

An Interactive Introduction to
OpenGL Programming

Course # 29

Dave Shreiner

Ed Angel

Vicki Shreiner

i

Table of Contents

Introduction...iv

Prerequisites ...iv

Topics ...iv

Presentation Course Notes ...vi

An Interactive Introduction to OpenGL Programming - Course # 29.............1

Welcome ..2
Welcome ..3
What Is OpenGL, and What Can It Do for Me? ..4
Related APIs ..5
OpenGL and Related APIs...6
What Is Required For Your Programs ...7
OpenGL Command Formats ..8
The OpenGL Pipeline ..9

An Example OpenGL Program..10
Sequence of Most OpenGL Programs ...11
An OpenGL Program...12
An OpenGL Program (cont’d.) ..13
An OpenGL Program (cont’d.) ..14
GLUT Callback Functions ...15

Drawing with OpenGL ..16
What can OpenGL Draw?..17
OpenGL Geometric Primitives ..18
Specifying Geometric Primitives...19
The Power of Setting OpenGL State ...20
How OpenGL Works: The Conceptual Model ..21
Controlling OpenGL’s Drawing ..22
Setting OpenGL State ..23
Setting OpenGL State (cont’d.) ...24
OpenGL and Color...25
Shapes Tutorial ..26

Animation and Depth Buffering ...27
Double Buffering ...28
Animation Using Double Buffering...29
Depth Buffering and Hidden Surface Removal...30
Depth Buffering Using OpenGL..31

ii

Transformations ...32
Camera Analogy ..33
Camera Analogy and Transformations ..34
Transformation Pipeline...35
Coordinate Systems and Transformations ...36
Homogeneous Coordinates ..37
3D Transformations ...38
Specifying Transformations ...39
Programming Transformations ..40
Matrix Operations ..41
Projection Transformation ...42
Applying Projection Transformations ..43
Viewing Transformations ..44
Projection Tutorial ...45
Modeling Transformations ...46
Transformation Tutorial...47
Connection: Viewing and Modeling ...48
Common Transformation Usage ..49
Example 1: Perspective & LookAt ..50
Example 2: Ortho ...51
Example 2: Ortho (cont’d) ...52
Compositing Modeling Transformations ...53
Compositing Modeling Transformations ...54

Lighting ...55
Lighting Principles ...56
How OpenGL Simulates Lights ...57
Surface Normals...58
Material Properties ...59
Light Properties..60
Light Sources (cont'd.) ...61
Types of Lights ..62
Turning on the Lights...63
Light Material Tutorial...64
Controlling a Light’s Position..65
Light Position Tutorial...66
Tips for Better Lighting ...67

Texture Mapping ...68
Pixel-based primitives..69
Positioning Image Primitives ...70
Rendering Bitmaps and Images ...71
Reading the Framebuffer ...72
Pixel Pipeline ...73
Texture Mapping..74
Texture Example ..75
Applying Textures I ...76

iii

Texture Objects..77
Texture Objects (cont'd.)..78
Specify the Texture Image ...79
Converting A Texture Image ...80
Mapping a Texture ...81
Tutorial: Texture ..82
Applying Textures II ..83
Texture Application Methods ..84
Filter Modes ...85
Mipmapped Textures ...86
Wrapping Mode ...87
Texture Functions ..88
Perspective Correction Hint ...89

Advanced OpenGL Topics ..90
Working with OpenGL Extensions..91
Alpha: the 4th Color Component ...92
Blending ...93
Antialiasing ..94

Summary / Q & A ..95
On-Line Resources...96
Books ...97
Thanks for Coming ..98

Bibliography ...100

Glossary...101

iv

Introduction
 “An Interactive Introduction to OpenGL Programming” provides an overview of the
OpenGL Application Programming Interface (API), a library of subroutines for drawing
three-dimensional objects and images on a computer. After the completion of the course,
a programmer able to write simple programs in the “C” language will be able to create an
OpenGL application that has moving 3D objects that look like they are being lit by lights
in the scene and by specifying colors or images that should be used to color those objects.
Additionally, the viewpoint of the scene can be controlled by the mouse and keyboard,
and can be updated interactively. Finally, the course provides references for exploring
more of the capabilities of OpenGL that aren’t covered in the class.

Course Prerequisites
You need very little experience with computer graphics or with programming to become
successful using OpenGL. Our course does expect you to have a reading knowledge of a
procedural language (all of our examples are in “C”, but don’t use any advanced
concepts). We also try to explain the background of each concept as well as demonstrate
how to accomplish the technique in OpenGL. A bibliography is included to aid you in
finding more information or clarifying points that didn’t make sense the first time around.

OpenGL and Window Systems

The OpenGL library is platform independent with implementations available on almost
every operating system: Microsoft Windows; Apple Computer’s MAC O/S; and most
version of UNIX, including Linux. Although the code that you write using the OpenGL
API is easily moved between platforms, OpenGL relies on the native windowing system
of the computer you’re running the program on. Each windowing system has unique
methods for opening windows, processing keyboard and mouse input, and enabling
windows to be able to be drawn into by OpenGL. In order to make this process simpler,
this course uses the GLUT library (OpenGL Utility Toolkit, authored by Mark Kilgard)
to hide the specifics required for different operating systems.

Topics
Our course covers a number of topics that enable the creation of interesting OpenGL
applications :

• 3D object modeling – how to combine vertices to create the three geometric
primitives: points, lines, and polygons. We’ll also discuss how to construct
objects by assembling geometric primitives. By far, modeling objects is the most
laborious task in 3D graphics. For all but the simplest shapes, or shapes derived
from mathematical formulas (i.e., circles, spheres, cones, etc.), most objects are
created using a modeling program (e.g., Maya, 3D Studio Max, Houdini, etc.).
The GLUT library contains routines for creating some common shapes as well,
which we briefly discuss.

• Transformations – computer graphics relies heavily on the use of 4×4 matrices for
mapping our virtual three-dimensional world to the two-dimensional screen.

v

OpenGL takes care of doing all the math, and simplifies the specification and use
of these matrices. We’ll find that using OpenGL, we can easily control:

o how our virtual eye views our scene

o position, size, and orientation of the objects in our scene

o the creation of a complex model from the hierarchical placement of its
components and suitable transformations (think about a car; each wheel is
basically the same, just positioned at different points on the chassis. We’ll
use transformations to put all the things in the right places, and make the
entire car move as a single unit).

• Lighting – simulate how light illuminates the surface of our objects in our scene.
In nature, what we see is the result of light reflecting off of our surroundings, and
entering our eye. These interactions are quite complicated, and for an interactive
program, are too computationally intensive to be completely accurate. OpenGL
uses a simplified lighting model to create reasonable lighting effects that usually
suffice for interactive applications. One point that generally surprises novices to
OpenGL is that shadows are not supported. Shadows require considerable
knowledge of the scene and the placement of the objects, which is data that’s not
generally available to OpenGL while it’s drawing. This may seem counter-
intuitive; however, OpenGL processes each primitive in isolation. Techniques
that add shadows into an OpenGL scene have been developed. Any of the texts in
the bibliography will contain information on the topic.

• Depth buffering – determines which geometric primitives are closest to the eye.
We take for granted that when an object is behind another object, the one farthest
from our eye is obscured. Since OpenGL doesn’t enforce a rendering order for
the primitives you ask it to render, depth buffering is used to determine visibility
of objects in your scene.

• Double buffering – One of the principle goals of the course is to help you develop
interactive graphics programs. To move objects around in your scene, you will
have to draw the scene multiple times, moving objects the appropriate amount
each time. In general this approach starts with a “clean slate” for each frame,
which requires OpenGL to initialize its framebuffer at the start of each frame.
This initialization is generally done by setting all of the pixels to the same color;
however, doing this causes the animation to “flicker.” Double buffering is a
technique to remove the flickering from our sequence of frames, and provide a
smooth interactive experience.

vi

• Texture mapping – this technique allows for geometric models, perhaps composed
of just a few polygons, to have much higher color fidelity. This is accomplished
by determining the color of the pixels filled by our geometric primitives not only
by the color of that primitive, but from a texture image. The texture contains
much more color information, and OpenGL knows how to extract the colors to
produce a much richer picture than the standard method for shading a polygon.
Texture mapping enables a wide variety of techniques that would otherwise be
prohibitively complex to do.

Presentation Course Notes
The following pages include the slides presented at SIGGRAPH 2004, as well as notes to
aid in use of the slides after the talk.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 1 -

An Interactive Introduction to
OpenGL Programming

Course # 29

Dave Shreiner
Ed Angel
Vicki Shreiner

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 2 -

Welcome

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 3 -

WelcomeWelcome

• Today’s Goals and Agenda
– Describe OpenGL and its uses
– Demonstrate and describe OpenGL’s

capabilities and features
– Enable you to write an interactive, 3-D

computer graphics program in OpenGL

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 4 -

What Is OpenGL, and What
Can It Do for Me?
What Is OpenGL, and What
Can It Do for Me?
• OpenGL is a computer graphics rendering API

– Generate high-quality color images by rendering with
geometric and image primitives

– Create interactive applications with 3D graphics

• OpenGL is
• operating system independent
• window system independent

OpenGL is a library for drawing, or rendering, computer graphics. By
using OpenGL, you can create interactive applications that render high-quality
color images composed of 3D geometric objects and images.

OpenGL is window- and operating-system independent. As such, the part
of your application that does rendering is platform independent. However, in
order for OpenGL to be able to render, it needs a window to draw into.
Generally, this is controlled by the windowing system on whatever platform
you are working on.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 5 -

Related APIsRelated APIs

• GLU (OpenGL Utility Library)
– part of OpenGL
– NURBS, tessellators, quadric shapes, etc.

• AGL, GLX, WGL
– glue between OpenGL and windowing systems

• GLUT (OpenGL Utility Toolkit)
– portable windowing API
– not officially part of OpenGL

As mentioned, OpenGL is window and operating system independent. To
integrate it into various window systems, additional libraries are used to
modify a native window into an OpenGL capable window. Every window
system has its own unique library and functions to do this. Some examples
are:

• GLX for the X Windows system, common on Unix platforms

• AGL for the Apple Macintosh

• WGL for Microsoft Windows

OpenGL also includes a utility library, GLU, to simplify common tasks
such as: rendering quadric surfaces (i.e. spheres, cones, cylinders, etc.),
working with NURBS and curves, and concave polygon tessellation.

