SIGGRAPH2004 C)

An Interactive Introduction to
OpenGL Programming

Course # 29

CrentL

Dave Shreiner
Ed Angel
Vicki Shreiner

Table of Contents

gL a oo [UTot o] o TSRS WY
Prer@QUISITES ..ot WY
L0 o 0: PP RRPS WY
Presentation COUMrSE NOLESciviirireeie et s Vi
An Interactive Introduction to OpenGL Programming - Course # 29............. 1
LAV = 1o . 1= 2
WEICOIME ...ttt st bttt st nb e b ens 3
What Is OpenGL, and What Can [t Do for ME?.........cccvveviiiieecieesee e 4
RS = =0 1N S 5
OpenGL and RE@ed APIS.........ccoiieeceeseee e 6
What Is Required FOr Your Programscccevvveieeiieciee e esiee e esies e 7
OpenGL Command FOrMELS.........ccerirereeieesese s 8
The OPENGL PIPEIINEc.coiiiiecesiese st 9
An Example OpenGL Program.........cceceeeeieeiesieese e see s 10
Sequence of Most OpenGL Programs..........cooeeeeieenenieeseenesee e 11
AN OPENGL PrOgram......ccceiiieieiieesieeee et 12
An OpenGL Program (CONt d.)eeveeieeeerieeee e 13
AN OpenGL Program (CONE'd.)cocveiieeiiecieesee e 14
GLUT Callback FUNCLIONS........ccveeiierieeieseereee e 15
Drawing With OPENGLccvveeeeee et 16
What can OPenGL DIraW?........cocueeieeiie et sne e 17
OpenGL GEOMELNC PHMITIVEScouiiiiieieeee s 18
Specifying GEOMELIiC PrimitiVES.........cccoveiiiiriere e 19
The Power of Setting OpenGL State........cccveeveevieceecece e 20
How OpenGL Works: The Conceptual Modelcccooeeveriininnininnienenne 21
Controlling OPeNGL’ S DraWiNgcovreririeieriesiesie st 22
Setting OPENGL SEALEocveieeececeeeese e 23
Setting OpenGL State (CONE' D) .vvvvveeiieeiie e e 24
OpPENGL AN COIOT ...t 25
SNAPES TULOMELveeeeeceeeceee et e st e e es 26
Animation and Depth BUFfEringccccveiinirnieiere e 27
DOUDIE BUFFEITNG ..ottt 28
Animation Using Double BUFfENNG.........cccoueevveereeieseese e 29
Depth Buffering and Hidden Surface Removalc.cocvveeeenenenenesennns 30
Depth Buffering USiNg OPENGL.........ccovieiiiriinieieeee e 31

T ANSI O MALIONS ...t e e e e e e e e ettt e e e e e e e s s e e eeeeeeeesaeennneeeaeeens 32

CaAMEFAANAIOQY ..eeoueeeieieeie ettt st b et sre e e e 33
Camera Analogy and Transformationsccceverererenenesieeiee e 34
Transformation PIPEliNe.........coveiveceiieceee e 35
Coordinate Systems and TranSfOrmMationscoceevereererresieeseesee e seseens 36
HOMOJENEOUS COOMTINGLESeeveviriieiieieeee et 37
3D TranSfOrMELIONScccoierieriirenerieee e e 38
Specifying TransformMationS.........ccuveeeiie e e 39
Programming TranSfOorMatioNsceeeeeeieeierene e 40
MELTTX OPEFBLIONSecuveeeeerieeieeeeseesieeee s e e e se e teeeesreesseeseesseesseeneesreenseennnns 41
Projection Transformationcccveeiieiece s 42
Applying Projection TranSformations..........c.cceveererieneeneeseesieesee e 43
Viewing TranSfOorMEatioNsccooeeerenerenenieie e 44
ProjeCtion TULOMI@lcoceeiiieieeecse et 45
Modeling TranSfOrMELIONS..........coeerireerieieeee e eee s 46
Transformation TULOMT@l.........ooverieiriere e 47
Connection: Viewing and MOGEliNg.......ccccouevvriereere e 48
Common Transformation USAgE..........cccuvvieeiiieiieeiie et 49
Example 1: Perspective & LOOKALcceiiiiieeeeresee e 50
Tz 10 =24 @ 1 oo TSP 51
Example 2: Ortho (CONE'd) ...c.veceeceeiecee e 52
Compositing Modeling Transformations............ccoeeerereeneeresieeseeee e 53
Compositing Modeling Transformations............cccovevevenenenceieesesesese s 54
[1 €1 o 55
Lighting PriNCIPIES. ..o e 56
How OpenGL SIMUlates LIghtS........coeeieeriieierenie e 57
SUMACE NOIMEIS. ... e 58
Material PrOPErtiES......cccuiiiieiie ettt eere e 59
Light PrOPEITIES......ceeiieeeeeeeeetete sttt 60
Light SOUICES (CONE'A.) ..vveeeeieeeeeiecsie et e et 61
TYPES OF LIGNES .t 62
TUurning 0N the LIghLS......ccuviiiiieeeee e e 63
Light Material TULOMT@l........ccuoiiiiiriiirieeeeie e 64
Controlling a Light’ S POSITION..........ccciiiieiieiese e 65
Light POSITION TULOM@eeieeiiiieieiieeie et 66
TipS fOr Better LIghtingcoeieiireierieeeee e 67
LI AU TR =AY = o] o] o o SRS 68
PixXel-based PrimitiVES........ccccciv i 69
Positioning IMage PrimitiVES..........ooiiiriiieieeeese e 70
Rendering Bitmaps and IMageSccceveeieeeesiere e eee e see e 71
Reading the Framebuffer ..o 72
PIXE PIPEIINE ..o s 73
TEXIUrE MAPPING vttt sttt st bbbt e et st b e b nne e 74
TEXTUIE EXAMPIE.....i ettt 75
APPIYING TEXTUIES | ...t 76

TEXIUrE ODJECLS.eiieee ettt 77

Texture ODJECES (CONE'A.)coveriieeeeeree e e 78
Specify the TEXTUre IMBEGEccovereieeeeeeee e s 79
Converting A TeXtUre IMaQEccceeeeieee et ae e ne s 80
MEPPING @ TEXLUME.......eeieeeieeieeee ettt st sb e sreenae e 81
TULO A TEXIUIE ...ttt ae e ene e 82
APPIYING TEXIUIES 1 ...t 83
Texture Application MethOdScoouv i 84
0 1Y oo L= PR PRPSR 85
MIpMEPPEA TEXIUIESccvveeeeeeecteesieeeesiee e eeestee e eeesreesseseesseessesneesreenseennnns 86
WIrapPing MOOEcc.ooieieiece ettt 87
TEXIUIE FUNCLIONS ...ttt st 88
Perspective CorreCtion Hint ... 89
Advanced OPENGL TOPICS....ccuciiiiieceere e eeese e sre et eneesneeneas 90
Working with OpenGL EXTENSIONS..........cccooveiuereenienieseesie e 91
Alpha: the 4th Color COMPONENTcoireiieieierie e 92
2] =07 1 o SR 93
N 1= = S T e USRS 94
SUMMANY [Q & A e e 95
ONFLINE RESDUICES........eiuieiesieste sttt sttt s 96
BOOKS ...ttt bbb renne s 97
Thanks fOr COMINGccueeiiiiieiiereee e e 98
BibDlOGrADNY ... 100
(1101552 YRS 101

Introduction

“An Interactive Introduction to OpenGL Programming” provides an overview of the
OpenGL Application Programming Interface (API), alibrary of subroutines for drawing
three-dimensional objects and images on a computer. After the completion of the course,
a programmer able to write simple programs in the “C” language will be able to create an
OpenGL application that has moving 3D objects that ook like they are being lit by lights
in the scene and by specifying colors or images that should be used to color those objects.
Additionally, the viewpoint of the scene can be controlled by the mouse and keyboard,
and can be updated interactively. Finally, the course provides references for exploring
more of the capabilities of OpenGL that aren’t covered in the class.

