
Getting started with OpenGL 2.1

What Is OpenGL? What is and how it works.

 OpenGL/JOGL Applications Open Source Examples.

 Basic Definitions Model, Framebuffer, etc. What mean
these words?

 OpenGL Command Syntax Conventions and notations
used by OpenGL commands.

 OpenGL Rendering Pipeline Description of the typical
sequence of operations for processing geometric and image
data.

 Setting programming environment,

 First application with JOGL (Callback Framework)

 Second example using Active Rendering

 Animation with JOGL, explains in high level terms how to
create pictures on the screen that move.

 Bibliography

 The OpenGL graphics system is a software interface to
graphics hardware (The GL stands for Graphics Library).

 The interface consists of about 200 distinct commands
that you use to specify the objects and operations needed
to produce interactive three-dimensional applications.

 For interactive programs that produce color images of
moving three-dimensional objects. Sometimes they are so
realistic that you can’t distinguish them from real photos.

 First introduced 1992.

 OpenGL is designed as a streamlined, hardware-
independent interface to be implemented on many
different hardware platforms.

 No commands for performing windowing tasks or
obtaining user input are included in OpenGL;

 Similarly, OpenGL doesn't provide high-level commands
for describing models of three-dimensional objects. With
OpenGL, you must build up your desired model from a
small set of geometric primitives - points, lines, and
polygons.

 OpenGL has become the industry standard for graphics
applications and games.

 OpenGL Specification:

 www.opengl.org/documentation/specs/

OpenGL State Diagram

 www.opengl.org/documentation/specs/version1.1/state.pdf

 JOGL is one of the open-source technologies initiated by
the Game Technology Group at Sun Microsystems back in
2003 (the others are JInput and JOAL).

 Therefore, it doesn’t include support for gaming
elements such as sound or input devices, which are nicely
dealt with by JOAL and Jinput.

 Since OpenGL is originally written in C, JOGL provides full
access to the APIs (via Java Native Interface (JNI)) in the
OpenGL 2.0 specification, as well as vendor extensions, and
can be combined with AWT and Swing components.

 It supports both of the main shader languages, GLSL and
Nvidia’s Cg.

JOGL's utility classes include frame-based animation,
texture loading, file IO, and screenshot capabilities.

Two programming frameworks are possible with JOGL:

 Callbacks

 Active rendering

 Official website: http://kenai.com/projects/jogl

 Our goal is to understand OpenGL. Java is simply a means
to an end.

Write once, run anywhere (WORA)

Avengina

 http://www.avengina.org

 Jake2 (It is a port of the GPL'd Quake2 game engine)

 http://bytonic.de/html/jake2.html

 Elflight Engine

 http://www.codededge.com

 jME (jMonkey Engine)

 http://www.jmonkeyengine.com

World Wind

 http://worldwind.arc.nasa.gov/java/demos/

More examples: http://download.java.net/media/jogl/www/

Models, or objects, are constructed from geometric
primitives - points, lines, and polygons - that are specified
by their vertices.

 Pixel, is the smallest visible element the display
hardware can put on the screen.

 Rendering, process by which a computer creates images
from models and consists of pixels drawn on the screen.

 Bitplane, area of memory that holds one bit of
information for every pixel on the screen. E.g. bit might
indicate how red a particular pixel is supposed to be.

 Framebuffer, stores all bitplanes, and holds all the
information that the graphics display needs to control the
color and intensity of all the pixels on the screen

 A command declaration has the form:
 “gl” Name { Dim{1..n} } { b s i f d ub us ui } { v }(args);

 ‘v' indicates vector format

 absence of ‘v' indicates scalar format

 Data Types:
 f - float

 d - double float

 s - signed short integer

 i - signed integer

 b - character

 ub - unsigned character

 us - unsigned short integer

 ui - unsigned integer

glVertex3f

Dimension: 3rd Type: f - float

The 4th dimension is for
homogeneous coordinates,
by default it is 1.

 Set a value (state) and this will be valid until you set it to
something else.

 For example:

gl.glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

…
gl.glClear(GL.GL_COLOR_BUFFER_BIT);
…
gl.glClear(GL.GL_COLOR_BUFFER_BIT);

 Construct shapes from geometric primitives, thereby
creating mathematical descriptions of objects. (Points,
lines, polygons, images, and bitmaps are considered to be
primitives)

 Arrange the objects in three-dimensional space and
select the desired vantage point for viewing the composed
scene.

