, the triangulation constructed using the
Delaunay kernel is a Delaunay triangulation

Recursive Construction of Delaunay Triangulations: Divide and
Conquer

There exists a “Divide and Conquer” type of algorithm for triangulating a
known set of points. It allows a O(N logN) complexity. Divide and conquer
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B(Ti,pi+1)

pi+1

B(Ti,pi+1)

pi+1

Figure 2.11: Delaunay triangulation Ti+1 In the left Figure, pi+1 is inside Ti
and, in the right Figure, pi+1 is outside Ti.

(DC) is an important algorithm design paradigm. It works by recursively
breaking down a problem into two or more sub-problems of the same (or
related) type, until these become simple enough to be solved directly. The
solutions to the sub-problems are then combined to give a solution to the
original problem.

Divide and Conquer algorithm for triangulations in two dimensions is due
to Lee and Schachter which was improved by Guibas and Stolfi and later by
Dwyer. In this algorithm, one recursively draws a line to split the vertices
into two sets. The Delaunay triangulation is computed for each set, and then
the two sets are merged along the splitting line

Algorithm 1 gives the pseudo code of the Divide and Conquer Delaunay
triangulator of Gmsh.

The set of points is assumed to be sorted lexicographically, i.e. points are
sorted form left to right and from bottom to top. Points are subsequently
numbered using their lexicographic index (PointIndex). Figure 2.12 shows a
set

S = {p1,p2, . . . ,p9}

of 9 points sorted lexicographically.
A doublely linked circular list is assigned to every point pi of the set S.
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Algorithm 1 DelDC(PointIndex left, PointIndex right)

1: n = right - left + 1
2: if n = 2 then
3: InsertInDList (left,right)
4: else if n = 3 then
5: InsertInDList (left,right)
6: InsertInDList (left,left+1)
7: InsertInDList (left+1,right)
8: else if n > 3 then
9: middle = (left + right) � 1

10: DelDC ( left, middle )
11: DelDC ( middle+1, right )
12: DelMerge ( left, middle , right )
13: end if

This data structure contains every point pj that is connected through a mesh
edge to point pi. Datas are stored in the list in the counter-clockwise sense,
as it is pictured in Figure 2.13. The list is doubly-linked i.e. it is possible to
advance forward and backward.

Four functions have to be implemented in order to use the doubly-linked
lists. Function InsertInDList(i,j) adds edge (i,j) in the triangulation
i.e. inserts point j in the list of adjacencies of i and inserts i in the list of
adjacencies of j. Function DeleteInDList(i,j) deletes edge (i,j) from the
triangulation. Functions k = Predecessor(j) and k = Successor(i,j) re-
spectively computes the predecessor and the successor k to point j in the
adjacency list of i.

The DelDC function (see algorithm 1) builds a Delaunay triangulation for
the subset of points

Ssubset = {pleft,pleft+1, . . . ,pright}.

Three trivial cases are treated:

• If the number of points n = right− left+1 in Ssubset is less that n = 2,
the triangulation contains no edge;

• If n = 2, one edge is added in the triangulation;

• If n = 3, three edges are created that form one triangle.
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S

p1

p2

p3

p4

p5

p6

p7

p8

p9

Figure 2.12: A set of points sorted lexicographically

p2

p6

p6 p5 p3

p2

p3

p4

p5

Figure 2.13: The doubly-linked circular list associated to point p4.
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If n > 3, the middle point of Ssubset is computed. The DelDC function is
called twice recursively with ranges of half the initial size: DelDC(left,middle)
and DelDC(middle+1,right). When those two function calls are terminated,
both sets of points going from left to middle and from middle+1 to right

are Delaunay triangulations. A procedure that we call DelMerge enables to
merge the two disconnected Delaunay triangulationsto form a unique Delau-
nay triangulation of the whole range going from left to right

The first part of the DelDC procedure is illustrated graphically at Figure
2.14. The set of points is first split in two subsets S1 and S2 (part (a) of
Figure 2.14). Then, each part is split again, giving four subsest S11, S12,
S21 and S22 (part (b) of Figure 2.14). The recursion stops when sub-sets of
points have at most three points. At this point, every subset can be processed
trivially (part (c) of Figure 2.14).

The second part of the DelDC procedure is illustrated graphically at Figure
2.15. Delaunay triangulations DT (S11) and DT (S12) are merged as well as
DT (S21) and DT (S22), forming two Delaunay triangulations DT (S1) and
DT (S2) (part (a) of Figure 2.15). Then DT (S1) and DT (S2) are merged to
form the final result DT (S) (part (b) of Figure 2.15).

Let us now describe the most complex part of the algorithm, i.e. the
DelMerge procedure. We will illustrate it using DT (S1) and DT (S2). The
DelMerge procedure stars by computing the lower common tangent and the
upper comman tangent of the union of both triangulations (Figure 2.16).

Edges UCT and LCT are edges of the Delaunay triangulation of the
union of the two sets because they belong to the convex hull and Delaunay
triangulations are triangulations of the convex hull. The merging process
MergeDC aims at filling the empty gap between the two triangulations DT (S1)
and DT (S2),

The MergeDC procedure starts from the LCT with its two points l and r.
Even though triangles surrounding those two points are part of respectively
DT (S1) and DT (S2), they may not be part of DT (S).

Consider point r in Figure 2.16. Edge (r,r1) is the one the is the Predecessor
of LCT in r’s adjacency list and edge (r,r2) is the one the is the Predecessor
of (r,r1) in r’s adjacency list. We apply Lawson’s criterion to edge (r,r1), i.e.
look if point r2 lies inside the circum circle of triangle (l,r,r1). If it is not the
case, then triangle (l,r,r1) cannot be excluded regarding to DT (S2).