Course Prerequisites

Y ou need very little experience with computer graphics or with programming to become
successful using OpenGL. Our course does expect you to have areading knowledge of a
procedural language (all of our examplesarein “C”, but don’t use any advanced
concepts). We also try to explain the background of each concept as well as demonstrate
how to accomplish the technique in OpenGL. A bibliography isincluded to aid you in
finding more information or clarifying points that didn’t make sense the first time around.

OpenGL and Window Systems

The OpenGL library is platform independent with implementations available on almost
every operating system: Microsoft Windows; Apple Computer’sMAC O/S; and most
version of UNIX, including Linux. Although the code that you write using the OpenGL
APl is easily moved between platforms, OpenGL relies on the native windowing system
of the computer you' re running the program on. Each windowing system has unique
methods for opening windows, processing keyboard and mouse input, and enabling
windows to be able to be drawn into by OpenGL. In order to make this process ssmpler,
this course uses the GLUT library (OpenGL Utility Toolkit, authored by Mark Kilgard)
to hide the specifics required for different operating systems.

Topics

Our course covers a number of topics that enable the creation of interesting OpenGL
applications:

3D object modeling — how to combine vertices to create the three geometric
primitives. points, lines, and polygons. We'll also discuss how to construct
objects by assembling geometric primitives. By far, modeling objects is the most
laborious task in 3D graphics. For all but the simplest shapes, or shapes derived
from mathematical formulas (i.e., circles, spheres, cones, etc.), most objects are
created using a modeling program (e.g., Maya, 3D Studio Max, Houdini, etc.).
The GLUT library contains routines for creating some common shapes as well,
which we briefly discuss.

Transformations — computer graphics relies heavily on the use of 4x4 matrices for
mapping our virtual three-dimensional world to the two-dimensional screen.

OpenGL takes care of doing al the math, and simplifies the specification and use
of these matrices. We'll find that using OpenGL, we can easily control:

0 how our virtua eye views our scene
0 position, size, and orientation of the objects in our scene

0 thecreation of acomplex model from the hierarchica placement of its
components and suitable transformations (think about a car; each whesel is
basically the same, just positiored at different points on the chassis. We'll
use transformations to put al the things in the right places, and make the
entire car move as a single unit).

Lighting — ssimulate how light illuminates the surface of our objectsin our scene.
In nature, what we see is the result of light reflecting off of our surroundings, and
entering our eye. These interactions are quite complicated, and for an interactive
program, are too computationally intensive to be completely accurate. OpenGL
uses a simplified lighting model to create reasonable lighting effects that usually
suffice for interactive applications. One point that generally surprises novices to
OpenGL isthat shadows are not supported. Shadows require considerable
knowledge of the scene and the placement of the objects, which is data that’s not
generaly available to OpenGL whileit's drawing. This may seem counter-
intuitive; however, OpenGL processes each primitive in isolation. Techniques
that add shadows into an OpenGL scene have been developed. Any of the textsin
the bibliography will contain information on the topic.

Depth buffering — determines which geometric primitives are closest to the eye.
We take for granted that when an object is behind another object, the one farthest
from our eyeisobscured. Since OpenGL doesn’t enforce a rendering order for
the primitives you ask it to render, depth buffering is used to determine visibility
of objects in your scene.

Double buffering — One of the principle goals of the course is to help you develop
interactive graphics programs. To move objects around in your scene, you will
have to draw the scene multiple times, moving objects the appropriate amount
each time. In general this approach starts with a*“clean date” for each frame,
which requires OpenGL to initialize its framebuffer at the start of each frame.
Thisinitiaization is generally done by setting all of the pixels to the same color;
however, doing this causes the animation to “flicker.” Double buffering isa
technique to remove the flickering from our sequence of frames, and provide a
smooth interactive experience.

Texture mapping — this technique allows for geometric models, perhaps composed
of just afew polygons, to have much higher color fidelity. Thisis accomplished
by determining the color of the pixels filled by our geometric primitives not only
by the color of that primitive, but from atexture image. The texture contains
much more color information, and OpenGL knows how to extract the colors to
produce a much richer picture than the standard method for shading a polygon.
Texture mapping enables a wide variety of techniques that would otherwise be
prohibitively complex to do.

Presentation Course Notes

The following pages include the dides presented at SIGGRAPH 2004, as well as notes to
aid in use of the slides after the talk.

vi

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

An Interactive Introduction to
OpenGL Programming

Course # 29

Dave Shreiner
Ed Angel
Vicki Shreiner

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Welcome

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Welcome

» Today’s Goals and Agenda

— Describe OpenGL and its uses

— Demonstrate and describe OpenGL'’s
capabilities and features

— Enable you to write an interactive, 3-D
computer graphics program in OpenGL

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

What Is OpenGL, and What
Can It Do for Me?

* OpenGL is a computer graphics rendering API

— Generate high-quality color images by rendering with
geometric and image primitives

— Create interactive applications with 3D graphics

 OpenGL is
* operating system independent
» window system independent

OpenGL isalibrary for drawing, or rendering, computer graphics. By
using OpenGL, you can create interactive applications that render high-quality
color images composed of 3D geometric objects and images.

OpenGL iswindow- and operating-system independent. As such, the part
of your application that does rendering is platform independent. However, in
order for OpenGL to be able to render, it needs a window to draw into.
Generdly, thisis controlled by the windowing system on whatever platform
you are working on.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Related APIs

* GLU (OpenGL Utility Library)
— part of OpenGL
— NURBS, tessellators, quadric shapes, etc.

 AGL, GLX, WGL
— glue between OpenGL and windowing systems
 GLUT (OpenGL Utility Toolkit)

— portable windowing API
— not officially part of OpenGL

As mentioned, OpenGL is window and operating system independent. To
integrate it into various window systems, additional libraries are used to
modify a native window into an OpenGL capable window. Every window
system has its own unique library and functions to do this. Some examples
are:

» GLXfor the X Windows system, common on Unix platforms
* AGL for the Apple Macintosh
* WGL for Microsoft Windows

OpenGL also includes a utility library, GLU, to simplify common tasks
such as: rendering quadric surfaces (i.e. spheres, cones, cylinders, etc.),
working with NURBS and curves, and concave polygon tessellation.

Finally to simplify programming and window system dependence, we will
be using the freeware library, GLUT. GLUT, written by Mark Kilgard, isa
public domain window system independent toolkit for making simple OpenGL
applications. GLUT simplifies the process of creating windows, working with
events in the window system and handling animation.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

OpenGL and Related APIs

application program

OpenGL Motif
widget or similar

software and/or hardware

The above diagram illustrates the relationships of the various libraries and
window system components.