 Calculate the color of all the objects. The color might be
explicitly assigned by the application, determined from
specified lighting conditions, obtained by pasting a texture
onto the objects, or some combination of these three
actions.

 Convert the mathematical description of objects and
their associated color information to pixels on the screen.
This process is called rasterization.

 Download Eclipse or NetBeans (Optional)

Download JOGL (use JSR-231)

http://download.java.net/media/jogl/builds/nightly/

• Download Javadocs

http://java.sun.com/javase/6/docs/api/

Its execution requires:

java -cp “c:\jogl\jogl.all.jar;."
-Djava.library.path=“c:\jogl"

-Dsun.java2d.noddraw=true ExerciseOne

The “sun.java2d.noddraw” property disables Java 2D’s use
of DirectDraw on Windows 1. This avoid any nasty
interactions between DirectDraw and OpenGL, which can
cause application crashes, poor performance, and
flickering.

1 The property is only needed if you’re working on a Windows platform.

If you don’t like lengthy command line arguments, then
modify:

Windows
The CLASSPATH environment variable and PATH

Solaris and Linux
LD_LIBRARY_PATH

Mac OS X
DYLD_LIBRARY_PATH

These instructions are correct for
NetBeans 5.0.

1. First create a new project,
which is a Java application
within NetBeans

2. Right click on the project name
in the navigator view and
select properties:

Click on libraries and choose Add Library:

Choose the manage libraries option in order to create a
new library containing the JOGL jar file. Click on New
Library and give the new library the JOGL.

Next select JOGL from the possible libraries and click on
Add Jar/Folder. Select gluegen-rt.jar, ativewindow.all.jar,
jogl.all.jar and click Add Jar/Folder.

Now select add library to incorporate the JOGL library
classes into the project.

NetBeans OpenGL Pack :
http://kenai.com/projects/netbeans-opengl-pack

1. Create an empty ECLIPSE project

2. Right-click on the project

Properties -> Java Buld Path -> libraries

3. Add External Jar:

gluegen-rt.jar, nativewindow.all.jar, jogl.all.jar

4. Modify PATH environment variable to include:

gluegen-rt.dll, jogl_gl2.dll, nativewindow*.dll

Two programming frameworks for JOGL will be described
in this lesson:

 Callbacks -which I refer to as event-based rendering.

 Active rendering - which is “more appropriate” for game
development.

The two main JOGL GUI classes are GLCanvas and GLJPanel,
which implement the GLAutoDrawable interface, allowing
them to be utilized as ‘drawing surfaces’ for OpenGL
commands.

GLCanvas is employed in a similar way to AWT's Canvas
class. It's a heavyweight component, so care must be taken
when combining in with Swing. However, it executes
OpenGL operations very quickly due to hardware
acceleration.

GLJPanel is a lightweight widget which works seamlessly
with Swing. In the past, it’s gained a reputation for being
slow since it copies the OpenGL frame buffer into a
BufferedImage before displaying it. However, it’s speed has
improved significantly in Java SE 6.

A key advantage of GLJPanel over GLCanvas is that it allows
3D graphics (courtesy of OpenGL) and 2D elements in
Swing to be combined in new, exciting ways.

A GLCanvas object is paired with a GLEventListener
listener, which responds to changes in the canvas, and to
drawing requests.

When the canvas is first created, GLEventListener's
init(GLAutoDrawable drawable) method is called; this
method can be used to initialize the OpenGL state (for
instance to setup lights and display lists).

Whenever the canvas is resized, including when it's first
drawn, GLEventListener‘s reshape(GLAutoDrawable
drawable, int x, int y, int width, int height) is executed. It
can be overridden to initialize the OpenGL viewport and
projection matrix (i.e. how the 3D scene is viewed).
reshape() is also invoked if the canvas is moved relative to
its parent component.

Whenever the canvas' display() method is called, the
display() method in GLEventListener is executed. Code for
rendering the 3D scene should be placed in that method.

The GLCanvas can be placed directly inside the JFrame, but
by wrapping it in a JPanel, the JFrame can contain other
(lightweight) GUI components as well.

The GLEventListener also includes dispose(), called by the
drawable before the OpenGL context is destroyed by an
external event, like a reconfiguration of the
GLAutoDrawable closing an attached window, but also
manually by calling destroy.