Similarly, consider point l in Figure 2.16. Edge (l,l1) is the one the is
the Successor of LCT in l’s adjacency list and edge (l,l2) is the one the is
the Successor of (l,l1) in l’s adjacency list. We apply Lawson’s criterion to
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Figure 2.14: Illustration of the Divide and Conquer procedure.
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Figure 2.15: Illustration of the Divide and Conquer procedure.

r2

lr,r

UCT

ll,l
LCT

ul,l2

l1
r1

ur

Figure 2.16: Computation of both lower common tangent (LCT) and the
upper common tangent (UCT) of the union of both triangulations. Point
indices like l,ll or l1 refer to the notations of algorithm 2
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UCT

ul,l2

ur

r2

r1
l1

ll,l

lr,r

Figure 2.17: One step of the merging procedure.

edge (l,l1), i.e. look if point l2 lies inside the circum circle of triangle (l,l,l1).
If it is not the case, then triangle (r,l,l1) cannot be excluded regarding to
DT (S1).

Among the two possible new edges (r,l1) and (l,r2) that may be added
to the triangulation, edge (r,l1) is chosen because it satisfies the incircle
property (see Figure 2.17).

In the particular case of Figure 2.16, the process can be continued two
times (see Figure 2.1.3).

At the next step (Figure 2.19, part (a)), it is clear that edge (r,r1) cannot
be part of the triangulation because triangle (l,r,r1) has its circumcircle that
contains r2. Note that Lawson’s criterion is symmetric, which means that,
if the circumcircle of triangle (l,r,r1) contains r2, then the circumcircle of
triangle (l,r,r2) contains r1. At this point, we simply replace edge (r,r1) by
edge (l,r2) and continue the process.

An implementation of that algorithm is provided in Gmsh. Source code
can be found in gmsh/Mesh/DivideAndConquer.cpp.
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Figure 2.18: Two steps of the merging procedure.
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Figure 2.19: Three steps of the merging procedure.
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Algorithm 2 MergeDC(PointIndex left, PointIndex mid, PointIndex right)

1: [ll,lr] = LowerCommonTangent(left, mid, right) , l = ll, r = lr
2: [ul,ur] = UpperCommonTangent(left, mid, right)
3: while l 6= ul or r 6= ur do
4: b = false
5: InsertInDList (l,r)
6: r1 = Predecessor (r,l)
7: while true do
8: r2 = Predecessor(r, r1)
9: if not InCirlce (l,r,r1,r2) then

10: break
11: else
12: DeleteFromList (r,r1), r2=r1
13: end if
14: end while
15: l1 = Successor (l,r)
16: while true do
17: l2 = Successor(l, l1)
18: if not InCirlce (r,l,l1,l2) then
19: break
20: else
21: DeleteFromList (l,l1), l2=l1
22: end if
23: end while
24: if b or InCircle(l,r,r1,l1) then

r = r1
25: else

l = l1
26: end if
27: end while
28: InsertInDList (l,r)

2.2 Nearest neighbors

2.3 Point location
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Chapter 3

Solid Models

A solid model is a computer model of a 3D solid. It is a virtual representation
of the shape of a solid. Solid models can be simple parts (Figure 3.1, part
(a)) or complex assemblies of multiple parts (Figure 3.1, part (b)).

We aim here at explaining how such solids can be described on a com-
puter. We will principally focus on the ability of such solid models to serve
as input to numerical simulations. In particular, we will adress the issues
related to finite element mesh generation.

3.1 Boundary Representation of Solids

Any 3-D model can be defined using its Boundary Representation (BRep):
a volume (called region) is bounded by a set of surfaces, and a surface is
bounded by a series of curves; a curve is bounded by two end points. There-
fore, four kinds of model entities are defined:

1. Model Vertices G0
i that are topological entities of dimension 0,

2. Model Edges G1
i that are topological entities of dimension 1,

3. Model Faces G2
i that are topological entities of dimension 2,

4. Model Regions G3
i that are topological entities of dimension 3.

The boundary representation is purely topological, i.e., it only deals with
adjacencies in the model. In a boundary representation of a model entity,
each adjacency is signed: model entities are oriented.

33
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(a) (b)

Figure 3.1: A simple part (a) and a complex assembly (b).

As a first illustration, let us look at the 2D model presented in Figure
3.2. This model has 1 model faces, 5 model edges and 5 model vertices.

Model edge G1
1’s boundary, ∂G1

1 consist in two signed vertices:

∂G1
1 = −G0

2 +G0
3

which means that model edge G1
1 goes from model vertex G0

2 to model vertex
G0

3.
Model face G2

1’s boundary consist in two closed edge loops that consist
of respectively four and one signed model edges:

∂G2
1 = {−G1

1 +G1
4 +G1

3 −G1
2, G

5
1}. (3.1)

Model edge G1
5 is periodic:

∂G5
1 = G0

5 −G0
5 = 0

which makes perfect sense: the boundary of a closed curve is zero. For being
consistent, the boundary of a closed edge loop has also to be zero. In other
words,

∂∂G2
1 = {−∂G1

1 + ∂G1
2 + ∂G1

3 − ∂G1
4, ∂G

5
1}

= {−(G0
3 −G2

0) + (G0
4 −G2

3) + (G0
4 −G2

1)− (G0
1 −G2

2), G
0
5 −G0

5}
= {0, 0}.
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G0
1

G1
5

Figure 3.2: A simple 2D model.

Vertices that bound model curves of a model face have to appear once op-
sitively and once negatively. Two things have to be noted. First, ∂G0

i =
i.e. the boundary of a model vertex is zero. Then, changing the sign of the
boundary representation of a model face

− ∂G2
1 = −{−G1

1 +G1
4 +G1

3 −G1
2, G

5
1}. (3.2)

gives the same topological model face, yet with a different sign i.e. a different
orientation.