Generaly, applications which require more user interface support will use
alibrary designed to support those types of features (i.e. buttons, menu and
scroll bars, etc.) such as Motif or the Win32 API.

Prototype applications, or ones which do not require all the bells and
whistles of afull GUI, may choose to use GLUT instead because of its
simplified programming model and window system independence.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

What Is Required For Your
Programs

» Headers Files
#i ncl ude <@/ gl . h>
#i ncl ude <G/ gl ext. h>
#i ncl ude <@&./ gl u. h>
#i ncl ude <@/ gl ut. h>

e Libraries

e Enumerated Types
— OpenGL defines numerous types for compatibility
e @@float, G.int, G.enum etc.

All of our discussions today will be presented in the C computer language.
For C, there are afew required elements which an application must do:

» Header files describe al of the function calls, their parameters and
defined constant values to the compiler. OpenGL has header files for
GL (the core library), GLU (the utility library), and GLUT (freeware
windowing toolkit).

Note: gl ut . h includesgl . h and gl u. h. On Microsoft Windows,
including only gl ut . h is recommended to avoid warnings about
redefining Windows macros.

* Libraries are the operating system dependent implementation of
OpenGL on the system you are using. Each operating system has its
own set of libraries. For Unix systems, the OpenGL library is
commonly named | i bGL. so (which isusually specified as- | GL on
the compile line) and for Microsoft Windows, it is named

opengl 32. I'i b.

* Findly, enumerated types are definitions for the basic types (i.e.
float, double, int, etc.) which your program uses to store variables. To
simplify platform independence for OpenGL programs, a complete st
of enumerated types are defined. Use them to simplify transferring
your programs to other operating systems.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

OpenGL Command
Formats

gl Vertex3fv(v)

I

Dat a Type

conponent s - byte Y
2 - (x,Y) K gﬂngned A scalar form
3 - (xy,2) - unsi gned short
4 - (X,¥,2z,W) T A
i - unsigned int
- float
- doubl e

gl Vertex2f(x, y)

The OpenGL API calls are designed to accept almost any basic data type,
which is reflected in the calls name. Knowing how the call namesare
structured makes it easy to determine which call should be used for a particular
data format and size.

For instance, vertices from most commercial models are stored asthree-
component, floating-point vectors. As such, the appropriate OpenGL
command to useisgl Vert ex3f v(coor ds) .

OpenGL considers all pointsto be 3D. Even if you're drawing asimple
2D line plot, OpenGL considers each vertex to have an x-, y-, and az
coordinate. In fact, OpenGL really uses homogenous coordinates, which are a
set of four numbers (a 4-tuple) that is usually written as (x, y, z, w). Thew-
coordinate is there to simplify the matrix multiplication that we'll discussin
the Transformations section. Y ou can safely ignore w for now.

For gl Vert ex* () callswhich do not specify all the coordinates (i.e.
gl Vertex2f ()), OpenGL will default z= 0.0,andw = 1.0.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

The OpenGL Pipeline

Vertex Fragment

Processing Processing Framebuffer

* Processing is controlled by setting
OpenGL’s state
— colors, lights and object materials, texture
maps
— drawing styles, depth testing

OpenGL is a pipelined architecture, which means that the order of
operations is fixed. In general, OpenGL operations can be partitioned into two
“processing units’: vertex operations, and fragment operations.

The operation of each pipeline step is controlled by what’s commonly
referred to as state. State is just the collection of variables that OpenGL keeps
track of internally. They include colors, positions, texture maps, etc. We'll
discuss many of these state groups during the course. Setting state comprises
about 80% of the OpenGL functions in the library.

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

An Example OpenGL Program

- 10 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Sequence of Most OpenGL
Programs

Configure/\

and open a

window Initialize /\
OpenGL’s
state
Process

user events Update /\
OpenGL’

s
State
lUilpee=y) Draw an
image

OpenGL was primarily designed to be able to draw high-quality images
fast enough so that an application could draw many of them a second, and
provide the user with an interactive application, where each frame could be
customized by input from the user.

The general flow of an interactive OpenGL application is:
1. Configure and open awindow suitable for drawing OpenGL into.

2. Initialize any OpenGL state that you will need to use throughout
the application.

3. Process any events that the user might have entered. These could
include pressing a key on the keyboard, moving the mouse, or
moving or resizing the application’s window.

4. Draw your 3D image using OpenGL with values that may have
been entered from the user’s actions, or other data that the program
has available to it.

-11 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

An OpenGL Program

#i ncl ude <@/ gl ut. h>
#i ncl ude "cube. h"

void main(int argc, char *argv[])
{
glutlnit(&rgc, argv);
glutlnitD splayMde(G.UT_RGBA |
GLUT_DEPTH) ;
| ut Cr eat eW nd “cube”); :
IO Al Tl =) The main part of
init(): the program.
GLUT isused to
gl ut Di spl ayFunc(display); open the OpenGL
gl ut ReshapeFunc(reshape); window, and handle

ol i R leerl) input from the user.

This slide contains the program statements for the mai n() routine of a C program that
uses OpenGL and GLUT. For the most part, all of the programs you will see today, and
indeed may of the programs available as examples of OpenGL programming that use GLUT,
will look very similar to this program.

All GLUT-based OpenGL programs begin with configuring the GLUT window to be
opened.

Next, intheroutinei ni t () (detailed on the following slide), we make OpenGL callsto
set parametersthat we'll uselater inthedi spl ay() function. These parameters, commonly
called state, are values that OpenGL usesto determine how it will draw. There's nothing
special about thei ni t () routine, we just useit to logically separate the state that we need to
set up only once (as compared to every frame).

After initialization, we set up our GLUT callback functions, which are routines that you
write to have OpenGL draw objects and other operations. Callback functions, if you’ re not
familiar with them, make it easy to have ageneric library (like GLUT), that can easily be
configured by providing afew routines of your own construction.

Finally, as with all interactive programs, the event loop is entered. For GLUT-based
programs, thisis done by callinggl ut Mai nLoop() . Asgl ut Mai nLoop() never exits (it
isessentialy aninfinite loop), any program statements that follow gl ut Mai nLoop() will
never be executed.

The header file“cube. h” contains the geometric data (vertices, colors, etc.) for the cube
model. Cubes are avery popular shape to render in computer graphics (along with teapots ...
we'll explain that one later), and is anice example to work through to get afeel for modeling
computer graphics objects. After the class, try to figure out the geometry for acube. We've
included our “cube. h” in the appendices of the notesfor you to compare yours to.

12 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

An OpenGL Program
(cont’'d.)

void init(void)

{
gldearColor(0, 0, 0, 1); Set up someinitial
gl uLookAt(2, 2, 2, 0, 0, 0, 0, 1, 0); OpenGL state
gl Enabl e(G._DEPTH TEST);

}

voi d reshape(int width, int height)

{
gl Viewport(0, 0, width, height);
gl Matri xMbde(G._PRQIECTI ON); Handlewhen the
gl Loadl dentity(); user resizesthe

gl uPer specti ve(1 6(§), 1(61610)qu e) width / height window

gl Matri xMode(GL_MODELVI EW);

First on thisdideisthei ni t () routine, which as mentioned, is where we
set up the “global” OpenGL state. Inthiscase, i ni t () setsthe color that the
background of the window should be painted to when the window is cleared,
as well as configuring where the eye should be located and enabling the depth
test. Although you may not know what these mean at the moment, we will
discuss each of those topics. What is important to notice is thet what we set in
init() remansin afect for the rest of the program’s execution. Thereis
nothing that says we can not turn these features off later; the separation of
these routines in this manner is purely for clarity in the program’ s structure.