Finally to simplify programming and window system dependence, we will
be using the freeware library, GLUT. GLUT, written by Mark Kilgard, is a
public domain window system independent toolkit for making simple OpenGL
applications. GLUT simplifies the process of creating windows, working with
events in the window system and handling animation.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 6 -

OpenGL and Related APIs

GLUT

GLU

GL

GLX, AGL
or WGL

X, Win32, Mac O/S

software and/or hardware

application program

OpenGL Motif
widget or similar

The above diagram illustrates the relationships of the various libraries and
window system components.

Generally, applications which require more user interface support will use
a library designed to support those types of features (i.e. buttons, menu and
scroll bars, etc.) such as Motif or the Win32 API.

Prototype applications, or ones which do not require all the bells and
whistles of a full GUI, may choose to use GLUT instead because of its
simplified programming model and window system independence.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 7 -

What Is Required For Your
Programs
What Is Required For Your
Programs
• Headers Files

#include <GL/gl.h>
#include <GL/glext.h>
#include <GL/glu.h>
#include <GL/glut.h>

• Libraries
• Enumerated Types

– OpenGL defines numerous types for compatibility
•GLfloat, GLint, GLenum, etc.

All of our discussions today will be presented in the C computer language.

For C, there are a few required elements which an application must do:

• Header files describe all of the function calls, their parameters and
defined constant values to the compiler. OpenGL has header files for
GL (the core library), GLU (the utility library), and GLUT (freeware
windowing toolkit).
Note: glut.h includes gl.h and glu.h. On Microsoft Windows,
including only glut.h is recommended to avoid warnings about
redefining Windows macros.

• Libraries are the operating system dependent implementation of
OpenGL on the system you are using. Each operating system has its
own set of libraries. For Unix systems, the OpenGL library is
commonly named libGL.so (which is usually specified as -lGL on
the compile line) and for Microsoft Windows, it is named
opengl32.lib.

• Finally, enumerated types are definitions for the basic types (i.e.
float, double, int, etc.) which your program uses to store variables. To
simplify platform independence for OpenGL programs, a complete set
of enumerated types are defined. Use them to simplify transferring
your programs to other operating systems.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 8 -

OpenGL Command
Formats

glVertex3fv(v)

Number of
components

2 - (x,y)
3 - (x,y,z)
4 - (x,y,z,w)

Data Type
b - byte
ub - unsigned byte
s - short
us - unsigned short
i - int
ui - unsigned int
f - float
d - double

Vector

omit “v” for
scalar form

glVertex2f(x, y)

The OpenGL API calls are designed to accept almost any basic data type,
which is reflected in the calls name. Knowing how the call names are
structured makes it easy to determine which call should be used for a particular
data format and size.

For instance, vertices from most commercial models are stored as three-
component, floating-point vectors. As such, the appropriate OpenGL
command to use is glVertex3fv(coords).

OpenGL considers all points to be 3D. Even if you’re drawing a simple
2D line plot, OpenGL considers each vertex to have an x-, y-, and a z-
coordinate. In fact, OpenGL really uses homogenous coordinates, which are a
set of four numbers (a 4-tuple) that is usually written as (x, y, z, w). The w-
coordinate is there to simplify the matrix multiplication that we’ll discuss in
the Transformations section. You can safely ignore w for now.

For glVertex*() calls which do not specify all the coordinates (i.e.
glVertex2f()), OpenGL will default z = 0.0, and w = 1.0 .

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 9 -

The OpenGL PipelineThe OpenGL Pipeline

• Processing is controlled by setting
OpenGL’s state
– colors, lights and object materials, texture

maps
– drawing styles, depth testing

Vertex
Processing

Fragment
Processing Framebuffer

OpenGL is a pipelined architecture, which means that the order of
operations is fixed. In general, OpenGL operations can be partitioned into two
“processing units”: vertex operations, and fragment operations.

The operation of each pipeline step is controlled by what’s commonly
referred to as state. State is just the collection of variables that OpenGL keeps
track of internally. They include colors, positions, texture maps, etc. We’ll
discuss many of these state groups during the course. Setting state comprises
about 80% of the OpenGL functions in the library.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 10 -

An Example OpenGL Program

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 11 -

Sequence of Most OpenGL
Programs
Sequence of Most OpenGL
Programs

Configure
and open a
window Initialize

OpenGL’s
state

Process
user events

Draw an
image

Update
OpenGL’s

State
(if necessary)

OpenGL was primarily designed to be able to draw high-quality images
fast enough so that an application could draw many of them a second, and
provide the user with an interactive application, where each frame could be
customized by input from the user.

The general flow of an interactive OpenGL application is:

1. Configure and open a window suitable for drawing OpenGL into.

2. Initialize any OpenGL state that you will need to use throughout
the application.

3. Process any events that the user might have entered. These could
include pressing a key on the keyboard, moving the mouse, or
moving or resizing the application’s window.

4. Draw your 3D image using OpenGL with values that may have
been entered from the user’s actions, or other data that the program
has available to it.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 12 -

An OpenGL ProgramAn OpenGL Program

#include <GL/glut.h>
#include "cube.h"

void main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA |

GLUT_DEPTH);
glutCreateWindow(“cube”);

init();

glutDisplayFunc(display);
glutReshapeFunc(reshape);

glutMainLoop();
}

The main part of
the program.

GLUT is used to
open the OpenGL

window, and handle
input from the user.

This slide contains the program statements for the main() routine of a C program that
uses OpenGL and GLUT. For the most part, all of the programs you will see today, and
indeed may of the programs available as examples of OpenGL programming that use GLUT,
will look very similar to this program.

All GLUT-based OpenGL programs begin with configuring the GLUT window to be
opened.

Next, in the routine init() (detailed on the following slide), we make OpenGL calls to
set parameters that we’ll use later in the display() function. These parameters, commonly
called state , are values that OpenGL uses to determine how it will draw. There’s nothing
special about the init() routine, we just use it to logically separate the state that we need to
set up only once (as compared to every frame).

After initialization, we set up our GLUT callback functions, which are routines that you
write to have OpenGL draw objects and other operations. Callback functions, if you’re not
familiar with them, make it easy to have a generic library (like GLUT), that can easily be
configured by providing a few routines of your own construction.

Finally, as with all interactive programs, the event loop is entered. For GLUT-based
programs, this is done by calling glutMainLoop(). As glutMainLoop() never exits (it
is essentially an infinite loop), any program statements that follow glutMainLoop() will
never be executed.

The header file “cube.h” contains the geometric data (vertices, colors, etc.) for the cube
model. Cubes are a very popular shape to render in computer graphics (along with teapots …
we’ll explain that one later), and is a nice example to work through to get a feel for modeling
computer graphics objects. After the class, try to figure out the geometry for a cube. We’ve
included our “cube.h” in the appendices of the notes for you to compare yours to.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 13 -

First on this slide is the init() routine, which as mentioned, is where we
set up the “global” OpenGL state. In this case, init() sets the color that the
background of the window should be painted to when the window is cleared,
as well as configuring where the eye should be located and enabling the depth
test. Although you may not know what these mean at the moment, we will
discuss each of those topics. What is important to notice is that what we set in
init() remains in affect for the rest of the program’s execution. There is
nothing that says we can not turn these features off later; the separation of
these routines in this manner is purely for clarity in the program’s structure.

The reshape() routine is called when the user of a program resizes the
application’s window. We do a number of things in this routine, all of which
will be explained in detail in the Transformations section later today.

An OpenGL Program
(cont’d.)
An OpenGL Program
(cont’d.)

Set up some initial
OpenGL state

Handle when the
user resizes the

window

void init(void)
{
glClearColor(0, 0, 0, 1);
gluLookAt(2, 2, 2, 0, 0, 0, 0, 1, 0);
glEnable(GL_DEPTH_TEST);

}

void reshape(int width, int height)
{
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(60, (GLdouble) width / height,

1.0, 10.0);
glMatrixMode(GL_MODELVIEW);

}

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 14 -

An OpenGL Program
(cont’d.)
An OpenGL Program
(cont’d.)
void display(void)
{
int i, j;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glBegin(GL_QUADS);
for (i = 0; i < NUM_CUBE_FACES; ++i) {
glColor3fv(faceColor[i]);
for (j = 0; j < NUM_VERTICES_PER_FACE; ++j) {
glVertex3fv(vertex[face[i][j]]);

}
}
glEnd();

glFlush();
}

Have OpenGL
draw a cube
from some
3D points
(vertices)

Finally, we see the display() routine which is used by GLUT to call
our OpenGL calls to make our image. Almost all of your OpenGL drawing
code should be called from display() (or routines that display() calls).

As with most display()-like functions, a number of common things
occur in the following order:
1. The window is cleared with a call to glClear(). This will color all of
the pixels in the window with the color set with glClearColor() (see the
previous slide and look in the init() routine). Any image that was in the
window is overwritten.

2. Next, we do all of our OpenGL rendering. In this case, we draw a cube,
setting the color of each face with a call to glColor3fv(), and specify
where the vertices of the cube should be positioned by calling
glVertex3fv().

3. Finally, when all of the OpenGL rendering is completed, we eithe r call
glFlush() or glutSwapBuffers() to “swap the buffers,” which will be
discussed in the Animation and Depth Buffering section.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 15 -

GLUT Callback FunctionsGLUT Callback Functions

• Routine to call when something happens
– window resize or redraw
– user input
– animation

• “Register” callbacks with GLUT
glutDisplayFunc(display);
glutIdleFunc(idle);
glutKeyboardFunc(keyboard);

GLUT uses a callback mechanism to do its event processing. Callbacks
simplify event processing for the application developer. As compared to more
traditional event driven programming, where the author must receive and
process each event, and call whatever actions are necessary, callbacks simplify
the process by defining what actions are supported, and automatically handling
the user events. All the author must do is fill in what should happen when.