Then, a model region can also be described using its boundary represen-
tation. For example the cube of Figure 3.3 with one model region G3

1 consist
in one closed face loop

∂G3
1 = {G2

1 +G2
2 +G2

3 +G2
4 +G2

5 +G2
6 +G2

7 +G2
8}

with model face orientations that have to verify

∂∂G3
1 = 0.

Let us now consider the cylindrical rod of Figure 3.4. The model region
G3

1 is bounded by three model faces

∂G3
1 = G2

1 +G2
2 +G2

3.
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Figure 3.3: A cube.

Model faces G2
1 and G2

2 are usual model faces composed of one only closed
edge loop:

∂G2
1 = G1

1 and ∂G2
2 = −G1

3.

Model face G2
3 is different. It is a periodic model face and it has no interior

holes. In order to be consistent with the boundary representation, its bound-
ary representation should be one single closed loop. In order to achieve that
goal, one seam edge, G1

1, has to be added in the model. This seam edge acts
like G0

4 which is both the starting point and the ending point of G1
3. We have

then

∂G2
3 = G1

1 +G1
3 −G1

1 −G1
2.

The seam model edge G1
1 appears twice in the same face loop and effectively

acts as a seam that closes the periodic model face. Seam edges are present in
any consistent boundary representation of solid models. It is very important
to recognize such seam model edges in order to be able to perform any kind
of mesh generation.

Historically, solid models were constructed using a direct approach i.e.
each model entity was created using its boundary. Model vertices are initially
created. Those vertices are used to define curves boundaries. Then, model
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Figure 3.4: A cylindrical rod.

faces are created using model edges and model regions are created using
model faces. This approach is still the one that is used in Gmsh’s native
CAD modeler. Yet, the direct approach for building solid models doest not
allow to build complex models like the one presented in Figure 3.1, (b).

Since the 1990’s, a new approach for building models has been developped.
Constructive solid geometry (CSG) allows to create solid models by using
boolean operators to combine objects. The simplest solid objects used for
the representation are called primitives (sphere, cylinder, cube ...). Primitives
are combined to form complex solid using boolean operators on sets: union,
intersection and difference.

The development of robust solid modelers based on CSG has been the
starting point of a true boost in engineering analysis. Yet, the development
of a robust CSG implies the computation of intersections between complex
curves and surfaces. We will briefly discuss that very complex topic.

The great difficulty of building robust solid modelers has had as con-
sequense that very few commercial softwares are still on the market. To
our best knowledge, ony one open source CSG modeler is available to date.
OpenCascade is a complete CSG modeler that is truly open source. Parts of
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Figure 3.5: CAD model of a propeller (left) and its volume mesh (right)

OpenCascade have been interfaced in Gmsh so that Gmsh is now closer to
modern CAD solutions than it was in the past.

As an example, let us consider the CAD model of a propeller presented in
Figure 3.5. The model has been created with the OpenCascade solid modeler
and has been loaded in Gmsh in its native format (brep). The model contains
101 model vertices, 170 model edges, 76 model faces and one model region.

Figure 3.6, which shows one of the 76 model faces of the propeller in the
parametric space (left) and in real space (right). Three features of surface
S, common in CAD descriptions, make its meshing non-trivial:

1. S is periodic. The topology of the model face is modified in order to
define its closure properly. A seam is present two times in the closure
of the model face. These two occurrences are separated by one period
in the parametric space.

2. S is trimmed: it contains four holes and one of them is crossed by the
seam.

3. One of the model edges of S is degenerated. This is done for accounting
of a singular point in the parametrization of the surface. This kind of
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Figure 3.6: Geometry of a model face in parametric space (left) and in real
space (right). Two seam edges are present in the face. The top model edge
is degenerated in one point.

degeneracy is present in many shapes: spheres, cones and other surfaces
of revolution.

3.1.1 Geometrical Description

Each model entityGd
i has a shape, a geometry. More precisely, it is a manifold

of dimension d that is embedded in 3-D space.
Solid modelers usually provide a parametrization of the shapes, i.e., a

mapping x ∈ Rd 7→ x ∈ R3. The geometry of a model vertex G0
i is simply

its 3-D location x = (x1, x2, x3).
The geometry of a model edge G1

i is its underlying curve Ci with its
parametrization

t ∈ [t1, t2] 7→ x(t) ∈ R3. (3.3)

The geometry of a model face G2
i is its underlying surface Si with its

parametrization

(u, v) ∈ R2 7→ x(u, v) ∈ R3.

The geometry associated to a model region is R3.
If a curve is included within a surface, it is usually drawn on the parameter

plane (u, v) of the surface:

t ∈ [t1, t2] 7→ (u, v) ∈ R2 7→ x (u(t), v(t)) ∈ R3. (3.4)

Differential Geometry of Curves

Consider a segment of curve C defined by a range of parameter t ∈ [ta, tb],
ta ≥ t1, tb ≤ t2. The length of that segment can be computed as∫

C
dl
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with dl =
√
dx2

1 + dx2
2 + dx2

3. Using C’s parametrization (3.3), we have∫
C

√
dx2

1 + dx2
2 + dx2

3 =

∫ tb

ta

√
x2

1,t + x2
2,t + x3,t dt

=

∫ tb

ta

‖x,t‖ dt

This can be easily extended to the computation of integral quantities over
model edges:∫

C
f(x1, x2, x3)dl =

∫ tb

ta

f(x1(t), x2(t), x3(t)) ‖x,t‖ dt (3.5)

The curvilinear abscissa l(t) of a point x(t) of curve C, is the length of
the segment defined by parameter range [t1, t], i.e. the length of the curve
from the origin x(t1) to x(t):

l(t) =

∫ t

t1

‖x,t‖ dt (3.6)

We have seen before that dl = ‖x,t‖ dt.
A parametrization of C is said to be regular if ‖x,t‖ 6= 0. For regular

parametrizations, the unit tangent vector is defined as

t(t) =
x,t
‖x,t‖

=
dx

dl
.