Since the GLJPanel is a lightweight Swing component, it can
also be added directly to the enclosing JFrame

 The active rendering framework utilizes the new
features in JSR-231 for directly accessing the drawing
surface and context (OpenGL’s internal state). This means
that there’s no longer any need to utilize GUI components
that implement the GLAutoDrawable interface, such as
GLCanvas application can employ a subclass of AWT’s
Canvas, with its own rendering thread

The principal advantage of the active rendering approach
is that it allows the programmer to more directly control
the application’s execution flow (suspend, etc.)

The rendering thread can be summarized using the
following pseudocode:

make the context current for this thread;
initialize rendering;
while game isRunning {

update application state;
render scene;
put the scene onto the canvas;
sleep a while;
do optional updates without rendering them;
gather statistics;

}
discard the rendering context;
exit;

Make the context current for the thread with:

private void makeContentCurrent() {
try {

while (context.makeCurrent() == GLContext.CONTEXT_NOT_CURRENT) {
System.out.println("Context not yet current...");
Thread.sleep(100);

}
}
catch (InterruptedException e) {

e.printStackTrace();
}

}

And put scene into canvas with:
drawable.swapBuffers();

 Very simple example shows many of JOGL elements that
are common to all graphic programs.

 Only displays green triangle on white background, shown
in Java Swing JFrame object. Full Code on course web site.

When creating GLCanvas and GLJPanel instances, the
user may configure a certain set of OpenGL parameters in
the form of a GLCapabilities object.

 These customise how OpenGL will perform rendering of
drawable objects on the screen.

 In this case we will enable anti aliasing.

public class ExerciseOne implements GLEventListener {
public static void main(String[] args) {

JFrame.setDefaultLookAndFeelDecorated(false);
JFrame jframe = new JFrame("Sample using the Callback Framework");
jframe.setSize(500, 500);
jframe.setLocationRelativeTo(null);

/** Create a profile, in this case OpenGL <= 3.0 */
GLProfile profile = GLProfile.get(GLProfile.GL2);

/** Configure context */
GLCapabilities capabilities = new GLCapabilities(profile);

/** e.g. Enable anti aliasing */
capabilities.setNumSamples(2);
capabilities.setSampleBuffers(true);

GLJPanel canvas = new GLJPanel(capabilities);
canvas.addGLEventListener(new ExerciseOne());

/** Put the canvas into a JFrame window */
jframe.getContentPane().add(canvas);
jframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

/** Show window */
jframe.setVisible(true);

}
….

}

public void display(GLAutoDrawable drawable) {
GL2 gl = drawable.getGL().getGL2();

gl.glClear(GL.GL_COLOR_BUFFER_BIT);
gl.glColor3f(0.0f, 1.0f, 0.0f);

gl.glBegin(GL2.GL_POLYGON);
gl.glVertex2f(0f, 0.5f);
gl.glVertex2f(0.5f, -0.4f);

/** This is just to illustrate using FloatBuffer when v is defined */
gl.glVertex2fv(FloatBuffer.wrap(new float[] { -0.5f, -0.4f }));
gl.glEnd();

/**
* Does not return until the effects of all previously
* called GL commands are complete.
*/

gl.glFinish();
}

 Code between glBegin() and glEnd(), define the object to
be drawn (Polygon)

 Polygon's "corners" are defined by the glVertex3f()
commands, or in 2D diagram glVertex2f().

 glFlush() ensures that the drawing commands are
actually executed rather than stored in a buffer awaiting
additional OpenGL commands

“A higher-level abstraction than GLDrawable which
supplies an event based mechanism (GLEventListener) for
performing OpenGL rendering. A GLAutoDrawable
automatically creates a primary rendering context which is
associated with the GLAutoDrawable for the lifetime of the
object“

A GLAutoDrawable object can access the OpenGL current
context with the getGL() method.