GLUT supports many different callback actions, including:
• glutDisplayFunc() - called when pixels in the window need to
be refreshed.
• glutReshapeFunc() - called when the window changes size

• glutKeyboardFunc() - called when a key is struck on the
keyboard
• glutMouseFunc() - called when the user presses a mouse button
on the mouse
• glutMotionFunc() - called when the user moves the mouse
while a mouse button is pressed
• glutPassiveMouseFunc() - called when the mouse is moved
regardless of mouse button state
• glutIdleFunc() - a callback function called when nothing else is
going on. Very useful for animations.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 16 -

Drawing with OpenGL

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 17 -

What can OpenGL Draw?What can OpenGL Draw?

• Geometric primitives
– points, lines and polygons

• Image Primitives
– images and bitmaps

• Separate pipeline for images and geometry
• linked through texture mapping

• Rendering depends on state
– colors, materials, light sources, etc.

As mentioned, OpenGL is a library for rendering computer graphics.
Generally, there are two operations that you do with OpenGL:

• draw something

• change the state of how OpenGL draws

OpenGL has two types of things that it can render: geometric primitives
and image primitives. Geometric primitives are points, lines and polygons.
Image primitives are bitmaps and graphics images (i.e. the pixels that you
might extract from a JPEG image after you have read it into your program.)
Additionally, OpenGL links image and geometric primitives together using
texture mapping, which is an advanced topic we will discuss this afternoon.

The other common operation that you do with OpenGL is setting state.
“Setting state” is the process of initializing the internal data that OpenGL uses
to render your primitives. It can be as simple as setting up the size of points
and the color that you want a vertex to be, to initializing multiple mipmap
levels for texture mapping.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 18 -

OpenGL Geometric
Primitives

• All geometric primitives are specified by
vertices

GL_QUAD_STRIP

GL_POLYGON

GL_TRIANGLE_STRIP GL_TRIANGLE_FAN

GL_POINTS

GL_LINES

GL_LINE_LOOP

GL_LINE_STRIP

GL_TRIANGLES

GL_QUADS

Every OpenGL geometric primitive is specified by its vertices, which are
homogenous coordinates. Homogenous coordinates are of the form
(x, y, z, w). Depending on how vertices are organized, OpenGL can render any
of the above primitives.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 19 -

Specifying Geometric
Primitives

• Primitives are specified using
glBegin(primType);
glEnd();

• primType determines how vertices are combined

glBegin(primType);
for (i = 0; i < n; ++i) {
glColor3f(red[i], green[i], blue[i]);
glVertex3fv(coords[i]);

}
glEnd();

OpenGL organizes vertices into primitives based upon which type is
passed into glBegin(). The possible types are:

GL_POINTS GL_LINE_STRIP
GL_LINES GL_LINE_LOOP
GL_POLYGON GL_TRIANGLE_STRIP
GL_TRIANGLES GL_TRIANGLE_FAN
GL_QUADS GL_QUAD_STRIP

We also see an example of setting OpenGL’s state, which is the topic of
the next few slides, and most of the course. In this case, the color that our
primitive is going to be drawn is set using the glColor() call.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 20 -

The Power of Setting
OpenGL State
The Power of Setting
OpenGL State

Appearance
is controlled
by setting
OpenGL’s
state.

By only changing different parts of OpenGL’s state, the same geometry (in
the case of the image in the slide, a sphere) can be used to generate drastically
different images.

Going from left to right across the top row, the first sphere is merely a
wire-frame rendering of the sphere. The middle image was made by drawing
the sphere twice, once solid in black, and a second time as a white wire-frame
sphere over the solid black one. The right-most image shows a flat-shaded
sphere, under the influence of OpenGL lighting. Flat-shading means that each
geometric primitive has the same color.

For the bottom row (left to right), the first image is the same sphere, only
this time, gouraud- (or smooth-) shaded. The only difference in the programs
between the top-row right, and bottom-row left is a single line of OpenGL
code. The middle sphere was generated using texture mapping. The final
image is the smooth-shaded sphere, with texture-mapped lines over the solid
sphere.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 21 -

How OpenGL Works: The
Conceptual Model
How OpenGL Works: The
Conceptual Model

Configure
how OpenGL
should draw

stuff

Draw stuff

Conceptually, OpenGL allows you, the application designer, to do two
things:

1. Control how the next items you draw will be processed. This is
done by setting the OpenGL’s state. OpenGL’s state includes the
current drawing color, parameters that control the color and
location of lights, texture maps, and many other configurable
settings.

2. Draw, or using the technical term, render graphical objects called
primitives.

Your application will consist of cycles of setting state, and rendering using
the state that you just set.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 22 -

Controlling OpenGL’s
Drawing
Controlling OpenGL’s
Drawing

• Set OpenGL’s rendering state
– State controls how things are drawn

• shading – lighting

• texture maps – line styles (stipples)

• polygon patterns – transparency

Most of programming OpenGL is controlling its internal configuration,
called state. State is just the set of values that OpenGL uses when it draws
something. For example, if you wanted to draw a blue triangle, you would
first tell OpenGL to set the current vertex color to blue, using the glColor()
function. Then you pass the geometry to draw the triangle using the
glVertex() calls you just saw.

OpenGL has over 400 function calls in it, most of which are concerned
with setting the rendering state. Among the things that state controls are:

• current rendering color

• parameters used for simulating lighting

• processing data to be used as texture maps

• patterns (called stipples, in OpenGL) for lines and polygons

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 23 -

Setting OpenGL StateSetting OpenGL State

• Three ways to set OpenGL state:
1. Set values to be used for processing

vertices
• most common methods of setting state

– glColor() / glIndex()
– glNormal()
– glTexCoord()

• state must be set before calling glVertex()

There are three ways to set OpenGL state.

The first, as detailed here, is to directly set parameters that OpenGL will
use in processing vertices. This includes setting colors, lighting normals, and
texture coordinates. These values will not change (under most circumstances)
until the next time you specify data. In some cases, this every vertex will have
its own unique set of these values, and the data will change with each vertex.
In other cases, values may remain constant across the entire execution of a
program.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 24 -

Setting OpenGL State
(cont’d.)
Setting OpenGL State
(cont’d.)

2. Turning on a rendering mode
glEnable() / glDisable()

3. Configuring the specifics of a particular
rendering mode
• Each mode has unique commands for setting

its values

glMaterialfv()

There are two actions that are required to control how OpenGL renders.

1. The first is turning on or off a rendering feature. This is done using
the OpenGL calls glEnable() and glDisable(). When
glEnable() is called for a particular feature, all OpenGL
rendering after that point in the program will use that feature until it
is turned off with glDisable().

2. Almost all OpenGL features have configurable values that you can
set. Whether it is the color of the next thing you draw, or
specifying an image that OpenGL should use as a texture map,
there will be some calls unique to that feature that control all of its
state. Most of the OpenGL API, and most of what you will see
today, is concerned with setting the state of the individual features.

Every OpenGL feature has a default set of values so that even without
setting any state, you can still have OpenGL render things. The initial state
is pretty boring; it renders most things in white.

It’s important to note that initial state is identical for everyOpenGL
implementation, regardless of which operating system, or which hardware
system you are working on.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 25 -

OpenGL and ColorOpenGL and Color

• The OpenGL Color Model
– OpenGL uses the RGB(A) color model

• There is also a color-index mode, but we won’t
discuss it today

• Colors are specified as floating-point
numbers in the range [0.0, 1.0]
– for example, to set a window’s background

color, you would call
glClearColor(1.0, 0.3, 0.6, 1.0);

RR GG BB AA

Since computer graphics are all about color, it is important to know how to
specify colors when using OpenGL. Conceptually, OpenGL uses the RGB
(red, green, and blue) color space. Each of the three colors is a component of
the color. The value of each color component is a real (floating-point) number
between 0.0 and 1.0. Values outside of that range are clamped.

As an example, the call to set a window’s background color in OpenGL is
glClearColor(), as demonstrated on the slide. The colors specified for
the background color are (1.0, 0.3, 0.6), for red, green, and blue, respectively.
The fourth value in glClearColor() is named alpha and is discussed later
in the course. Generally, when you call glClearColor(), you want to set
the alpha component to 1.0.

OpenGL also supports color- index mode rendering, but as RGB based
rendering is the most common, and there are some features that require RGB
(most notably, texture mapping), we do not discuss color- index mode
rendering in the scope of this class.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 26 -

Shapes TutorialShapes Tutorial

This is the first of the series of Nate Robins’ tutorials. This tutorial
illustrates the principles of rendering geometry, specifying both colors and
vertices.

The shapes tutorial has two views: a screen-space window and a command
manipulation window.

In the command manipulation window, pressing the LEFT mouse while
the pointer is over the green parameter numbers allows you to move the mouse
in the y-direction (up and down) and change their values. With this action, you
can change the appearance of the geometric primitive in the other window.
With the RIGHT mouse button, you can bring up a pop-up menu to change the
primitive you are rendering. (Note that the parameters have minimum and
maximum values in the tutorials, sometimes to prevent you from wandering
too far. In an application, you probably do not want to have floating-point
color values less than 0.0 or greater than 1.0, but you are likely to want to
position vertices at coordinates outside the boundaries of this tutorial.)

In the screen-space window, the RIGHT mouse button brings up a different
pop-up menu, which has menu choices to change the appearance of the
geometry in different ways.

The left and right mouse buttons will do similar operations in the other
tutorials.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 27 -

Animation and Depth Buffering

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 28 -

Double BufferingDouble Buffering

1
2

4
8

16

1
2

4
8

16
Front
Buffer

Back
Buffer

Display

Double buffer is a technique for tricking the eye into seeing smooth
animation of rendered scenes. The color buffer is usually divided into two
equal halves, called the front buffer and the back buffer.