Ther eshape() routineis called when the user of a program resizes the

application’s window. We do a number of things in this routine, all of which
will be explained in detail in the Transformations section later today.

13-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

An OpenGL Program
(cont’'d.)

voi d display(void)
{

int i, j;
gldear(G _COCR BWFFER BIT | G._DEPTH BUFFER BIT);

gl Begi n(G._QUADS); Have OpenGL
for (i =0; i < NUMCUBE FACES;, ++) { draw acube
gl Col or 3fv(faceColor[i]); from some
for (j =0; j < NUMVERTICES PER FACE, ++) {

gl Vertex3fv(vertex[face[i][j]1]); 3D points

(vertices)
gl End();
gl Fl ush();

Finally, we seethe di spl ay() routine which isused by GLUT to call
our OpenGL calls to make our image. Almost all of your OpenGL drawing
code should be called from di spl ay() (or routinesthat di spl ay() cdls).

Aswith most di spl ay() -like functions, a number of common things
occur in the following order:

1. Thewindow iscleared withacall togl Cl ear (). Thiswill color al of
the pixels in the window with the color set with gl Cl ear Col or () (seethe
previous dide and look inthei ni t () routine). Any image that was in the
window is overwritten.

2. Next, we do all of our OpenGL rendering. In this case, we draw a cube,
setting the color of each face with acall to gl Col or 3f v() , and specify

where the vertices of the cube should be positioned by calling
gl Vertex3fv().

3. Findly, when all of the OpenGL rendering is completed, we either call
gl Fl ush() orgl ut SwapBuf f er s() to “swap the buffers,” which will be
discussed in the Animation and Depth Buffering section.

- 14 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

GLUT Callback Functions

* Routine to call when something happens
— window resize or redraw
— user input
— animation
» “Register” callbacks with GLUT
gl ut Di spl ayFunc(di splay);
glutldl eFunc(idle);
gl ut Keyboar dFunc(keyboard) ;

GLUT uses a callback mechanism to do its event processing. Callbacks
simplify event processing for the application developer. As compared to more
traditional event driven programming, where the author must receive and
process each event, and call whatever actions are necessary, callbacks simplify
the process by defining what actions are supported, and automatically handling
the user events. All the author must do isfill in what should happen when.

GLUT supports many different callback actions, including:

e gl ut Di spl ayFunc() - caled when pixelsin the window need to
be refreshed.

* gl ut ReshapeFunc() - caled when the window changes size
* gl ut Keyboar dFunc() - called when akey is struck on the

keyboard
* gl ut MouseFunc() - called when the user presses a mouse button
on the mouse

* gl ut Mot i onFunc() - caled when the user moves the mouse
while a mouse button is pressed

* gl ut Passi veMouseFunc() - cdled when the mouse is moved
regardless of mouse button state

e gl utldl eFunc() - acalback function called when nothing elseis
going on. Very useful for animations.

- 15-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Drawing with OpenGL

- 16 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

What can OpenGL Draw?

Geometric primitives

— points, lines and polygons

Image Primitives

— images and bitmaps

Separate pipeline for images and geometry
* linked through texture mapping

Rendering depends on state

— colors, materials, light sources, etc.

As mentioned, OpenGL is alibrary for rendering computer graphics.
Generaly, there are two operations that you do with OpenGL.:

* draw something
* change the state of how OpenGL draws

OpenGL has two types of things that it can render: geometric primitives
and image primitives. Geometric primitives are points, lines and polygons.
Image primitives are bitmaps and graphics images (i.e. the pixels that you
might extract from a JPEG image after you have read it into your program.)
Additionally, OpenGL links image and geometric primitives together using
texture mapping, which is an advanced topic we will discuss this afternoon.

The other common operation that you do with OpenGL is setting state.
“Setting state” is the process of initializing the internal data that OpenGL uses
to render your primitives. It can be as simple as setting up the size of points
and the color that you want a vertex to be, to initializing multiple mipmap
levels for texture mapping.

-17 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

OpenGL Geometric
Primitives

 All geometric primitives are specified by
vertices

GL_P-O -NTS / \ S

LINES GL_LINE_STRP 6

A GL_LINE_LOOP

\ i A

Q GL_TRI ANGLES
/N . 4

GL_ TR ANGLE STRI P G._TRI ANGLE FAN

Every OpenGL geometric primitive is specified by its vertices, which are
homogenous coordinates. Homogenous coordinates are of the form
(%, y, z, w). Depending on how vertices are organized, OpenGL can render any
of the above primitives.

- 18-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Specifying Geometric

Primitives

* Primitives are specified using
gl Begi n(primlype);

gl End() ;
 primType determines how vertices are combined

gl Begi n(primlrype);

for (i =0; i <n; ++) {
gl Color3f(red[i], green[i], blue[i]
gl Vertex3fv(coords[i]);

}
gl End() ;

OpenGL organizes vertices into primitives based upon which type is
passed into gl Begi n() . The possible types are:

GL_PO NTS GL_LI NE_STRI P
GL_LI NES GL_LI NE_LOOP
GL_POLYGON GL_TRI ANGLE_STRI P
GL_TRI ANGLES GL_TRI ANGLE_FAN
GL_QUADS GL_QUAD STRI P

We also see an example of setting OpenGL’s state, which is the topic of

the next few dides, and most of the course. In this case, the color that our
primitive is going to be drawn is set using the gl Col or () cal.

-19-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

The Power of Setting
OpenGL State

Appearance
is controlled
by setting
OpenGL’s
state.

By only changing different parts of OpenGL’s state, the same geometry (in
the case of the image in the dide, a sphere) can be used to gererate drastically
different images.

Going from left to right across the top row, the first sphereis merely a
wire-frame rendering of the sphere. The middle image was made by drawing
the sphere twice, once solid in black, and a second time as a white wire-frame
sphere over the solid black one. The right- most image shows a flat-shaded
sphere, under the influence of OpenGL lighting. Flat-shading means that each
geometric primitive has the same color.

For the bottom row (left to right), the first image is the same sphere, only
this time, gouraud- (or smooth-) shaded. The only difference in the programs
between the top-row right, and bottom-row left isa single line of OpenGL
code. The middle sphere was generated using texture mapping. Thefinal
image is the smooth shaded sphere, with texture-mapped lines over the solid
sphere.

-20 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

How OpenGL Works: The
Conceptual Model

Configure
how OpenGL
should draw

stuff

Draw stuff

Conceptually, OpenGL allows you, the application designer, to do two
things:

1. Control how the next items you draw will be processed. Thisis
done by setting the OpenGL’s state. OpenGL's state includes the
current drawing color, parameters that control the color and
location of lights, texture maps, and many other configurable
settings.

2. Draw, or using the technical term, render graphical objects called
primitives.

Y our application will consist of cycles of setting state, and rendering using
the State that you just set.

=21 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Controlling OpenGL’s
Drawing

» Set OpenGL’s rendering state
— State controls how things are drawn
* shading — lighting
* texture maps — line styles (stipples)
* polygon patterns — transparency

Most of programming OpenGL is controlling its internal configuration,
caled state. Stateis just the set of values that OpenGL uses when it draws
something. For example, if you wanted to draw a blue triangle, you would
first tell OpenGL to set the current vertex color to blue, using the gl Col or ()

function. Then you pass the geometry to draw the triangle using the
gl Vertex() calsyoujust saw.