“An abstraction for an OpenGL rendering target. A
GLDrawable's primary functionality is to create OpenGL
contexts which can be used to perform rendering. A
GLDrawable does not automatically create an OpenGL
context, but all implementations of GLAutoDrawable do so
upon creation.“

 glClearColor() establishes what color the window will be
cleared to.

glClear() clears the window. Once the clearing color is set,
the window is cleared to that color whenever glClear() is
called.

 glColor3f() command establishes what color to use for
drawing objects – white for this example.

 glFinish() The command does not return until the effects
of all previously called GL commands are complete.

public void init(GLAutoDrawable drawable) {

GL gl = drawable.getGL();

/** This sets the background color */
gl.glClearColor(0.0f, 0.0f, 0.0f, 0.0f);

}

public void dispose(GLAutoDrawable drawable) {
System.out.println("Now its time to perform

the release of all OpenGL
resources per GLContext,
such as memory buffers
and GLSL programs.");

}

public void reshape(GLAutoDrawable drawable, int x, int y, int width, int height) {
final GL2 gl = drawable.getGL().getGL2();
if (height <= 0) // Avoid a divide by zero error!

height = 1;
final float windowRatio = (float) width / (float) height;
gl.glViewport(horOffset, vertOffset, width, height);

// This tells the now we are working on the projection matrix
gl.glMatrixMode(GL2.GL_PROJECTION);
gl.glLoadIdentity();
glu.gluPerspective(FOV, windowRatio, closeClippingDist, farClippingDist);

// This tells the now we are working on the modelview matrix
// Where our object info are stored
gl.glMatrixMode(GL2.GL_MODELVIEW);
gl.glLoadIdentity();

}

Possible Example

Concepts explained next week

 It sets the current matrix model. More specifically it
specifies which matrix stack is the target for subsequent
matrix operations

 This can be:

 GL_MODELVIEW

 GL_PROJECTION

 GL_TEXTURE

Specifies coordinate system OpenGL assumes as it draws
the final image and how the image gets mapped to the
screen for orthographic parallel viewing volume.

gl.glOrtho(left, right, bottom, top, near, far);

(left, bottom, -near)

(right, top, -near)

initial

point of view

(right, top, -far)

(left, bottom, -far)

z

y

x

gl.glViewport(0, 0, w, h);
gl.glMatrixMode(GL.GL_PROJECTION);
glu.gluPerspective(FOV, windowRatio,

closeClippingDist, farClippingDist);

Note glOrtho does not define perspective in 3D, it only defines the
space that will be observable.

For perspective different OpenGL operators are necessary:

These will be discussed in detail in later sections.

Modelview transfomations are used to position the view
in the scene

glTranslate
glRotate
glScale

Concepts explained next week

 Computer-graphics screens typically refresh (redraw the
picture) approximately 60 to 76 times per second

 Refresh rates faster than 120, however, are beyond the
point of diminishing returns, since the human eye is only so
good.

 The key reason that motion picture projection works is
that each frame is complete when it is displayed.

‘Moon’ orbits round ‘planet’. Each frame is redrawn with ‘moon’ rotated
slightly each time. When played rapidly in sequence creates illusion of motion.

Aside from the canvas and listener, most games will need a
mechanism for triggering regular updates to the canvas.
This functionality is available through JOGL‘s FPSAnimator
utility class, which can schedule a call to the canvas'
display() method with a frequency set by the user.

 FPSAnimator, Frames / Second animator Java thread.

 new FPSAnimator(canvas, 60);
this will try to force 60 frames per second to be rendered
completely on screen.

 FPSAnimator does not guarantee that 60 frames will be
shown, this is a maximum that can be shown.

 FPSAnimator will force all drawable objects to finish
execution before frame is displayed.

 FPSAnimator forces the display method to complete
execution up to the number specified in the argument.

FSPAnimator forces
display() to execute up to
N times each second.
Guarantees that display
will complete execution
before next frame is rendered
on screen.

public static void main(String[] args) {

/**
* Part 1: Set up OpenGL canvas and Java Swing JFrame and define
* drawing elements here.
*/

FPSAnimator animator = new FPSAnimator(canvas, 60);

/* Part 2: Initialise frame look and feel and attach drawing canvas */

animator.start();

}

 Consider very simple animation that creates a 2D square
and rotates square in real time in JFrame

 The square to rotate by small amount 60 times per
second to create illusion of animation

 glPushMatrix() means "remember where you are"

 glPopMatrix() means "go back to where you were."

 Using push and pop, the x and y axis remain

stationary, whilst the square rotates

Without push and pop, the x and y axis rotate as well

as the square

 Free online copy of the OpenGL Redbook

 www.glprogramming.com/red/index.html

 Goes in-depth into many aspects of computer graphics that
are invaluable as aid to understanding subject.

 Note: written in C, not Java. Many examples from Redbook
have been translated into Java and are available online:

 http://pepijn.fab4.be/software/nehe-java-ports/