The front buffer is displayed while the application renders into the back
buffer. When the application completes rendering to the back buffer, it
requests the graphics display hardware to swap the roles of the buffers, causing
the back buffer to now be displayed, and the previous front buffer to become
the new back buffer.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 29 -

Animation Using Double
Buffering
Animation Using Double
Buffering

1. Request a double buffered color buffer
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);

2. Clear color buffer
glClear(GL_COLOR_BUFFER_BIT);

3. Render scene
4. Request swap of front and back buffers

glutSwapBuffers();

• Repeat steps 2 - 4 for animation

Requesting double buffering in GLUT is simple. Adding GLUT_DOUBLE
to your glutInitDisplayMode() call will cause your window to be
double buffered.

When your application is finished rendering its current frame, and wants to
swap the front and back buffers, the glutSwapBuffers() call will request
the windowing system to update the window’s color buffers. The
glutSwapBuffers() call is part of the GLUT library; if you use your operating
system’s native windowing system to do OpenGL, you will use a different
function than glutSwapBuffers() to do a buffer swap. Each windowing system
has it’s own call for doing a swap buffers operation (for GLX,
glXSwapBuffers; for WGL, wglSwapBuffers; etc.)

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 30 -

Depth Buffering and
Hidden Surface Removal

1
2

4
8

16

1
2

4
8

16
Color
Buffer

Depth
Buffer

Display

Depth buffering is a technique to determine which primitives in your scene
are occluded by other primitives. As each pixel in a primitive is rasterized, its
distance from the eyepoint (depth value), is compared with the values stored in
the depth buffer. If the pixel’s depth value is less than the stored value, the
pixel’s depth value is written to the depth buffer, and its colo r is written to the
color buffer.

The depth buffer algorithm is:
if (pixel->z < depthBuffer(x,y)->z) {

depthBuffer(x,y)->z = pixel->z;
colorBuffer(x,y)->color = pixel->color;

}
OpenGL depth values range from [0.0, 1.0], with 1.0 being essent ially

infinitely far from the eyepoint. Generally, the depth buffer is cleared to 1.0 at
the start of a frame.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 31 -

Depth Buffering Using
OpenGL
Depth Buffering Using
OpenGL

1. Request a depth buffer
glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE |

GLUT_DEPTH);

2. Enable depth buffering
glEnable(GL_DEPTH_TEST);

3. Clear color and depth buffers
glClear(GL_COLOR_BUFFER_BIT |

GL_DEPTH_BUFFER_BIT);

4. Render scene
5. Swap color buffers

Enabling depth testing in OpenGL is very straightforward.

A depth buffer must be requested for your window, once again using the
glutInitDisplayMode(), and the GLUT_DEPTH bit.

Once the window is created, the depth test is enabled using
glEnable(GL_DEPTH_TEST).

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 32 -

Transformations

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 33 -

Camera Analogy

• 3D is just like taking a photograph (lots
of photographs!)

camera

tripod model

viewing
volume

This model has become known as the “synthetic camera model”.

Note that both the objects to be viewed and the camera are three-
dimensional while the resulting image is two dimensional.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 34 -

Camera Analogy and
Transformations
• Projection transformations

– adjust the lens of the camera

• Viewing transformations
– tripod–define position and orientation of the viewing

volume in the world

• Modeling transformations
– moving the model

• Viewport transformations
– enlarge or reduce the physical photograph

Note that human vision and a camera lens have cone-shaped viewing
volumes. OpenGL (and almost all computer graphics APIs) describe a
pyramid-shaped viewing volume. Therefore, the computer will “see”
differently from the natural viewpoints, especially along the edges of viewing
volumes. This is particularly pronounced for wide-angle “fish-eye” camera
lenses.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 35 -

v
e
r
t
e
x

Modelview
Matrix

Projection
Matrix

Perspective
Division

Viewport
Transform

Modelview

Modelview

Projection

l
l
l

object ey
e

clip normalized
device

window

• other calculations here
– material è color
– shade model (flat)
– polygon rendering mode
– polygon culling
– clipping

Transformation PipelineTransformation Pipeline

The depth of matrix stacks are implementation-dependent, but the model-
view matrix stack is guaranteed to be at least 32 matrices deep, and the
Projection matrix stack is guaranteed to be at least 2 matrices deep.

The material- to-color, flat-shading, and clipping calculations take place
after the model-view matrix calculations, but before the Projection matrix. The
polygon culling and rendering mode operations take place after the Viewport
operations.

There is also a texture matrix stack, which is outside the scope of this
course. It is an advanced texture mapping topic.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 36 -

Coordinate Systems and
Transformations
Coordinate Systems and
Transformations
• Steps in forming an image

1. specify geometry (object coordinates)
2. specify camera (camera coordinates)
3. project (window coordinates)
4. map to viewport (screen coordinates)

• Each step uses transformations
• Every transformation is equivalent to a change

in coordinate systems (frames)

Every transformation can be thought of as changing the representation of a
vertex from one coordinate system or frame to another. Thus, initially vertices
are specified in object coordinates. However, to view them, OpenGL must
convert these representations to ones in the reference system of the camera.
This change of representations is described by a transformation matrix (the
model-view matrix). Similarly, the projection matrix converts from camera
coordinates to window coordinates.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 37 -

Homogeneous Coordinates

– each vertex is a column vector

– w is usually 1.0
– all operations are matrix multiplications
– directions (directed line segments) can be represented

with w = 0.0



















=

w
z
y

x

v
r

A 3D vertex is represented by a 4-tuple vector (homogeneous coordinate
system).

Why is a 4-tuple vector used for a 3D (x, y, z) vertex? To ensure that all
matrix operations are multiplications.

If w is changed from 1.0, we can recover x, y and z by division by w.
Generally, only perspective transformations change w and require this
perspective division in the pipeline.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 38 -



















=

151173

141062

13951

12840

mmmm
mmmm
mmmm
mmmm

M

3D Transformations

• A vertex is transformed by 4 x 4 matrices
– all affine operations are matrix multiplications
– all matrices are stored column-major in OpenGL
– matrices are always post-multiplied
– product of matrix and vector is vvM

Perspective projection and translation require the 4th row and column, or
operations would require addition, as well as multiplication.

For operations other than perspective projection, the fourth row is always
(0, 0, 0, 1) which leaves w unchanged..

Because OpenGL only multiplies a matrix on the right, the programmer
must remember that the last matrix specified is the first applied.

Recall that matrix multiplication is not commutative (i.e., for matrices A,
and B, AB is not the same as BA). This holds true for OpenGL matrix
operations. In particular, when you specify matrix transformations in
OpenGL, the matrices accumulate in such a way that the last transformation
you specify in your program is the first operation applied to a vertex. For
example, if you specify a rotation and then a translation, the vertex is first
rotated around the axis specified by the angle specified in your rotation
transformation, and then translated by your translate operation. If you issued
the rotation and translation in the reverse order, the translation would modify
the vertex first, and then the rotation.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 39 -

Specifying
Transformations
Specifying
Transformations

• Programmer has two styles of specifying
transformations
– specify matrices (glLoadMatrix,
glMultMatrix)

– specify operation (glRotate, glOrtho)

• Programmer does not have to remember
the exact matrices
– see appendix of the OpenGL Programming

Guide

Generally, a programmer can obtain the desired matrix by a sequence of
simple transformations that can be concatenated together, e.g.
glRotatef(), glTranslatef(), and glScalef().

For the basic viewing transformations, OpenGL and the Utility library
have supporting functions.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 40 -

Programming
Transformations

• Prior to rendering, view, locate, and
orient:
– eye/camera position
– 3D geometry

• Manage the matrices
– including matrix stack

• Combine (composite) transformations

Because transformation matrices are part of the state, they must be defined
prior to any vertices to which they are to apply.

In modeling, we often have objects specified in their own coordinate
systems and must use OpenGL transformations to bring the objects into the
scene.

OpenGL provides matrix stacks for each type of supported matrix (model-
view, projection, texture) to store matrices.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 41 -

Matrix OperationsMatrix Operations

• Specify Current Matrix Stack
glMatrixMode(GL_MODELVIEW or GL_PROJECTION)

• Other Matrix or Stack Operations
glLoadIdentity() glPushMatrix()

glPopMatrix()

• Viewport
– usually same as window size
– viewport aspect ratio should be same as projection

transformation or resulting image may be distorted
glViewport(x, y, width, height)

glLoadMatrix*() replaces the matrix on the top of the current matrix
stack. glMultMatrix*(), post-multiples the matrix on the top of the
current matrix stack. The matrix argument is a column-major 4 × 4 double or
single precision floating point matrix.

Matrix stacks are used because it is more efficient to save and restore
matrices than to calculate and multiply new matrices. Popping a matrix stack
can be said to “jump back” to a previous location or orientation.

glViewport() clips the vertex or raster position. For geometric
primitives, a new vertex may be created. For raster primitives, the raster
position is completely clipped.

There is a per-fragment operation, the scissor test, which works in
situations where viewport clipping does not. The scissor operation is
particularly good for fine clipping raster (bitmap or image) primitives.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 42 -

Projection TransformationProjection Transformation

• Shape of viewing frustum
• Perspective projection

gluPerspective(fovy, aspect, zNear, zFar)
glFrustum(left, right, bottom, top, zNear, zFar)

• Orthographic parallel projection
glOrtho(left, right, bottom, top, zNear, zFar)

gluOrtho2D(left, right, bottom, top)

• calls glOrtho() with z values near zero

For perspective projections, the viewing volume is shaped like a truncated
pyramid (frustum). There is a distinct camera (eye) position, and vertices of
objects are “projected” to camera. Objects which are further from the camera
appear smaller. The default camera position at (0, 0, 0), looks down the z-axis,
although the camera can be moved by other transformations.

For gluPerspective(), fovy is the angle of field of view (in
degrees) in the y direction. fovy must be between 0.0 and 180.0, exclusive.
aspect is x/y and should be the same as the viewport to avoid distortion.
zNear and zFar define the distance to the near and far clipping planes.

The glFrustum() call is rarely used in practice.
Warning: for gluPerspective() or glFrustum(), do not use zero
for zNear!
For glOrtho(), the viewing volume is shaped like a rectangular

parallelepiped (a box). Vertices of an object are “projected” towards infinity,
and as such, distance does not change the apparent size of an object, as
happens under perspective projection. Orthographic projection is used for
drafting, and design (such as blueprints).