OpenGL has over 400 function callsin it, most of which are concerned
with setting the rendering state. Among the things that state controls are:

* current rendering color

» parameters used for smulating lighting

* processing data to be used as texture maps

» patterns (called stipples in OpenGL) for lines and polygons

-292 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Setting OpenGL State

» Three ways to set OpenGL state:
1. Set values to be used for processing
vertices
* most common methods of setting state
— gl Col or () /gl I ndex()
— gl Normal ()
— gl TexCoord()
» state must be set before calling gl Vert ex()

There are three ways to set OpenGL state.

Thefirst, as detailed here, isto directly set parameters that OpenGL will
use in processing vertices. This includes setting colors, lighting normals, and
texture coordinates. These values will not change (under most circumstances)
until the next time you specify data. 1n some cases, this every vertex will have
its own unique set of these values, and the data will change with each vertex.
In other cases, values may remain constant across the entire execution of a
program.

-23 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Setting OpenGL State
(cont’'d.)

2. Turning on a rendering mode
gl Enabl e() / gl D sabl e()
3. Configuring the specifics of a particular
rendering mode

* Each mode has unique commands for setting
its values

gl Material fv()

There are two actions that are required to control how OpenGL renders.

1. Thefirst isturning on or off arendering feature. Thisis dore using
the OpenGL calsgl Enabl e() andgl Di sabl e() . When
gl Enabl e() iscalled for aparticular feature, al OpenGL
rendering after that point in the program will use that feature until it
isturned off with gl Di sabl e() .

2. Almost al OpenGL features have configurable values that you can
set. Whether it is the color of the next thing you draw, or
specifying an image that OpenGL should use as a texture map,
there will be some calls unigque to that feature that control all of its
state. Most of the OpenGL API, and most of what you will see
today, is concerned with setting the state of the individual feaures.

Every OpenGL feature has a default set of values so that even without
setting any state, you can still have OpenGL render things. The initial state
IS pretty boring; it renders most things in white.

It's important to note that initial state isidentical for every OpenGL
implementation, regardless of which operating system, or which hardware
system you are working on.

-4 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

OpenGL and Color

e The OpenGL Color Model

— OpenGL uses the RGB(A) color model

* There is also a color-index mode, but we won't
discuss it today

» Colors are specified as floating-point
numbers in the range [0.0, 1.0]
— for example, to set a window's background

color, you would call
glClearColor(1.0, 0.3, 0.6, 1.0);

Since computer graphics are al about color, it isimportant to know how to
specify colors when using OpenGL. Conceptualy, OpenGL uses the RGB
(red, green, and blue) color space. Each of the three colorsis acomponent of
the color. The value of each color component is areal (floating-point) number
between 0.0 and 1.0. Vaues outside of that range are clamped.

As an example, the call to set awindow’ s background color in OpenGL is
gl C ear Col or () , asdemonstrated on the slide. The colors specified for
the background color are (1.0, 0.3, 0.6), for red, green, and blue, respectively.
The fourth value in gl Cl ear Col or () isnamed alpha and is discussed later
in the course. Generally, when you call gl Cl ear Col or (), you want to set

the alpha component to 1.0.
OpenGL also supports color-index mode rendering, but as RGB based
rendering is the most common, and there are some features that require RGB

(most notably, texture mapping), we do not discuss color-index mode
rendering in the scope of this class.

-25-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Shapes Tutorial

SIGGRAPH

i Shapes

Screen-space view Cammand manipulation window

glBegin (GL_TRIANGLE_STRIP);
glColor3f (1.00 ,0.00 ,1.00)
glVertex2f (0.0 ,25.0);
glColor3f (0.00 ,1.00 ,1.00)
glvVertex2f (50.0 , 150.0);
glColor3f (0.00 ,1.00 ,0.00)
glVertex2f (125.0, 100.0);
glColor3f (1.00 ,1.00 ,0.00)
glVertex2f (175.0, 200.0);
glEnd();

Thisisthefirst of the series of Nate Robins' tutorials. This tutorial
illustrates the principles of rendering geometry, specifying both colors and
vertices.

The shapes tutorial has two views: a screenspace window and a command
mani pulation window.

In the command manipulation window, pressing the LEFT mouse while
the pointer is over the green parameter numbers alows you to move the mouse
in the y-direction (up and down) and change their values. With this action, you
can change the appearance of the geometric primitive in the other window.
With the RIGHT mouse button, you can bring up a pop-up menu to change the
primitive you are rendering. (Note that the parameters have minimum and
maximum values in the tutorials, sometimes to prevent you from wandering
too far. In an application, you probably do not want to have floating-point
color values less than 0.0 or greater than 1.0, but you are likely to want to
position vertices at coordinates outside the boundaries of this tutorial.)

In the screen-space window, the RIGHT mouse button brings up a different
pop-up menu, which has menu choices to change the appearance of the
geometry in different ways.

The left and right mouse buttons will do similar operations in the other
tutorials.

-26 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Animation and Depth Buffering

07 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Double Buffering

Double buffer is a technique for tricking the eye into seeing smooth
animation of rendered scenes. The color buffer is usually divided into two
equal halves, called the front buffer and the back buffer.

The front buffer is displayed while the application renders into the back
buffer. When the application completes rendering to the back buffer, it
requests the graphics display hardware to swap the roles of the buffers, causing
the back buffer to now be displayed, and the previous front buffer to become
the new back buffer.

-28 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Animation Using Double
Buffering
Request a double buffered color buffer
glutlnitD spl ayMode(GLUT_RGB | GLUT_DOUBLE);

Clear color buffer
glCear(G._COLOR BUFFER BI T);

Render scene

Request swap of front and back buffers
gl ut SwapBuf fers();

Repeat steps 2 - 4 for animation

CrentL

Requesting double buffering in GLUT issimple. Adding GLUT_DOUBLE
toyour gl ut I ni t Di spl ayMode() call will cause your window to be

double buffered.

When your application is finished rendering its current frame, and wants to
swap the front and back buffers, the gl ut SwapBuf f er s() call will request
the windowing system to update the window’s color buffers. The
glutSwapBuffers() call is part of the GLUT library; if you use your operating
system’s native windowing system to do OpenGL, you will use a different
function than glutSwapBuffers() to do a buffer swap. Each windowing system
hasit's own call for doing a swap buffers operation (for GLX,
gl XSwapBuffers; for WGL, wglSwapBuffers etc.)

-29 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Depth Buffering and
Hidden Surface Removal

Depth buffering is a technique to determine which primitives in your scene
are occluded by other primitives. As each pixel in a primitive is rasterized, its
distance from the eyepoint (depth value), is compared with the values stored in
the depth buffer. If the pixel’s depth value is less than the stored value, the
pixel’s depth value is written to the depth buffer, and its color is written to the
color buffer.

The depth buffer algorithm is:
if (pixel->z < depthBuffer(x,y)->z) {
dept hBuffer(x,y)->z = pixel ->z;
col orBuf fer(x,y)->col or = pixel ->col or;

}

OpenGL depth values range from [0.0, 1.0], with 1.0 being essentially
infinitely far from the eyepoint. Generally, the depth buffer is cleared to 1.0 at
the start of aframe.