The normal plane at point x(t) is the plane that contains x(t) and that has
t(t) as normal vector (see Figure 3.7). The curvature of the curve at a point
x can be defined as the amplitude of the variations of the unit tangent t along
the curve. The vector t,l is obviously orthogonal to t because t’s amplitude
is one along l. Recalling that

d

dt

1

‖x‖
= −x,t · x

‖x‖3

we have

t,l =
1

‖x,t‖
t,t

=
1

‖x,t‖

(
x,tt
‖x,t‖

− x,t
x,t · x,tt
‖x,t‖3

)
=

1

‖x,t‖3

(
x,tt ‖x,t‖ − x,t

x,t · x,tt
‖x,t‖

)
.
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Figure 3.7: A curve C.

Clearly, t,l · t = 0. Because we heve defined the curvature as the amplitude
of the variations of the unit tangent t along the curve, we call rewrite

t,l = ‖t,l‖
t,l
‖t,l‖

= Cn

with n a unit normal vector orthogonal to t and C the curvature that is the
norm of tl. Remembering that

‖a×b‖2 = ‖a‖2‖b‖2 sin2(a,b) = ‖a‖2‖b‖2
(

1− (a · b)2

‖a‖2‖b‖2

)
= ‖a‖2‖b‖2−(a·b)2,

it is easy to see that

C2 =
1

‖x,t‖6
(
‖x,t‖2‖x,tt‖2 − (x,tt · x,t)2

)
=

1

‖x,t‖6
‖xt × x,tt‖2

and we get the classical formula

C =
‖xt × x,tt‖
‖x,t‖3

.



42 CHAPTER 3. SOLID MODELS

It is possible to define a local system of coordinates at any point x of the
curve

(t,n,b)

with b = t × n. This system of coordinates is usually called the Frenet
frame. The osculating plane of the curve at point x can be defined as the
plane containing x and normal to b. The curvature C(t) is the inverse of the
radius of the osculating circle at point x i.e. the circle which most closely
approximates the curve near x:

R(t) =
1

C(t)
.

This gives an interresting intuitive interpretation of the curvature.

Differential Geometry of Surfaces

A parameterization of a surface is a one-to-one mapping from a suitable do-
main to the surface. In CAD modelers, surfaces have explicit parametriza-
tions i.e. their parametrization

(u, v) ∈ R2 7→ x(u, v) ∈ R3.

is given explicitely as a continuous and differentiable function.
At any point x(u, v) of a surface S, one can define two tangent vectors

x,u and x,v and a normal vector x,u × x,v (see Figure 3.8).
Consider a curve that is included in surface S. It is easy to extend the

integration formula (3.5) as∫
C

f(x1, x2, x3)
√
dx2

1 + dx2
2 + dx2

3

=

∫
C
f(x1, x2, x3)

√
‖x,u‖2 du2 + 2 x,u · x,vdu dv + ‖x,v‖2 dv2

=

∫
C
f(x1, x2, x3)

√[
du
dv

]T [
x,u · x,u x,u · x,v
x,v · x,u x,v · x,v

] [
du
dv

]
=

∫
C
f(x, y, z)

√
duTM du (3.7)
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Figure 3.8: A surface S.

In (3.7),

M =

[
x,u · x,u x,u · x,v
x,v · x,u x,v · x,v

]
=

[
E F
F G

]
is called the metric tensor defined on the surface. The metric tensor is defined,
in general, on a d-dimensional manifold. It is a symmetric definite positive
second order tensor that varies smoothly over the manifold.

We have just seen that the tensor metric enables to measure curve lengths
drawn in the parametric plane. It also allows to generalizes many familiar
properties of the dot product of vectors in Euclidean space. In particular,
it allows to compute the angle between two tangent vectors to the surface.
Any tangent vector at a point of the parametric surface can be written in
the form

t = ax,u + bx,v

with a, b ∈ R. Let us consider two tangent vectors

t1 = a1x,u + b1x,v and t2 = a2x,u + b2x,v.

Coordinates a = (a1, a2) and b = (b1, b2) are called covariant coordinates of
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t1 and t2. We have

t1 · t2 = a1a2x,u · x,u + (a1b2 + a2b1)x,u · x,v + b1b2x,v · x,v = aTMb.

Consider a small rectangle du dv at a point on the parametric plane. Its
area is

s = ‖x,udu× x,vdv‖ = du dv
√

det M.

Note again that the value of the area only depends on the metric.
Lengths, angles and areas are fundamental quantities that are indepen-

dant of the system of coordinates. The quadratic form I(a,b) = aTMb is
called the first fundamental form of the surface. It is the inner product on
the tangent space of a surface in three-dimensional Euclidean space.

A mapping is isometric or length-preserving if the length of any arc is
preserved. Such a mapping is called an isometry. For example, the map-
ping of a cylinder into the plane that transforms cylindrical coordinates into
cartesian coordinates is isometric.

A mapping is conformal or angle-preserving if the angle of intersection
of every pair of intersecting is the same on the parametric plane and on
the surface. For example, the stereographic and Mercator projections are
conformal maps from the sphere to the plane

A mapping is equiareal if surfaces are conserved by the mapping. For
example, the Lambert projection is an equiareal mapping from the sphere to
the plane.

Every isometric mapping is conformal and equiareal, and every conformal
and equiareal mapping is isometric, i.e.,

isometric⇐⇒ conformal + equiareal.

In terms of the mertic tensor, we have

1. isometric mappings: M =

[
1 0
0 1

]
,

2. conformal mappings: M =

[
η 0
0 η

]
,

3. equiareal mappings: det M = 1.