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 43 -

Applying Projection
Transformations
Applying Projection
Transformations

• Typical use (orthographic projection)
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(left, right, bottom, top, zNear, zFar);

Many users would follow the demonstrated sequence of commands with a
glMatrixMode(GL_MODELVIEW) call to return to model-view stack.

In this example, the green line segment is inside the view volume and is
projected (with parallel projectors) to the green line on the view surface. The
pink line segment lies outside the volume specified by glOrtho() and is
clipped.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 44 -

Viewing Transformations

• Position the camera/eye in the scene
– place the tripod down; aim camera

• To “fly through” a scene
– change viewing transformation and

redraw scene
• gluLookAt(eyex, eyey, eyez,

aimx, aimy, aimz,
upx, upy, upz)

– up vector determines unique orientation
– careful of degenerate positions

tripod

gluLookAt() multiplies itself onto the current matrix, so it usually
comes after glMatrixMode(GL_MODELVIEW) and
glLoadIdentity().

Because of degenerate positions, gluLookAt() is not recommended for
most animated fly-over applications.

An alternative is to specify a sequence of rotations and transla tions that are
concatenated with an initial identity matrix.

Note: that the name model-view matrix is appropriate since moving objects
in the model front of the camera is equivalent to moving the camera to view a
set of objects.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 45 -

Projection TutorialProjection Tutorial

The RIGHT mouse button controls different menus. The screen-space
view menu allows you to choose different models. The command-
manipulation menu allows you to select different projection commands
(including glOrtho and glFrustum).

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 46 -

Modeling Transformations

• Move object
glTranslate{fd}(x, y, z)

• Rotate object around arbitrary axis
glRotate{fd}(angle, x, y, z)
– angle is in degrees

• Dilate (stretch or shrink) or mirror object
glScale{fd}(x, y, z)

()zyx

glTranslate(), glRotate(), and glScale() multiplies itself
onto the current matrix, so it usually comes after
glMatrixMode(GL_MODELVIEW). There are many situations where the
modeling transformation is multiplied onto a non-identity matrix.

A vertex’s distance from the origin changes the effect of glRotate() or
glScale(). These operations have a fixed point for the origin. Generally,
the further from the origin, the more pronounced the effect. To rotate (or scale)
with a different fixed point, we must first translate, then rotate (or scale) and
then undo the translation with another translation.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 47 -

Transformation TutorialTransformation Tutorial

For right now, concentrate on changing the effect of one command at a
time. After each time that you change one command, you may want to reset
the values before continuing on to the next command.

The RIGHT mouse button controls different menus. The screen-space
view menu allows you to choose different models. The command-
manipulation menu allows you to change the order of the glTranslatef()
and glRotatef() commands. Later, we will see the effect of changing the
order of modeling commands.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 48 -

Connection: Viewing and
Modeling

• Moving camera is equivalent to moving
every object in the world towards a
stationary camera

• Viewing transformations are equivalent to
several modeling transformations
– gluLookAt() has its own command
– can make your own polar view or pilot view

Instead of gluLookAt(), one can use the following combinations of
glTranslate() and glRotate() to achieve a viewing transformation.
Like gluLookAt(), these transformations should be multiplied onto the
model-view matrix, which should have an initial identity matrix.

To create a viewing transformation in which the viewer orbits anobject,
use this sequence (which is known as “polar view”):

glTranslated(0, 0, -distance)
glRotated(-twist, 0, 0, 1)
glRotated(-incidence, 1, 0, 0)
glRotated(azimuth, 0, 0, 1)

To create a viewing transformation which orients the viewer (roll, pitch,
and heading) at position (x, y, z), use this sequence (known as “pilot view”):

glRotated(roll, 0, 0, 1)
glRotated(pitch, 0, 1, 0)
glRotated(heading, 1, 0, 0)
glTranslated(-x, -y, -z)

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 49 -

Common Transformation
Usage
Common Transformation
Usage

• 2 examples of resize() routine
– restate projection & viewing transformations

• Usually called when window resized
• Registered as callback for
glutReshapeFunc()

Example: Suppose the user resizes the window. Do we see the same
objects?

What if the new aspect ratio is different from the original? Can we avoid
distortion of objects?

What we should do is application dependent. Hence users should write
their own reshape callbacks.

Typical reshape callbacks alter the projection matrix or the viewport.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 50 -

Example 1: Perspective &
LookAt
void resize(int width, int height)
{

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(65.0,

(GLdouble)width/height,
1.0, 100.0);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, 5.0,

0.0, 0.0, 0.0,
0.0, 1.0, 0.0);

}

Example one of resize() uses the viewport’s width and height values
as the aspect ratio for gluPerspective() which eliminates distortion.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 51 -

Example 2: Ortho

void resize(int width, int height)
{

GLdouble aspect = (GLdouble) width /
height;

GLdouble left = -2.5, right = 2.5;
GLdouble bottom = -2.5, top = 2.5;
glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
… continued …

In example two of resize(), we first compute the aspect ratio
(aspect) of the new viewing area. Then we will use this value to modify the
world space values (left, right, bottom, top) of the viewing frustum
depending on the new shape of the viewing volume

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 52 -

if (aspect < 1.0) {
left /= aspect;
right /= aspect;

} else {
bottom *= aspect;
top *= aspect;

}
glOrtho(left, right, bottom, top,

near, far);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}

Example 2: Ortho (cont’d)

Continuing from the previous page, we determine how to modify the
viewing volume based on the computed aspect ratio. After we compute the
new world space values, we call glOrtho() to modify the viewing volume.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 53 -

Compositing Modeling
Transformations
Compositing Modeling
Transformations

• Problem: hierarchical objects
– one position depends upon a previous

position
– robot arm or hand; sub-assemblies

• Solution: moving local coordinate system
– modeling transformations move coordinate

system
– post-multiply column-major matrices
– OpenGL post-multiplies matrices

The order in which modeling transformations are performed is important
because each modeling transformation is represented by a matrix, and matrix
multiplication is not commutative. So a rotate followed by a translate is
different from a translate followed by a rotate.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 54 -

Compositing Modeling
Transformations
Compositing Modeling
Transformations

• Problem: objects move relative to
absolute world origin
– my object rotates around the wrong origin

• make it spin around its center or something else

• Solution: fixed coordinate system
– modeling transformations move objects

around fixed coordinate system
– pre-multiply column-major matrices
– OpenGL post-multiplies matrices
– must reverse order of operations to

achieve desired effect

You will adjust to reading a lot of code backwards!

Typical sequence
glTranslatef(x,y,z);
glRotatef(theta, ax, ay, az);
glTranslatef(-x,-y,-z);
object();

Here (x, y, z) is the fixed point. We first (last transformation in code) move
it to the origin. Then we rotate about the axis (ax, ay, az) and finally move
fixed point back.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 55 -

Lighting

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 56 -

Lighting PrinciplesLighting Principles

• Lighting simulates how objects reflect light
– material composition of object
– light’s color and position
– global lighting parameters

• ambient light
• two sided lighting

– available in both color index
and RGBA mode

Lighting is an important technique in computer graphics. Without lighting,
objects tend to look like they are made out of plastic.

OpenGL divides lighting into three parts: material properties, light
properties and global lighting parameters.

Lighting is available in both RGBA mode and color index mode. RGBA is
more flexible and less restrictive than color index mode lighting.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 57 -

How OpenGL Simulates
Lights
How OpenGL Simulates
Lights

• Phong lighting model
– Computed at vertices

• Lighting contributors
– Surface material properties
– Light properties
– Lighting model properties

OpenGL lighting is based on the Phong lighting model. At each ve rtex in
the primitive, a color is computed using that primitives material properties
along with the light settings.

The color for the vertex is computed by adding four computed colors for
the final vertex color. The four contributors to the vertex colo r are:

• Ambient is color of the object from all the undirected light in a scene.

• Diffuse is the base color of the object under current lighting. There
must be a light shining on the object to get a diffuse contribution.

• Specular is the contribution of the shiny highlights on the object.

• Emission is the contribution added in if the object emits light (i.e.
glows)

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 58 -

Surface NormalsSurface Normals

• Normals define how a surface reflects light
glNormal3f(x, y, z)

– Current normal is used to compute vertex’s color
– Use unit normals for proper lighting

• scaling affects a normal’s length
glEnable(GL_NORMALIZE)

or
glEnable(GL_RESCALE_NORMAL)

The lighting normal tells OpenGL how the object reflects light around a
vertex. If you imagine that there is a small mirror at the vertex, the lighting
normal describes how the mirror is oriented, and consequently how light is
reflected.

glNormal*() sets the current normal, which is used in the lighting
computation for all vertices until a new normal is provided.

Lighting normals should be normalized to unit length for correct lighting
results. glScale*() affects normals as well as vertices, which can change
the normal’s length, and cause it to no longer be normalized. OpenGL can
automatically normalize normals, by enabling glEnable(GL_NORMALIZE).
or glEnable(GL_RESCALE_NORMAL). GL_RESCALE_NORMAL is a
special mode for when your normals are uniformly scaled. If not, use
GL_NORMALIZE which handles all normalization situations, but requires the
computation of a square root, which can potentially lower performance.

OpenGL evaluators and NURBS can provide lighting normals for
generated vertices automatically.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 59 -

Material PropertiesMaterial Properties

• Define the surface properties of a primitive
glMaterialfv(face, property, value);

– separate materials for front and back

GL_DIFFUSE Base color

GL_SPECULAR Highlight Color

GL_AMBIENT Low-light Color

GL_EMISSION Glow Color

GL_SHININESS Surface Smoothness

Material properties describe the color and surface properties of a material
(dull, shiny, etc.). OpenGL supports material properties for both the front and
back of objects, as described by their vertex winding.