-30 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Depth Buffering Using
OpenGL

1. Request a depth buffer

glutlnitD spl ayMode(GLUT_RGB | GLUT_DOUBLE |
GLUT_DEPTH) ;

Enable depth buffering

gl Enabl e(G._DEPTH_TEST);

Clear color and depth buffers

gl O ear(GL_COLOR BUFFER BIT |
GL_DEPTH BUFFER BI T) ;

Render scene
Swap color buffers

Enabling depth testing in OpenGL is very straightforward.

A depth buffer must be requested for your window, once again using the
gl utlni t Di spl ayMdde(), andthe GLUT_DEPTH bhit.

Once the window is created, the depth test is enabled using
gl Enabl e(G._DEPTH_TEST) .

-31-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Transformations

-32 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Camera Analogy

» 3D is just like taking a photograph (lots
of photographs!)

viewing

This model has become known as the “synthetic camera model”.

Note that both the objects to be viewed and the camera are three-
dimensional while the resulting image is two dimensional.

- 33 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Camera Analogy and
Transformations

 Projection transformations
— adjust the lens of the camera
* Viewing transformations

— tripod—define position and orientation of the viewing
volume in the world

e Modeling transformations
— moving the model
» Viewport transformations
— enlarge or reduce the physical photograph

Note that human vision and a camera lens have cone-shaped viewing
volumes. OpenGL (and amost all computer graphics APIs) describe a
pyramid-shaped viewing volume. Therefore, the computer will “see”
differently from the natural viewpoints, especially along the edges of viewing

volumes. Thisis particularly pronounced for wide-angle “fish-eye” camera
lenses.

-34-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Transformation Pipeline

normalized
device

Viewport
Transform

 other calculations here
— material & color
— shade model (flat)
— polygon rendering mode
— polygon culling

— clipping

The depth of matrix stacks are implementationdependent, but the model-
view matrix stack is guaranteed to be at least 32 matrices deep, and the
Projection matrix stack is guaranteed to be at least 2 matrices deep.

The material-to-color, flat-shading, and clipping calculations take place
after the model- view matrix calculations, but before the Projection matrix. The
polygon culling and rendering mode operations take place after the Viewport
operations.

There is adso atexture matrix stack, which is outside the scope of this
course. It is an advanced texture mapping topic.

-35-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Coordinate Systems and
Transformations

« Steps in forming an image
1. specify geometry (object coordinates)
2. specify camera (camera coordinates)
3. project (window coordinates)
4. map to viewport (screen coordinates)

» Each step uses transformations

« Every transformation is equivalent to a change
in coordinate systems (frames)

Every transformation can be thought of as changing the representation of a
vertex from one coordinate system or frame to another. Thus, initially vertices
are specified in object coordinates. However, to view them, OpenGL must
convert these representations to ones in the reference system of the camera.
This change of representations is described by a transformation matrix (the
model-view matrix). Similarly, the projection matrix converts from camera
coordinates to window coordinates.

- 36 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Homogeneous Coordinates

each vertex is a column vector
exu

wis usually 1.0
all operations are matrix multiplications

directions (directed line segments) can be represented
with w = 0.0

A 3D vertex is represented by a 4-tuple vector (homogeneous coordinate
system).

Why is a4-tuple vector used for a3D (X, Y, 2) vertex? To ensure that all
matrix operations are multiplications.

If w is changed from 1.0, we can recover x, y and z by division by w.
Generally, only perspective transformations change w and require this
perspective division in the pipeline.

-37-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

3D Transformations

» Avertex is transformed by 4 x 4 matrices
— all affine operations are matrix multiplications
— all matrices are stored column-major in OpenGL
— matrices are always post-multiplied
— product of matrix and vector is M v

m, m
m, m
My My
(L, My

Perspective projection and tranglation require the 4th row and column, or
operations would require addition, as well as multiplication.

For operations other than perspective projection, the fourth row is always
(O, 0, 0, 1) which leaves w unchanged..

Because OpenGL only multiplies a matrix on the right, the programmer
must remember that the last matrix specified is the first applied.

Recall that matrix multiplication is not commutative (i.e., for matrices A,
and B, AB is not the same as BA). This holds true for OpenGL matrix
operations. In particular, when you specify matrix transformations in
OpenGL, the matrices accumulate in such a way that the last trarsformation
you specify in your program is the first operation applied to a vertex. For
example, if you specify arotation and then a translation, the vertex is first
rotated around the axis specified by the angle specified in your rotation
transformation, and then trandated by your trandate operation. |If you issued
the rotation and translation in the reverse order, the translation would modify
the vertex first, and then the rotation.

-38-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Specifying
Transformations

* Programmer has two styles of specifying
transformations

— specify matrices (gl LoadMatri x,
gl Mul t Matri x)

— specify operation (gl Rot at e, gl Ot ho)

* Programmer does not have to remember
the exact matrices

— see appendix of the OpenGL Programming
Guide

Generaly, a programmer can obtain the desired matrix by a sequence of
simple transformations that can be concatenated together, e.g.
gl Rotatef (),gl Transl at ef (),andgl Scal ef () .

For the basic viewing transformations, OpenGL and the Utility library
have supporting functions.

-390 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Programming
Transformations

 Prior to rendering, view, locate, and
orient:
— eye/camera position
— 3D geometry
Manage the matrices
— including matrix stack
» Combine (composite) transformations

Because transformation matrices are part of the state, they must be defined
prior to any vertices to which they are to apply.

In modeling, we often have objects specified in their own coordinate
systems and must use OpenGL transformations to bring the objects into the
scene.

OpenGL provides matrix stacks for each type of supported matrix (model-
view, projection, texture) to store matrices.

- 40 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Matrix Operations

» Specify Current Matrix Stack
gl Matri xMode(GL_MODELVI EW or G._PRQJECTI ON)

e Other Matrix or Stack Operations
gl Loadl dentity() gl PushMat ri x()
gl PopMat ri x()
Viewport
— usually same as window size
— viewport aspect ratio should be same as projection

transformation or resulting image may be distorted
gl Viewport(x, y, width, height)

gl LoadMat ri x* () replaces the matrix on the top of the current matrix
stack. gl Mul t Mat ri x* (), post-multiples the matrix on the top of the
current matrix stack. The matrix argument is a column-major 4 x 4 double or
single precision floating point matrix.

Matrix stacks are used because it is more efficient to save and restore
matrices than to calculate and multiply new matrices. Popping a matrix stack
can be said to “jump back” to a previous location or orientation

gl Vi ewport () clipsthe vertex or raster position. For geometric
primitives, a new vertex may be created. For raster primitives, the raster
position is completely clipped.

There is a per-fragment operation, the scissor test, which worksin
situations where viewport clipping does not. The scissor operation is
particularly good for fine clipping raster (bitmap or image) primitives.

41 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Projection Transformation

« Shape of viewing frustum
» Perspective projection

gl uPer specti ve(fovy, aspect, zNear, zFar)
gl Frustum(left, right, bottom top, zNear, zFar)

» Orthographic parallel projection
glOtho(left, right, bottom top, zNear, zFar)

<@

gluGrtho2D(left, right, bottom top)
e calls gl Ot ho() with z values near zero

For perspective projections, the viewing volume is shaped like atruncated
pyramid (frustum). There is a distinct camera (eye) position, and vertices of
objects are “projected” to camera. Objects which are further from the camera
appear smaller. The default camera position at (0, 0, 0), looks down the z-axis,
although the camera can be moved by other transformations.