We can thus view an isometric mapping as ideal, in the sense that it
preserves just about everything we could ask for: angles, areas, and lengths.
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However, as is well known, isometric mappings only exist in very special cases.
When mapping into the plane, the surface Swould have to be developable,
such as a cylinder. Many approaches to surface parameterization therefore
attempt to find a mapping which either

1. is conformal, i.e., has no distortion in angles, or

2. is equiareal, i.e., has no distortion in areas, or

3. minimizes some combination of angle distortion and area distortion.

The surface unit normal n is orthogonal to both tangent vectors:

n =
x,u × x,v
‖x,u × x,v‖

=
x,u × x,v√

det M
=

x,u × x,v√
EG− F 2

. (3.8)

Vectors
(x,u,x,v,n)

form at each point of the surface a local system of coordinates usually called
the local frame. It is easy to orthonormalize the local frame, i.e. by choosing

t1 =
x,u
‖x,u‖

, t2 = n× t1

so that vectors
(t1, t2,n)

form an orthonormal system of coordinates usually called the Darboux frame.
Another fundamental quantity related to the shape of surfaces is curva-

ture. To study the curvature of the surface at a point x, one can examine
the variations of the unit normal n around x. In particular, one can derivate
n in the direction specified by the tangent vectors at x: this is called the
Weingarten map. Note that n,u and n,v are both tangent vectors because n
is a unit vector:

∂

∂u

v

‖v‖
=

v,u
‖v‖
− v

‖v‖3
(v · v,u)

Applying that formula to Equation (3.8) (an after very tedious calcula-
tions), we obtain the Weingarten equations that express the derivatives of
the normal to a surface using derivatives of the position vector x

n,u =
fF − eG
EG− F 2

x,u +
eF − fE
EG− F 2

x,v
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Figure 3.9: Spherical coordinates.

n,v =
gF − fG
EG− F 2

x,u +
fF − gE
EG− F 2

x,v

where
e = n · x,uu, f = n · x,uv and g = n · x,vv.

Tensor

M2 =

[
e f
f g

]
is called the second fundamental tensor of the surface.

Parametrizations of the sphere

Let us consider, as an example, the parametrization of a sphere of radius R
using spherical coordinates (Figure 3.9):

x =

 x
y
z

 =

 R cos θ sinφ
R sin θ sinφ
R cosφ

 .
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Figure 3.10: Stereographic projection.

We have

x,φ =

 R cos θ cosφ
R sin θ cosφ
−R sinφ

 , x,θ =

 −R sin θ sinφ
R cos θ sinφ

0


and the metric tensor relative to that parametrization is

M = R2

[
1 0
0 sin2 φ

]
. (3.9)

This parametrization is neither equiareal, neither conformal.
Let us consider the same sphere S centered at the origin and of radius R,

and one point s. This point lies on the surface and will be the only singular
point of the mapping.

Here, we choose s = {0, 0,−R}. It corresponds to the “South Pole” ot
the sphere. The stereographic projection consists in projecting points ~p of
the sphere on the plane z = R.
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Figure 3.11: The World Ocean in stereographic coordinates.

The stereographic projection ~u(~x) = {u, v} of a point ~x = {x, y, z} is the
intersection of vector ~q − ~p with z = R:

~u = {u, v} =

{
2R

R + z
x,

2R

R + z
y

}
,

~x = {x, y, z} =
4R2

u2 + v2 + 4R2

{
u, v, R(4R2 − u2 + v2)

}
.

Figure 3.11 shows the World Ocean in stereographic coordinates {u, v}.
The outside loop surrounding the domain is the stereographic projection of
the Antarctica. The radius of the Earth is chosen arbitrarily to R = 1. No
seam is required to define the overall domain and no singular point exists in
the domain of interest.

The metric tensor M for the stereographic projection is

M =

[
λ 0
0 λ

]
. (3.10)
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with

λ(u, v) =

(
4R2

u2 + v2 + 4R2

)
.

Those two eigenvalues are equal: the stereographic mapping is therefore
conformal. Remind that a conformal mapping will conserve angle at which
curves cross each other.

3.2 Discrete Representation of the Geometry

In various applications, the only available representation of a surface S is a
conforming triangular mesh, i.e. the union of a set

M = {M2
1 , ...,M

2
N}

such that the triangles intersect only at common vertices or edges (See Figure
3.12). If M has a boundary, then the boundary will be polygonal and we
denote it by ∂M.

The output of a segmentation tool that extracts geometrical data from
medical imaging is typically a triangulation. In computer graphics, most of
the surfaces that are used in computer games e.g. are triangulations. Even in
engineering, it is very common to use stereolitography (STL) triangulations
as the geometrical input for analysis.

There are techniques that allow to reparametrize a discrete surfaces. In
this text, we present one of these tachnique that is actually implemented in
gmsh.

3.2.1 Harmonic maps

A very common way of parametrizing a triangulation is to use harmonic
maps. Conformal mappings have many nice properties, not least of which is
their connection to complex function theory. Consider for the moment the
case of mappings from a planar region S to the plane. Such a mapping can be
viewed as a function of a complex variable, ω = f(z). Locally, a conformal
map is simply any function f which is analytic in a neighbourhood of a
point z and such that f ′(z) = 0. A conformal mapping f thus satisfies the
Cauchy-Riemann equations, which, with z = x+ iy and ω = u+ iv, are

∂u

∂x
=
∂v

∂y
,
∂u

∂y
= −∂v

∂x
.
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Figure 3.12: Examples of geometries that are defined as triangulations
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Now notice that by differentiating one of these equations with respect to
x and the other with respect to y, we obtain the two Laplace equations

∇2u = 0, ∇2v = 0.

Any mapping (u(x, y), v(x, y)) which satisfiies these two Laplace equations
is called a harmonic mapping. Thus a conformal mapping is also harmonic,
and we have the implications

isometric =⇒ conformal =⇒ harmonic.