The OpenGL material properties are:
• GL_DIFFUSE - base color of object

• GL_SPECULAR - color of highlights on object

• GL_AMBIENT - color of object when not directly illuminated

• GL_EMISSION - color emitted from the object (think of a firefly)

• GL_SHININESS - concentration of highlights on objects. Values
range from 0 (very rough surface - no highlight) to 128 (very shiny)

Material properties can be set for each face separately by specifying either
GL_FRONT or GL_BACK, or for both faces simultaneously using
GL_FRONT_AND_BACK.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 60 -

Light PropertiesLight Properties

glLightfv(light, property, value);
– light specifies which light

• multiple lights, starting with GL_LIGHT0
glGetIntegerv(GL_MAX_LIGHTS, &n);

– properties
• colors
• position and type
• attenuation

The glLight() call is used to set the parameters for a light. OpenGL
implementations must support at least eight lights, which are named
GL_LIGHT0 through GL_LIGHTn, where n is one less than the maximum
number supported by an implementation.

OpenGL lights have a number of characteristics which can be changed
from their default values. Color properties allow separate interactions with the
different material properties. Position properties control the location and type
of the light and attenuation controls the natural tendency of light to decay over
distance.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 61 -

OpenGL lights can emit different colors for each of a materials properties.
For example, a light’s GL_AMBIENT color is combined with a material’s
GL_AMBIENT color to produce the ambient contribution to the color -
Likewise for the diffuse and specular colors.

Light Sources (cont'd.)Light Sources (cont'd.)

• Light color properties
– GL_AMBIENT
– GL_DIFFUSE
– GL_SPECULAR

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 62 -

Types of LightsTypes of Lights

• OpenGL supports two types of Lights
– Local (Point) light sources
– Infinite (Directional) light sources

• Type of light controlled by w coordinate

()
()w

z
w

y
w

xw
zyxw

 at positioned Light Local
 along directed LightInfinite

0
0

≠
=

OpenGL supports two types of lights: infinite (directional) and local
(point) light sources. The type of light is determined by the w coordinate of the
light’s position.

A light’s position is transformed by the current model-view matrix when it
is specified. As such, you can achieve different effects by when you specify
the position.

()
()




≠
=

w
z

w
y

w
xw

zyxw
at light local a define0

at light infinitean define0
if

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 63 -

Turning on the LightsTurning on the Lights

• Flip each light’s switch
glEnable(GL_LIGHTn);

• Turn on the power
glEnable(GL_LIGHTING);

Each OpenGL light is controllable separately, using glEnable() and the
respective light constant GL_LIGHTn. Additionally, global control over
whether lighting will be used to compute primitive colors is controlled by
passing GL_LIGHTING to glEnable(). This provides a handy way to
enable and disable lighting without turning on or off all of the separate
components.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 64 -

Light Material TutorialLight Material Tutorial

In this tutorial, concentrate on noticing the affects of different material and
light properties. Additionally, compare the results of using a local light versus
using an infinite light.

In particular, experiment with the GL_SHININESS parameter to see its
affects on highlights.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 65 -

Controlling a Light’s
Position
Controlling a Light’s
Position

• The model-view matrix affects a light’s
position
– Different effects based on when position is

specified
• eye coordinates
• world coordinates
• model coordinates

– Push and pop matrices to uniquely control a
light’s position

As mentioned previously, a light’s position is transformed by the current
model-view matrix when it is specified. As such, depending on when you
specify the light’s position, and what values are in the model-view matrix, you
can obtain different lighting effects.

In general, there are three coordinate systems where you can specify a
light’s position/direction

1) Eye coordinates - which is represented by an identity matrix in the
model-view. In this case, when the light’s position/direction is
specified, it remains fixed to the imaging plane. As such, regardless of
how the objects are manipulated, the highlights remain in the same
location relative to the eye.

2) World Coordinates - when only the viewing transformation is in the
model-view matrix. In this case, a light’s position/direction appears
fixed in the scene, as if the light were on a lamppost.

3) Model Coordinates - any combination of viewing and modeling
transformations is in the model-view matrix. This method allows
arbitrary, and even animated, position of a light using modeling
transformations.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 66 -

Light Position TutorialLight Position Tutorial

This tutorial demonstrates the different lighting affects of specifying a
light’s position in eye and world coordinates. Experiment with how highlights
and illuminated areas change under the different lighting position
specifications.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 67 -

Tips for Better LightingTips for Better Lighting

• Recall lighting computed only at vertices
– model tessellation heavily affects lighting

results
• better results but more geometry to process

• Use a single infinite light for fastest
lighting
– minimal computation per vertex

As with all of computing, time versus space is the continual tradeoff. To
get the best results from OpenGL lighting, your models should be finely
tessellated to get the best specular highlights and diffuse color boundaries.
This yields better results, but usually at a cost of more geometric primitives,
which could slow application performance.

To achieve maximum performance for lighting in your applications, use a
single infinite light source. This minimizes the amount of work that OpenGL
has to do to light every vertex.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 68 -

Texture Mapping

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 69 -

Pixel-based primitivesPixel-based primitives

• Bitmaps
– 2D array of bit masks for pixels

• update pixel color based on current color

• Images
– 2D array of pixel color information

• complete color information for each pixel

• OpenGL does not understand image
formats

In addition to geometric primitives, OpenGL also supports pixel-based
primitives. These primitives contain explicit color information for each pixel
that they contain. They come in two types:

Bitmaps are single bit images, which are used as a mask to determine
which pixels to update. The current color, set with glColor() is
used to determine the new pixel color.

Images are blocks of pixels with complete color information for each
pixel.

OpenGL, however, does not understand image formats, like JPEG, PNG or
GIFs. In order for OpenGL to use the information contained in those file
formats, the file must be read and decoded to obtain the color information, at
which point, OpenGL can rasterize the color values.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 70 -

Positioning Image
Primitives
Positioning Image
Primitives

glRasterPos3f(x, y, z)
– raster position transformed like geometry
– discarded if raster position

is outside of viewport
• may need to fine tune

viewport for desired
results

Raster Position

Images are positioned by specifying the raster position, which maps the
lower left corner of an image primitive to a point in space. Raster positions are
transformed and clipped the same as vertices. If a raster position fails the clip
check, no fragments are rasterized.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 71 -

Rendering Bitmaps and
Images
Rendering Bitmaps and
Images

• OpenGL can render blocks of pixels
– Doesn’t understand image formats

• Raster position controls placement of
entire image
– If the raster position is clipped, the entire

block of pixels is not rendered
glDrawPixels(width, height, format,

type, pixels);
glBitmap(width, height, xorig, yorig,

xmove, ymove, bitmap);

In addition to rendering geometric primitives, OpenGL can also render
imaging primitives. glDrawPixels() will render a rectangle of color values
with the lower-left corner of rectangle positioned at the current raster position
(set with glRasterPos*()). glBitmap() will use the provided bitmap,
which is a rectangle with a single bit representing whether a pixel should be
colored or not. The bitmap’s lower-left corner will also be positioned at the
current raster position, and for any bits in the bitmap, the corresponding pixels
will be shaded the current color when glRasterPos*() was called. (This
means that if you call

glColor3fv(color1);
glRasterPos2fv(pos);
glColor3fv(color2);
glBitmap(…);

The color used to shade pixels will be color1, and not color2. Just one of
those things to look out for.

OpenGL doesn't understand image formats (e.g., GIF, JPEG, TIFF, etc.),
nor how to render an image in one of those formats. You need to read the
image (probably using an image library, unless you’re ambitious0, and extract
the rectangle of pixel colors, which should then be passed into
glDrawPixels().

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 72 -

Reading the FramebufferReading the Framebuffer

• Generated images can be read from the
framebuffer
– You get back a block of pixels

• Read width×height rectangle of pixels
– Lower-left corner of rectangle positioned

at (x, y)

glReadPixels(x, y, width, height,
format, type, pixels);

OpenGL can also read the rendered pixels from the framebuffer and return
those values back to you. You might use them in an image file (e.g., a GIF,
JPEG, TIFF, etc.), as a frame in a movie, or whatever. In addition to reading
the color buffer, you can also read the depth buffer, stencil buffer, and others.
The format parameter controls what type of pixel values or color components
you want to render from the framebuffer.

A by-product of calling glReadPixels() is that it will flush all
outstanding OpenGL calls before the framebuffer is read.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 73 -

Frame
Buffer

Rasterization
(including

Pixel Zoom)

Per Fragment
Operations

Texture
Memory

Pixel -Transfer
Operations

(and Pixel Map)
CPU

Pixel
Storage
Modes

glReadPixels(), glCopyPixels()

glBitmap(), glDrawPixels()

glCopyTex*Image();

Pixel PipelinePixel Pipeline

• Programmable pixel storage
and transfer operations

Just as there is a pipeline that geometric primitives go through when they
are processed, so do pixels. The pixels are read from main storage, processed
to obtain the internal format which OpenGL uses, which may include color
translations or byte-swapping. After this, each pixel is rasterized into the
framebuffer.

In addition to rendering into the framebuffer, pixels can be copied from the
framebuffer back into host memory, or transferred into texture mapping
memory.

For best performance, the internal representation of a pixel array should
match the hardware. For example, with a 24 bit frame buffer, 8-8-8 RGB
would probably be a good match, but 10-10-10 RGB could be bad. Warning:
non-default values for pixel storage and transfer can be very slow.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 74 -

Texture MappingTexture Mapping

s

t

x

y

z

image

geometry screen

Textures are images that can be thought of as continuous and be one, two,
three, or four dimensional. By convention, the coordinates of the image are s, t,
r and q. Thus for the two dimensional image above, a point in the image is
given by its (s, t) values with (0, 0) in the lower- left corner and (1, 1) in the
top-right corner.

A texture map for a three-dimensional geometric object in (x, y, z) world
coordinates maps a point in (s, t) space to a corresponding point on the screen.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 75 -

Texture ExampleTexture Example

• The texture (below) is a
256 x 256 image that has
been mapped to a
rectangular polygon
which is viewed in
perspective

This example is from the texture mapping tutorial demo.

The size of textures must be a power of two. However, we can use image
manipulation routines to convert an image to the required size.