For gl uPerspective(), fovy istheangleof field of view (in
degrees) inthey direction. f ovy must be between 0.0 and 180.0, exclusive.
aspect isx/y and should be the same as the viewport to avoid distortion.
zNear andzFar definethe distance to the near and far clipping planes.

Thegl Frust um() cal israrely used in practice.

Warning: for gl uPer specti ve() orgl Frustun() , do not use zero

for zNear!

For gl Ort ho() , the viewing volume is shaped like a rectangular
parallelepiped (abox). Vertices of an object are “projected” towards infinity,
and as such, distance does not change the apparent size of an object, as
happens under perspective projection. Orthographic projection is used for
drafting, and design (such as blueprints).

- 40 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Applying Projection
Transformations

» Typical use (orthographic projection)
gl Matri xMode(G._PRQIECTI ON) ;
gl Loadl dentity();
gl Otho(left, right, bottom top, zNear, zFar);

¥

Many users would follow the demonstrated sequence of commands with a
gl Mat ri xMode(G._MODELVI EW call to return to model-view stack.

In this example, the green line segment is inside the view volume and is
projected (with parallel projectors) to the green line on the view surface. The
pink line segment lies outside the volume specified by gl Ort ho() andis
clipped.

-43-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Viewing Transformations

» Position the cameral/eye in the scene
— place the tripod down; aim camera
» To “fly through” a scene

— change viewing transformation and
redraw scene
* gluLookAt(eye,, eye, eye,,
aim, ai m, aim,
up,, upy, up,)
— up vector determines unigue orientation
— careful of degenerate positions

gl uLookAt () multipliesitself onto the current matrix, so it usually
comes after gl Mat ri xMode(GL_MODELVI EW and
gl Loadl dentity().

Because of degenerate positions, gl uLookAt () isnot recommended for
most animated fly-over applications.

An dternative is to specify a sequence of rotations and trandations that are
concatenated with an initial identity matrix.

Note: that the name model- view matrix is appropriate since moving objects
in the model front of the camerais equivalent to moving the camerato view a
set of objects.

_44 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Projection Tutorial

+ Froj

World-space view Screen-space view

Command manipulation window

fovy aspect zNear zFar

gluPerspective(60.0 ,1.00 , 1.0 10.0);

gluL ookAt(, <-eye
<- center
; <-up

Click on the arguments and move the mouse to modify values.

The RIGHT mouse button controls different menus. The screen-space
view menu allows you to choose different models. The command-
manipulation menu allows you to select different projection commands
(including glOrtho and gl Frustum).

- 45-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Modeling Transformations

* Move object
gl Translate{fd}(x, vy, z)
- Rotate object around arbitrary axis (x y 2)
gl Rotate{fd}(angle, x, vy, z)
— angle is in degrees
 Dilate (stretch or shrink) or mirror object
gl Scal e{fd}(x, vy, z)

gl Transl ate(),gl Rotate() ,andgl Scal e() multipliesitself
onto the current matrix, so it usually comes after
gl Mat ri xMode(G._MODELVI EW . There are many situations where the
modeling transformation is multiplied onto a non-identity matrix.

A vertex’ s distance from the origin changes the effect of gl Rot at e() or
gl Scal e() . These operations have a fixed point for the origin. Generally,
the further from the origin, the more pronounced the effect. To rotate (or scale)
with a different fixed point, we must first trandate, then rotate (or scale) and
then undo the tranglation with another trandation.

- 46 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Transformation Tutorial

World- space view SCreen-space view

Camtand manipulation window
glTranslatef(
glRotatef{(
glScalef(1.00

glBegin(...

Click on the arguments and move the mouse to modify values.

For right now, concentrate on changing the effect of one command at a
time. After each time that you change one command, you may want to reset
the values before continuing on to the next command.

The RIGHT mouse button controls different menus. The screen-space
view menu allows you to choose different models. The command-
manipulation menu alows you to change the order of the gl Tr ansl at ef ()
and gl Rot at ef () commands. Later, we will see the effect of changing the
order of modeling commands.

_ 47 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Connection: Viewing and
Modeling

* Moving camera is equivalent to moving
every object in the world towards a
stationary camera

» Viewing transformations are equivalent to
several modeling transformations
— gl uLookAt () has its own command
— can make your own polar view or pilot view

Instead of gl uLookAt () , one can use the following combinations of
gl Transl ate() andgl Rot at e() to achieve aviewing transformation.
Likegl uLookAt () , these transformations should be multiplied onto the
model-view matrix, which should have an initia identity matrix.

To create a viewing transformation in which the viewer orbits anobject,
use this sequence (which is known as “polar view”):

gl Transl ated(0, 0, -distance)
gl Rotated(-twist, 0, 0, 1)

gl Rot at ed(-i nci dence, 1, 0, 0)
gl Rot ated(azimuth, 0, 0, 1)

To create a viewing transformation which orients the viewer (roll, pitch,
and heading) at position (X, v, z), use this sequence (known as “ pilot view”):

gl Rotated(roll, 0, 0, 1)

gl Rotated(pitch, 0, 1, 0)
gl Rot at ed(headi ng, 1, 0, 0)
gl Transl ated(-x, -y, -z)

- 48 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Common Transformation
Usage

o 2 examples of resi ze() routine
— restate projection & viewing transformations
» Usually called when window resized

* Registered as callback for
gl ut ReshapeFunc()

Example: Suppose the user resizes the window. Do we see the same
objects?

What if the new aspect ratio is different from the original? Can we avoid
distortion of objects?

What we should do is application dependent. Hence users should write
their own reshape callbacks.

Typica reshape callbacks alter the projection matrix or the viewport.

- 49 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Example 1: Perspective &
LookAt

void resize(int wdth, int height)
{
gl Viewport(0, O, wdth, height);
gl Mat ri xMode(GL_PRQIECTI ON);
gl Loadl dentity();

gl uPer spective(65.0,
(GLdoubl e) wi dt h/ hei ght
1.0, 100.0);

gl Mat ri xMode(GL_MODELVI EW) ;
gl Loadl dentity();
gl uLookAt (0.0,

0.0,
0.0

Exampleone of r esi ze() usesthe viewport’s width and height values
as the aspect ratio for gl uPer spect i ve() which eliminates distortion.

-50-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Example 2: Ortho

void resize(int wdth, int height)

{

GLdoubl e aspect (G.double) wdth /
hei ght ;

G_doubl e left -2.5, right 2.
GLdoubl e bottom= -2.5, top 25
gl Viewport(O, O, width, height);
gl Matri xMode(G._PROQIECTI ON) ;
gl Loadl dentity();
... continued ...

3;
b

)

In exampletwo of r esi ze() , wefirst compute the aspect ratio
(aspect) of the new viewing area. Then we will use this value to modify the
world space values (I ef t,ri ght , bott om t op) of the viewing frustum
depending on the new shape of the viewing volume

-51-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Example 2: Ortho (cont’'d)

If (aspect < 1.0) {
left /= aspect;
ri ght /= aspect;

} else {
bottom *= aspect;
top *= aspect;

}

glOtho(left, right, bottom top,
near, far);

gl Matri xMode(GL_MODELVI EW) ;
gl Loadl dentity();

Continuing from the previous page, we determine how to modify the
viewing volume based on the computed aspect ratio. After we conpute the
new world space values, we call gl Ort ho() to modify the viewing volume.