The advantage over conformal maps is the ease with which they can be
computed, at least approximately. After choosing suitable Dirichlet bound-
ary conditions, each of the functions u and v is the solution to a linear
elliptic partial differential equation which can be approximated by finite el-
ements. Harmonic maps are also guaranteed to be one-to-one for convex
regions. On the downside, harmonic maps are not in general conformal and
do not preserve angles. Another weakness of harmonic mappings is their
“one-sidedness”. The inverse of a harmonic mapping is not necessarily har-
monic.

Harmonic mappings can be computed to parametrize non planar surfaces,
without increasing the complexity of their computation. Let us explain in
details how to reparametrize a triangulated surface using finite elements. We
indeed need to compute the two fields of coordinates u(x) and v(x). We’ll
only detail the way we compute u, the computation of v being of course
absolutely similar.

Consider the following boundary value problem

∇2u = 0 on Ω, (3.11)

u = f(x) on ∂Ω. (3.12)

It is easy to prove that (3.12) and (3.12) and is equivalent to the following
quadratic minimization problem:

min
u∈U(S)

J(u) =
1

2

∫
S

∣∣∇2u
∣∣ ds (3.13)

with

U(S) = {u ∈ H1(S), u = f(x) on ∂S.}
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nodes of J

nodes of I

Figure 3.13: Sets of nodes.

Assume the following finite expansions for u

uh(x) =
∑
i∈I

uiφi(x) +
∑
i∈J

f(xi)φi(x) (3.14)

where I denotes the set of nodes of M that do not belong to the Dirichlet
boundary, J denotes the set of nodes of M that belong to the Dirichlet bound-
ary (Figure 3.13) and where φi are the nodal shape functions associated to
the nodes of the mesh. We assume here that nodal shape function φi is equal
to 1 on vertex xi and 0 on any other vertex: φi(xj) = δij.

Thanks to expansion (3.14), functional J of (3.13) can be written as

J(u1, . . . , uN) =
1

2

∑
i∈I

∑
j∈I

uiuj

∫
M

∇φi(x) · ∇φj(x)ds+

∑
i∈I

∑
j∈J

uif(xj)

∫
M

∇φi(x) · ∇φj(x)ds+

1

2

∑
i∈J

∑
j∈J

f(xi)f(xj)

∫
M

∇φi(x) · ∇φj(x)ds.

In order to minimize J , we can simply cancel the derivative of J with
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Figure 3.14: Unit triangle and its mapping.

respect to uk

∂J

∂uk
=

∑
j∈I

uj

∫
M

∇φj(x) · ∇φk(x)ds+

∑
j∈J

f(xj)

∫
M

∇φk(x) · ∇φj(x)ds

= 0 , ∀k ∈ I. (3.15)

There are as many equations (3.15) as there are nodes in I. This system of
equations can be proven to be symmetric positive definite so that it can be
solved easily, e.g. using preconditioned conjugate gradients.

Consider one triangleM2
j with three vertices of coordinates xi = {xi, yi, zi},

i = 1, 2, 3 (Figure 3.14). The triangle can itself be parametrized i.e. the unit
triangle

ξ ∈ [0, 1] , η ∈ [0, 1− ξ]
can be mapped to the 3D triangle using linear finite element shape functions

x = (1− ξ − η)︸ ︷︷ ︸
φ1

x1 + ξ︸︷︷︸
φ2

x2 + η︸︷︷︸
φ3

x3.
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It is easy to compute the metric of that mapping, as we’ve done it in (3.7).
We have

M =

[
x,ξ · x,ξ x,ξ · x,η
x,η · x,ξ x,η · x,η

]
=

[
‖x2 − x1‖2 (x2 − x1) · (x3 − x1)

(x2 − x1) · (x3 − x1) ‖x3 − x1‖2
]

It is easy to see then that∫
M2

j

∇φi · ∇φjds =

∫ 1

0

∫ 1−ξ

0

∇ξ,ηφi M−1 ∇ξ,ηφj
√

det M dξdη.
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Figure 3.15: Reparametrization of the satyre statue
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Figure 3.16: Reparametrization of the satyre statue



Chapter 4

Mesh Generation

4.1 Generalities

The goal of an analysis is to solve a set of partial differential equations over
a geometrical domain G. The most common way to describe G is to use a
boundary-based scheme where the geometric domain is represented as a set
of topological types together with adjacencies. This has already be decribed
in the sections of Chapter 3.

The mesh M is a discrete version of the domain. In some sense, it is
similar to what we’ve defined for the geometric model: it consists of

• A collection of mesh entities Md
i of controlled size and distribution;

• Topological relationships or adjacencies forming the graph of the mesh.

We have

1. Mesh Vertices M0
i that are topological entities of dimension 0,

2. Mesh Edges M1
i that are topological entities of dimension 1,

3. Mesh Faces M2
i that are topological entities of dimension 2,

4. Mesh Regions M3
i that are topological entities of dimension 3.

What differs is that mesh entities are more numerous than model entities
but have limited complexity.

Mesh entities are topologically equivalent to the unit d-dimensional sphere
Sd = {x ∈ Rd; ‖x‖2 < 1}: they are made of one part, they are simply

57
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connected (a manifold is said to be simply connected if every closed curve
can be smoothly shrunk to a point) and they have no holes.

Mesh entities have simple shapes: they are are lines in 1D, triangles and
quadrangles in 2D and tetrahedra, hexaedra and prisms in 3D.

Any mesh entity Md
i is a piece of the discretization of a geometric entity

Gq
j , d ≤ q (a mesh entity must have dimensionality less than or equal to the

geometry it is associated with). We call this association a classification of a
mesh entity to a geometrical entity and we note it as Md

i @ Gq
j [?, ?, ?].