Texture can replace lighting and material effects or be used in
combination with them.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 76 -

Applying Textures IApplying Textures I

• Three steps to applying a texture
1. specify the texture

• read or generate image
• assign to texture
• enable texturing

2. assign texture coordinates to vertices
3. specify texture parameters

• wrapping, filtering

In the simplest approach, we must perform these three steps.

Textures reside in texture memory. When we assign an image to a texture
it is copied from processor memory to texture memory where pixels are
formatted differently.

Texture coordinates are actually part of the state as are other vertex
attributes such as color and normals. As with colors, OpenGL interpolates
texture inside geometric objects.

Because textures are really discrete and of limited extent, texture mapping
is subject to aliasing errors that can be controlled through filtering.

Texture memory is a limited resource and having only a single active
texture can lead to inefficient code.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 77 -

Texture Objects

• Have OpenGL store your images
– one image per texture object

– may be shared by several graphics contexts

• Generate texture names
glGenTextures(n, *texIds);

The first step in creating texture objects is to have OpenGL reserve some
indices for your objects. glGenTextures() will request n texture ids and
return those values back to you in texIds.

To begin defining a texture object, you call glBindTexture() with the
id of the object you want to create. The target is one of
GL_TEXTURE_{123}D(). All texturing calls become part of the object
until the next glBindTexture() is called.

To have OpenGL use a particular texture object, call
glBindTexture() with the target and id of the object you want to be
active.

To delete texture objects, use glDeleteTextures(n, *texIds
), where texIds is an array of texture object identifiers to be deleted.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 78 -

Texture Objects (cont'd.)Texture Objects (cont'd.)

• Create texture objects with texture data and
state
glBindTexture(target, id);

• Bind textures before using
glBindTexture(target, id);

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 79 -

• Define a texture image from an array of
texels in CPU memory

glTexImage2D(target, level, components,
w, h, border, format, type, *texels);

– dimensions of image must be powers of 2

• Texel colors are processed by pixel pipeline
– pixel scales, biases and lookups can be

done

Specify the Texture ImageSpecify the Texture Image

Specifying the texels for a texture is done using the
glTexImage{123}D() call. This will transfer the texels in CPU memory
to OpenGL, where they will be processed and converted into an internal
format.

The array of texels sent to OpenGL with glTexImage*() must be a
power of two in both directions. An optional one texel wide border may be
added around the image. This is useful for certain wrapping modes.

The level parameter is used for defining how OpenGL should use this
image when mapping texels to pixels. Generally, you’ll set the level to 0,
unless you are using a texturing technique called mipmapping, which we will
discuss in the next section.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 80 -

Converting A Texture
Image

• If dimensions of image are not power of 2
gluScaleImage(format, w_in, h_in,

type_in, *data_in, w_out, h_out,
type_out, *data_out);

– *_in is for source image
– *_out is for destination image

• Image interpolated and filtered during scaling

If your image does not meet the power of two requirement for a dimension,
the gluScaleImage() call will resample an image to a particular size. It
uses a simple box filter to interpolate the new images pixels from the source
image.

Additionally, gluScaleImage() can be used to convert from one data
type (i.e. GL_FLOAT) to another type, which may better match the internal
format in which OpenGL stores your texture.

Note that use of gluScaleImage() can also save memory.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 81 -

• Based on parametric texture coordinates
• glTexCoord*() specified at each vertex

s0, 0 1, 0

t 1, 1
0, 1

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b
c

Texture Space Object Space

Mapping a TextureMapping a Texture

When you want to map a texture onto a geometric primitive, you need to
provide texture coordinates. The glTexCoord*() call sets the current
texture coordinates. Valid texture coordinates are between 0 and 1, for each
texture dimension, and the default texture coordinate is (0, 0, 0, 1). If you pass
fewer texture coordinates than the currently active texture mode (for example,
using glTexCoord1d() while GL_TEXTURE_2D is enabled), the
additionally required texture coordinates take on default values.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 82 -

Tutorial: TextureTutorial: Texture

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 83 -

Applying Textures IIApplying Textures II

– specify textures in texture objects
– set texture filter
– set texture function
– set texture wrap mode
– set optional perspective correction hint
– bind texture object
– enable texturing
– supply texture coordinates for vertex

• coordinates can also be generated

The general steps to enable texturing are listed above. Some steps are
optional, and due to the number of combinations, complete coverage of the
topic is outside the scope of this course.

Here we use the texture object approach. Using texture objects may enable
your OpenGL implementation to make some optimizations behind the scenes.

As with any other OpenGL state, texture mapping requires that
glEnable() be called. The tokens for texturing are:

GL_TEXTURE_1D - one dimensional texturing

GL_TEXTURE_2D - two dimensional texturing

GL_TEXTURE_3D - three dimensional texturing

2D texturing is the most commonly used. 1D texturing is useful for
applying contours to objects (like altitude contours to mountains). 3D
texturing is useful for volume rendering.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 84 -

• Filter Modes
– minification or magnification
– special mipmap minification filters

• Wrap Modes
– clamping or repeating

• Texture Functions
– how to mix primitive’s color with texture’s color

• blend, modulate or replace texels

Texture Application
Methods

Textures and the objects being textured are rarely the same size (in pixels).
Filter modes determine the methods used by how texels should be expanded
(magnification), or shrunk (minification) to match a pixel’s size. An
additional technique, called mipmapping is a special instance of a minification
filter.

Wrap modes determine how to process texture coordinates outside of the
[0,1] range. The available modes are:

GL_CLAMP - clamp any values outside the range to closest valid value,
causing the edges of the texture to be “smeared” across the primitive
GL_REPEAT - use only the fractional part of the texture coordinate,

causing the texture to repeat across an object

Finally, the texture environment describes how a primitives fragment
colors and texel colors should be combined to produce the final framebuffer
color. Depending upon the type of texture (i.e. intensity texture vs. RGBA
texture) and the mode, pixels and texels may be simply multiplied, linearly
combined, or the texel may replace the fragment’s color altogether.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 85 -

Filter Modes

Texture Polygon

Magnification Minification

PolygonTexture

Example:
glTexParameteri(target, type, mode);

Filter modes control how pixels are minified or magnified. Generally a
color is computed using the nearest texel or by a linear average of several
texels.

The filter type, above is one of GL_TEXTURE_MIN_FILTER or
GL_TEXTURE_MAG_FILTER.

The mode is one of GL_NEAREST, GL_LINEAR, or special modes for
mipmapping. Mipmapping modes are used for minification only, and can have
values of:

GL_NEAREST_MIPMAP_NEAREST
GL_NEAREST_MIPMAP_LINEAR
GL_LINEAR_MIPMAP_NEAREST
GL_LINEAR_MIPMAP_LINEAR

Full coverage of mipmap texture filters is outside the scope of this course.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 86 -

Mipmapped Textures

• Mipmap allows for prefiltered texture maps of
decreasing resolutions

• Lessens interpolation errors for smaller textured
objects

• Declare mipmap level during texture definition
glTexImage*D(GL_TEXTURE_*D, level, …)

• GLU mipmap builder routines
gluBuild*DMipmaps(…)

• OpenGL 1.2 introduces advanced LOD controls

As primitives become smaller in screen space, a texture may appear to
shimmer as the minification filters creates rougher approximations.
Mipmapping is an attempt to reduce the shimmer effect by creating several
approximations of the original image at lower resolutions.

Each mipmap level should have an image which is one-half the height and
width of the previous level, to a minimum of one texel in either dimension.
For example, level 0 could be 32 x 8 texels. Then level 1 would be 16 x 4;
level 2 would be 8 x 2; level 3, 4 x 1; level 4, 2 x 1, and finally, level 5, 1 x 1.

The gluBuild*Dmipmaps() routines will automatically generate
each mipmap image, and call glTexImage*D() with the appropriate level
value.

OpenGL 1.2 introduces control over the minimum and maximum mipmap
levels, so you do not have to specify every mipmap level (and also add more
levels, on the fly).

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 87 -

Wrapping Mode

• Example:
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_S, GL_CLAMP)
glTexParameteri(GL_TEXTURE_2D,

GL_TEXTURE_WRAP_T, GL_REPEAT)

texture

s

t

GL_CLAMP
wrapping

GL_REPEAT
wrapping

Wrap mode determines what should happen if a texture coordinate lies
outside of the [0,1] range. If the GL_REPEAT wrap mode is used, for texture
coordinate values less than zero or greater than one, the integer is ignored and
only the fractional value is used.

If the GL_CLAMP wrap mode is used, the texture value at the extreme
(either 0 or 1) is used.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 88 -

Texture Functions

• Controls how texture is applied
glTexEnv{fi}[v](GL_TEXTURE_ENV, prop,

param)

• GL_TEXTURE_ENV_MODE modes
– GL_MODULATE
– GL_BLEND
– GL_REPLACE

• Set blend color with
GL_TEXTURE_ENV_COLOR

The texture mode determines how texels and fragment colors are
combined. The most common modes are:

GL_MODULATE - multiply texel and fragment color

GL_BLEND - linearly blend texel, fragment, env color

GL_REPLACE - replace fragment’s color with texel

If prop is GL_TEXTURE_ENV_COLOR, param is an array of four floating
point values representing the color to be used with the GL_BLEND texture
function.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 89 -

Perspective Correction
Hint
• Texture coordinate and color interpolation

– either linearly in screen space
– or using depth/perspective values (slower)

• Noticeable for polygons “on edge”
glHint(GL_PERSPECTIVE_CORRECTION_HINT, hint)

where hint is one of
•GL_DONT_CARE
•GL_NICEST
•GL_FASTEST

An OpenGL implementation may chose to ignore hints.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 90 -

Advanced OpenGL Topics

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 91 -

Working with OpenGL
Extensions
Working with OpenGL
Extensions

• OpenGL is always changing
– features are first introduced as extensions

• Call glGetString(GL_EXTENSIONS) to see
the extensions for your OpenGL implementation

•glext.h contains latest function names and
tokens

• May need to query a function pointer to
gain access to extension’s function
– Window system dependent pointer request

function
• glXGetProcAddress(), wglGetProcAddress()

OpenGL is continually adding new features. These new functions and
operations are first introduced as extensions to OpenGL. If they are adopted
by the OpenGL community, they may be added into the core of OpenGL when
OpenGL’s revision changes.

To access extensions, you should first check that the implementation
you’re working with supports the extensions that you need to use. Calling
glGetString(GL_EXTENSIONS) will return back the list of extensions
that your OpenGL implementation supports.

Once you know that your extension is supported, you may need to request
a pointer in order to be able to call the function (this has little to do with
OpenGL itself, but more with the variations in how operating sys tems and
drivers relate; however, this technique will work on almost all OpenGL
implementations). In order to obtain the function pointer, you need to query
the windowing system for that function. Since this operation is window-
system dependent, the function used varies from system to system (this
functionality hasn’t been implemented in GLUT at the time of this writing).
For the X Window System, you would call glXGetProcAddress(), and
for Microsoft Windows, you’d call wglGetProcAddresss(). Either
function will either return NULL if the function’s not available (i.e., the
extension’s not supported), or a pointer to the function.

The file glext.h, which is maintained at the www.opengl.org
website, contains the latest list of OpenGL extensions with their functions and
tokens.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 92 -

Alpha: the 4th Color
Component
Alpha: the 4th Color
Component

• Measure of Opacity
– simulate translucent objects

• glass, water, etc.

– composite images
– antialiasing
– ignored if blending is not enabled

glEnable(GL_BLEND)

The alpha component for a color is a measure of the fragment’s opacity. As
with other OpenGL color components, its value ranges from 0.0 (which
represents completely transparent) to 1.0 (completely opaque).

Alpha values are important for a number of uses:

• simulating translucent objects like glass, water, etc.

• blending and compositing images

• antialiasing geometric primitives
Blending can be enabled using glEnable(GL_BLEND).

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 93 -

BlendingBlending

• Combine fragments with pixel values that
are already in the framebuffer

glBlendFunc(src, dst)

FramebufferFramebuffer
PixelPixel
((dstdst))

Blending
Equation

Blending
Equation

FragmentFragment
((srcsrc))

BlendedBlended
PixelPixel

pfr CdstCsrcC
vvv

+=

Blending combines fragments with pixels to produce a new pixel color. If a
fragment makes it to the blending stage, the pixel is read from the
framebuffer’s position, combined with the fragment’s color and then written
back to the position.

The fragment and pixel each have a factor which controls their
contribution to the final pixel color. These blending factors are set using
glBlendFunc(), which sets the source factor, which is used to scale the
incoming fragment color, and the destination blending factor, which scales the
pixel read from the framebuffer. Common OpenGL blending factors are:

GL_ONE GL_ZERO
GL_SRC_ALPHA GL_ONE_MINUS_SRC_ALPHA

They are then combined using the blending equation, which is addition by
default.

Blending is enabled using glEnable(GL_BLEND)
Note: If your OpenGL implementation supports the GL_ARB_imaging

extension, you can modify the blending equation as well.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 94 -

AntialiasingAntialiasing

• Removing the Jaggies
glEnable(mode)

•GL_POINT_SMOOTH
•GL_LINE_SMOOTH
•GL_POLYGON_SMOOTH

– alpha value computed by computing
sub-pixel coverage

– available in both RGBA and colormap modes

Antialiasing is a process to remove the jaggies which is the common name
for jagged edges of rasterized geometric primitives. OpenGL supports
antialiasing of all geometric primitives by enabling both GL_BLEND and one
of the constants listed above.

Antialiasing is accomplished in RGBA mode by computing an alpha value
for each pixel that the primitive touches. This value is computed by
subdividing the pixel into subpixels and determining the ratio used subpixels to
total subpixels for that pixel. Using the computed alpha value, the fragment’s
colors are blended into the existing color in the framebuffer fo r that pixel.

Color index mode requires a ramp of colors in the colormap to simulate the
different values for each of the pixel coverage ratios.

In certain cases, GL_POLYGON_SMOOTH may not provide sufficient
results, particularly if polygons share edges. As such, using the accumulation
buffer for full scene antialising may be a better solution.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 95 -

Summary / Q & A

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 96 -

On-Line ResourcesOn-Line Resources

– http://www.opengl.org
• start here; up to date specification and lots of sample code

– news:comp.graphics.api.opengl
– http://www.sgi.com/software/opengl
– http://www.mesa3d.org/

• Brian Paul’s Mesa 3D
– http://www.cs.utah.edu/~narobins/opengl.html

• very special thanks to Nate Robins for the OpenGL Tutors
• source code for tutors available here!

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 97 -

Books

• OpenGL Programming Guide, 4th Edition
• OpenGL Reference Manual, 4th Edition
• OpenGL Shading Language
• Interactive Computer Graphics: A top-

down approach with OpenGL, 3rd Edition
• OpenGL Programming for the X Window

System
– includes many GLUT examples

The OpenGL Programming Guide is often referred to as the “Red Book”
due to the color of its cover. Likewise, The OpenGL Reference Manual is also
called the “Blue Book.”

Mark Kilgard’s OpenGL Programming for the X Window System, is the
“Green Book”, and Ron Fosner’s OpenGL Programming for Microsoft
Windows, which has a white cover is sometimes called the “Alpha Book.”

All of the OpenGL programming series books, along with Interactive
Computer Graphics: A top-down approach with OpenGL are published by
Addison-Wesley Publishers.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

- 98 -

Thanks for ComingThanks for Coming

• Questions and Answers
Dave Shreiner shreiner@sgi.com
Ed Angel angel@cs.unm.edu
Vicki Shreiner vshreiner@sgi.com

- 100 -

Bibliography

• The OpenGL Programming Guide: The Official Guide to Learning OpenGL,
Version 1.4, 4th Edition
The OpenGL Architecture Review Board, Dave Shreiner, Mason Woo, Jackie
Neider, and Tom Davis.
Addison-Wesley / November 2003
ISBN: 0321173481

• The OpenGL Reference Manual, Version 1.4, 4th Edition
The OpenGL Architecture Review Board; Edited by Dave Shreiner
Addison-Wesley / February 2004
ISBN: 032117383X

• Interactive Computer Graphics: A Top-Down Approach with OpenGL, 3rd Edition
Ed Angel
Addison-Wesley / July 2002
ISBN: 0201773430

• OpenGL: A Primer, 2nd Edition
Ed Angel
Addison-Wesley / June 2001
ISBN: 0321237625

• OpenGL Programming for the X Window System
Mark Kilgard
Addison-Wesley / August 1996
ISBN: 0201483599

• OpenGL Programming for Windows 95 and Windows NT
Ron Fosner
Addison-Wesley / October 1996
ISBN: 0201407094

• The OpenGL Shading Language
Randi Rost
Addison-Wesley / February 2004
ISBN: 0321197895

• The OpenGL Extensions Guide
Eric Lengyel
Charles River Media / July 2003
ISBN: 1584502940

- 101 -

Glossary
antialiasing

A technique to reduce the visual artifacts (commonly
called the jaggies) that result from rasterization of
geometric primitives into the framebuffer. Most often
the technique employs alpha-blending, or usage of a
nulti-sampled framebuffer.

back buffer The non-visible rendering buffer where images are
rendered before a buffer swap. When a swap buffer
occurs (e.g., when the applications calls
glutSwapBuffers()) the front buffer and the
back buffer are exchanged.

callback functions A function that is called when a certain event occurs.
The GLUT library uses callback functions as it’s
principle means of allowing you to control the
response to various user input (e.g., pressed keys,
moving the mouse, resizing the window, etc.)

enumerated types Specific types that OpenGL defines to help with cross-
platform compatibility.

eye coordinates The three-dimensional coordinate system used by
OpenGL. World coordinates are transformed into eye-
coordinates by the application of the model-view
matrix.

flat shading Using the same color for all fragments that are defined
by a geometric primitive.

frame A completed rendering. An animation, for example, is
a sequence of frames.

front buffer The visible buffer in double-buffering mode. This
buffer is displayed while rendering is directed to the
back buffer.

geometric primitives Points, lines, or polygons: the only rendering
primitives available in core OpenGL.

gouraud- (or smooth-) shaded Interpolating colors across a geometric primitive.

homogenous coordinates Four-dimensional coordinates, (x, y, z, w) used for
representing vertices. The reason they’re called
“homogenous” is that all transformations reduce to a
4×4 matrix multiplication operation.

image primitives Pixel rectangles or bitmaps that can be rendered
directly into the framebuffer.

jaggies The stair-stepping effect that occurs when rendering

- 102 -

diagonal edges in the framebuffer. Antialiasing is
used to reduce the effects of the jaggies.

model coordinates The three-dimensional coordinate system where your
models are defined. Model coordinates are the one
that’s you pass into OpenGL using the
glVertex*() functions.

multi-sampled buffer A framebuffer where each pixel is represented by a
collection of sub-pixels. When a primitive is rendered,
each sub-pixel is colored, and when the processing of
all sub-pixels is completed, the results of the sub-
pixels are combined to form the final pixel color in the
framebuffer. This allows the system to better antialias
primitives.

pipelined architecture A model for specifying the operations that OpenGL
executes in processing geometric and image
primitives.

rendering The process of drawing in computer graphics.

setting state Modifying OpenGL’s internal state to change how will
render primitives.

state OpenGL’s internal values that are used when
rendering. Most OpenGL functions are for setting
state.

stipples Patterns applied to lines and polygons. Stipples differ
from texture maps as they determine whether a pixel is
to be rendered or not, as compared to a texture’s
modification of a pixel’s color.

texture mapping A process of coloring a pixel based on looking up
colors in an image. Texture mapping allows you to
specify considerable more detail to a geometric
primitive than is possible using just gouraud shading
alone.

texture object An OpenGL object that manages the state for a texture
map. Using texture objects helps to manage
OpenGL’s resources more efficiently to increase
performance.

world coordinates The coordinate system where all of your models live
and are position in. In general if you only specify a
viewing transformation, and never any modeling
transformations, then all of the coordinates you pass
into OpenGL will be world coordinates.