Simulation attributes like boundary conditions or material properties are
naturally related to model entities and not to mesh entities. In mesh genera-
tion and mesh enrichment procedures, the classification information is critical
for ensuring that the mesh is constructed so that it improves the geometric
approximation of the domain when it is is refined. It is therefore necessary
to maintain the classification of mesh entities through all our algorithms.

A mesh M is composed of a collection of mesh entities together with their
adjacencies. Any mesh entity bounds and/or is bounded by other ones of
higher and/or lower dimension. This adjacency information represents the
graph of a mesh.

It is interesting at this point to gather some statistics about the aver-
age number of adjacencies per entity that occurs in usual three dimensional
tetrahedral and hexahedral meshes.

4.1.1 The Euler-Poincaré Formula

The Euler-Poincaré formula describes the relationship of the number of ver-
tices, the number of edges and the number of faces of the cellular decomposi-
tion (a mesh) of a manifold. It has been generalized to include potholes and
holes that penetrate the solid. To state the Euler-Poincaré formula, we need
the following definitions:

• #V is the number of vertices in the cellular decomposition,

• #E is the number of edges in the cellular decomposition,

• #F is the number of faces in the cellular decomposition.

• G is the number of holes that penetrate the solid, usually referred to
as genus in topology
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• S is the number of shells. A shell is an internal void of a solid. A
shell is bounded by a 2-manifold surface, which can have its own genus
value. Note that the solid itself is counted as a shell. Therefore, the
value for #S is at least 1.

• L is the number of loops. All outer and inner loops of faces are counted.
The Euler-Poincaré formula is

#V −#E + #F − (L−#F )− 2(S −G) = 0.

Consider a cube. It has eight vertices (#V = 8), 12 edges (#E = 12)
and six faces (#F = 6), no holes and one shell (S = 1); but #L = #F
since each face has only one outer loop. Therefore, we have

#V −#E+#F−(L−#F )−2(S−G) = 8−12+6−(6−6)−2(1−0) = 0.

Consider now M, a 2D mesh of a domain Ω. The Euler-Poincaré relation
gives the following relation between those quantities:

#V −#E + #F − χ(Ω) = 0

where χ(Ω) is the Euler-Poincaré characteristic of the surface. The
Euler-Poincaré characteristic of different surfaces is given in the follow-
ing bullet list:

– for the sphere, χ = 2 (#V −#E + #F = 2− 4 + 4),

– for the torus, χ = 0 (#V −#E + #F = 4− 8 + 4),

– for the disk, χ = 1,

– for the Klein bootle, χ = 1.

Another form of the relation, more useful for general domains:

χ = #V −#E + #F = 2− 2g + b

where

– b is the number of boundaries (1 for the plane or 0 for a torus or
a sphere),
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– g is the genus of the surface. The genus is the largest number
of nonintersecting simple closed curves that can be drawn on the
surface without separating it. Roughly speaking, it is the number
of holes in a surface.

Property 4.1.1 We consider a mesh of a 2D domain that is isomorph
to a disk. Then, the following relations holds

#F − 2(#V − 1) + #Vb = 0 (4.1)

#E − 3(#V − 1) + #Vb = 0 (4.2)

where #Vb is the number of vertices on b.

This is an important relation that gives a relation between the number
of triangles and the number of vertices in the triangular mesh of a “disk-
like” surface. In order to proove this, let us first remark that relations
(4.1) and (4.2) are true for one triangle alone: #F = 1, #V = #Vb = 3.

Swapping an edge of the mesh does not modify #V , #E, #F or #Vb.
All triangulations with #N given are therefore equivalent: edge swaps
allow to transform any given triangulation to any other.

Inserting a point inside a triangle adds one vertex, 2 triangles and 3
edges to the mesh, leaving #Vb unchanged:

(#F + 2)− 2((#V + 1)− 1) + #Vb = #F − 2(#V − 1) + #Vb = 0

(#E + 3)− 3((#V + 1)− 1) + #Vb = #E − 3(#V − 1) + #Vb = 0.

Inserting a point on the domain boundary b adds one vertex, one tri-
angles and two edges to the mesh. Relations (4.1) and (4.2) are still
true:

(#F + 1)− 2((#V + 1)− 1) + (#Vb + 1) = #F − 2(#V − 1) + #Vb = 0

(#E + 2)− 3((#V + 1)− 1) + (#Vb + 1) = #E − 3(#V − 1) + #Vb = 0.

Property 4.1.2 We consider a mesh of a 3D domain that is isomor-
phic to a sphere. The following relation holds

#E −#R = #V + #Vb − 3

where #Vb is the number of vertices on the boundary.
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Note that this relation is true for one tatrehadron only, as well as for
any other 3D element.

In a 3D tetrahedral mesh, there exist no relation between the number of
tetrahedra and the number of nodes, as it exists in 2D. As an example,
it is possible to define the following “face swap” transformation: 2
tets that have a face in common can be transformed in 3 tets without
changing the number of vertices. Yet one additional edge has to be
added to the mesh in order to verify the relation, verifying the Euler-
Poincaré formula.

Asymptotically, the 3D Euler-Poincaré gives:

#V −#E + #F −#R ' 0.

In the following Tables 4.1 and 4.2, we present some statistics about
3-D meshes. Those are “asymptotically” correct for sufficently large
meshes but are patently wrong for coarse meshes. The average number
of mesh entities in tetrahedral and hexahedral meshes are presented in
Table 4.1.

Tetrahedral Mesh M Hexahedral Mesh M

#R = 6#V
#F = 12#V
#E = 7#V

#R = #V
#F = 3#V
#E = 3#V

Table 4.1: Relation between number of entities in a mesh.

A second interesting set of statistics concerns the average number of
mesh entities of dimension d adjacent to a mesh entity of dimension q.
We call this Nd(M q). These statistics are represented in Table 4.2.

Tetrahedral Mesh M Hexahedral Mesh M

d 3 2 1 0
N3(Md) 1 2 5 23
N2(Md) 4 1 5 35
N1(Md) 6 3 1 14
N0(Md) 4 3 2 1

d 3 2 1 0
N3(Md) 1 2 4 8
N2(Md) 6 1 4 12
N1(Md) 12 4 1 6
N0(Md) 8 4 2 1

Table 4.2: Average number of adjacencies per entity
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We read these tables as follow: most of the tetrahedron meshes will
contain, when they are sufficiently big, 6 times more tetrahedron than
vertices. Every edge is connected, on average, to 5 tetrahedron.

The information contained in these two tables are important when de-
signing mesh data structures or when choosing one finite element inter-
polation scheme. In a tetrahedral mesh for example, it is important to
figure out that there are 12 times more faces than vertices and that any
scheme that imposes to store in memory the faces of the mesh will be
expensive. Moreover, building finite element interpolations on tetrahe-
dral meshes based on any other entity than vertices will generate large
number of degrees of freedom.

4.1.2 Mesh generation procedure

Usual mesh generation procedures work as follows

– Curves are discretized first i.e. are subdivided into line elements,

– Then, surfaces are triangulated using the discretizations of the
curves as boundaries,

– Finally, regions are tetrahedralized using surface meshes.

Some authors have proposed an alternative procedure that consist in
building the 3D mesh at first [?, ?]. This kind or approach is not used
in Gmsh and will not be discussed here. Figure 4.1 illustrate this three
steps procedure.

At the end, some pre- and post-processing steps can be plugged in the
general mesh generation ”three steps” flow.

– High order curvilinear meshed are usually build starting from a
valid 3D straight sided mesh.

– Quadrilateral meshes generation procedures usually use a valid
triangulation as their starting point.

– Boundary layer meshes are often build using an extrusion of the
triangulation.

All the stages of those mesh generation procedures are presented in the
next sections of the chapter.
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Figure 4.1: Example of a 3D meshing procedure in Gmsh. From top, 1D
meshing procedure, surface meshing and volume meshing.
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4.2 Mesh size field and quality measures

The aim of mesh generation is twofold

1. Generating elements of the right size,

2. Generating elements of the right shape.

For adressing those aims, we have to clarify what is right for an element,
both in terms of size and shape.

4.2.1 Mesh size field

We define the mesh size function δ(x, y, z) as a function the defines at
every point of the domain a target size for the elements at the point.
The aim of the mesh generation procedure is to be able to build a mesh
that complies with this mesh size field.

The present ways of defining such a mesh size field in Gmsh are:

1. mesh sizes prescribed at model vertices and interpolated linearly
on model edges;

2. prescribed mesh gradings on model edges (geometrical progres-
sions, ...);

3. mesh sizes defined on another mesh (a background mesh) of the
domain;

4. mesh sizes that adapt to the principal curvature of model entities.

These size fields can then be acted on by functionals that may depend,
for example, on the distance to model entities or on user-prescribed
analytical functions; and when several size fields are provided, Gmsh
uses the minimum of all fields. Thanks to that mechanism, Gmsh
allows for a mesh size field defined on a given model entity to extend in
higher dimensional entities. For example, using a distance function, a
refinement based on the curvature of a model edge can extend on any
surface adjacent to it.
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Let us now consider an edge e of the mesh. We define the adimensional
length of the edge with respect to the size field δ as

le =

∫
e

1

δ(x, y, z)
dl. (4.5)

The aim of the mesh generation process is twofold:

1. Generate a mesh for which each mesh edge e is of size close to
le = 1,

2. Generate a mesh for which each element K is well shaped.

In other words, the aim of the mesh generation procedure is to be able
to build a good quality mesh that complies with the mesh size field.

To quickly evaluate the adequation between the mesh and the pre-
scribed mesh size field, we defined an efficiency index τ [?] as

τ = exp

(
1

ne

ne∑
e=1

τe

)
(4.6)

with τe = le− 1 if le < 1 and τe =
1

le
− 1 if le ≥ 1. The efficiency index

ranges in τ ∈ [0, 1] and should be as close as possible to τ = 1.

For measuring the quality of elements, various element shape measures
are available in the literature [?, ?]. Here, we choose a measure based
on the element radii ratio, i.e. the ratio between the inscribed and the
circumcircles.

If K is a triangle, we have the following formula

γK = 4
sin â sin b̂ sin ĉ

sin â+ sin b̂+ sin ĉ
,

â, b̂ and ĉ being the three inner angles of the triangle. With this
definition, the equilateral triangle has a γK = 1 and degenerated (zero
surface) triangles have a γK = 0.

For a tetrahedron, we have the following formula:

γK =
6
√

6Vk(
4∑
i=1

a(fi)

)
max
i=1,...,6

l(ei)

,
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with VK the volume of K, a(fi) the area of the ith face of K and l(ei)
the dimensional length of the ith edge of K. This quality measurement
lies in the interval [0, 1], an element with γK = 0 being a sliver (zero
volume).

4.3 One Dimensional Meshing

Let us consider a point p(t) on a curve C, t ∈ [t1, t2]. The number of
subdivisions N of the curve is its adimensional length:

∫ t2

t1

1

δ(x, y, z)
‖∂t~p(t)‖dt = N. (4.7)

TheN+1 mesh points on the curve are located at coordinates {T0, . . . , TN},
where Ti is computed with the following rule:

∫ Ti

t1

1

δ(x, y, z)
‖∂t~p(t)‖dt = i. (4.8)

With this choice, each subdivision of the curve is exactly of adimen-
sional size 1, and the 1-D mesh exactly satisfies the size field δ. In
Gmsh, (4.8) is evaluated with a recursive numerical integration rule.
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