-52-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Compositing Modeling
Transformations

* Problem: hierarchical objects

— one position depends upon a previous
position
—robot arm or hand; sub-assemblies

« Solution: moving local coordinate system

— modeling transformations move coordinate
system

— post-multiply column-major matrices
— OpenGL post-multiplies matrices

The order in which modeling transformations are performed is important
because each modeling transformation is represented by a matrix, and matrix
multiplication is not commutative. So a rotate followed by atrandate is
different from a trandate followed by a rotate.

- 53 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Compositing Modeling
Transformations

* Problem: objects move relative to
absolute world origin

— my object rotates around the wrong origin
» make it spin around its center or something else

 Solution: fixed coordinate system

— modeling transformations move objects
around fixed coordinate system

— pre-multiply column-major matrices
— OpenGL post-multiplies matrices

— must reverse order of operations to
achieve desired effect

You will adjust to reading alot of code backwards!
Typica sequence

gl Transl atef (x,y, z);

gl Rot at ef (t heta, ax, ay, az);

gl Transl atef (-x,-y,-2);

obj ect ();

Here (X, y, 2) isthe fixed point. We first (last transformation in code) move
it to the origin. Then we rotate about the axis (ax, ay, az) and finally move
fixed point back.

-54-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Lighting

-55-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Lighting Principles

* Lighting simulates how objects reflect light

— material composition of object
— light’s color and position
— global lighting parameters

» ambient light

* two sided lighting
— available in both color index

and RGBA mode

Lighting is an important technique in computer graphics. Without lighting,
objects tend to look like they are made out of plastic.

OpenGL divides lighting into three parts: material properties, light
properties and global lighting parameters.

Lighting is available in both RGBA mode and color index mode. RGBA is
more flexible and less restrictive than color index mode lighting.

- 56 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

How OpenGL Simulates
Lights

* Phong lighting model
— Computed at vertices
 Lighting contributors

— Surface material properties
— Light properties
— Lighting model properties

OpenGL lighting is based on the Phong lighting model. At each vertex in
the primitive, a color is computed using that primitives material properties
along with the light settings.

The color for the vertex is computed by adding four computed colors for
the fina vertex color. The four contributors to the vertex color are:

» Ambient is color of the object from al the undirected light in a scene.

* Diffuse is the base color of the object under current lighting. There
must be a light shining on the object to get a diffuse contribution.

» Soecular isthe contribution of the shiny highlights on the object.

» Emission is the contribution added in if the object emits light (i.e.
glows)

-57-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Surface Normals

* Normals define how a surface reflects light
gl Normal 3f (x, vy, z)
— Current normal is used to compute vertex’s color
— Use unit normals for proper lighting

* scaling affects a normal’s length
gl Enabl e(G._NORVALI ZE)
or
gl Enabl e(GL_RESCALE_NORNAL

The lighting normal tells OpenGL how the object reflects light around a
vertex. If you imagine that there is a small mirror at the vertex, the lighting
normal describes how the mirror is oriented, and consequently how light is
reflected.

gl Nor mal * () setsthe current normal, which is used in the lighting
computation for all vertices until a new normal is provided.

Lighting normals should be normalized to unit length for correct lighting
results. gl Scal e* () affects normals as well as vertices, which can change

the normal’ s length, and cause it to no longer be normalized. OpenGL can
automatically normalize normals, by enabling gl Enabl e(G._NORMALI ZE) .

or gl Enabl e(GL_RESCALE_NORMAL) . GL_RESCALE_NORMAL isa

special mode for when your normals are uniformly scaled. If not, use
GL_NORMALI ZE which handles all normalization situations, but requires the

computation of a square root, which can potentially lower performance.

OpenGL evauators and NURBS can provide lighting normals for
generated vertices automatically.

- 58 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Material Properties

» Define the surface properties of a primitive
gl Material fv(face, property, value);

GL_SPECULAR Highlight Color

GL_AMBI ENT Low-light Color
G._EM SSI ON Glow Color
GL_SHI NI NESS Surface Smoothness

— separate materials for front and back

Material properties describe the color and surface properties of a material
(dull, shiny, etc.). OpenGL supports material properties for both the front and
back of objects, as described by their vertex winding.

The OpenGL material properties are:
* GL_DI FFUSE - base color of object
* GL_SPECULAR - color of highlights on object
* GL_AMBI ENT - color of object when not directly illuminated
* G__EM SSI ON - color emitted from the object (think of afirefly)

* GL_SHI NI NESS - concentration of highlights on objects. Values
range from O (very rough surface - no highlight) to 128 (very shiny)

Material properties can be set for each face separately by specifying either
GL_FRONT or GL_BACK, or for both faces simultaneously using
GL_FRONT_AND BACK.

- 50 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Light Properties

gl Lightfv(light, property, value);

—1 i ght specifies which light

» multiple lights, starting with GL_LI GHTO

gl GetIntegerv(G_NMAX LIGHTS, &n);

—properties

* colors

* position and type

* attenuation

Thegl Li ght () call isused to set the parameters for a light. OpenGL
implementations must support at least eight lights, which are named
GL_LI GHTO through GL_ LI GHTn, wheren is one less than the maximum
number supported by an implementation.

OpenGL lights have a number of characteristics which can be changed
from their default values. Color properties allow separate interactions with the
different material properties. Position properties control the location and type
of the light and attenuation controls the natural tendency of light to decay over
distance.

- 60 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Light Sources (cont'd.)

 Light color properties
— GL_AMBI ENT
— GL_DI FFUSE
— GL_SPECULAR

OpenGL lights can emit different colors for each of a materials properties.
For example, alight's GL_AMBI ENT color is combined with a material’s
GL__AMBI ENT color to produce the ambient contribution to the color -

Likewise for the diffuse and specular colors.

-61 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Types of Lights

* OpenGL supports two types of Lights
— Local (Point) light sources
— Infinite (Directional) light sources

» Type of light controlled by w coordinate

w=0 Infinite Light directed along (x y 2)
w! 0 Local Light positioned at (%, % %)

OpenGL supports two types of lights: infinite (directional) and local
(point) light sources. The type of light is determined by the w coordinate of the
light’s position.

iw=0 defineaninfinitelightat(x y z
Iwi 0 definealocalighta (s, %, %,
A light’s position is transformed by the current model-view matrix when it

is specified. As such, you can achieve different effects by when you specify
the position.

- 62 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Turning on the Lights

 Flip each light’s switch
gl Enabl e(GL_LIGHTn);

e Turn on the power
gl Enabl e(GL_LI GHTI NG);

Each OpenGL light is controllable separately, using gl Enabl e() andthe
respective light constant G.__ L1 GHT n. Additionally, global control over
whether lighting will be used to compute primitive colors is cortrolled by
passing G._ LI GHTI NGtogl Enabl e() . This provides a handy way to
enable and disable lighting without turning on or off all of the separate
components.

- 63 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Light Material Tutorial

Light & Matesial

World- 198CE view

In this tutorial, concentrate on noticing the affects of different material and
light properties. Additionally, compare the results of using a local light versus
using an infinite light.

In particular, experiment with the GL_SHI NI NESS parameter to seeits
affects on highlights.

- 64 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Controlling a Light’s
Position

* The model-view matrix affects a light’s
position
— Different effects based on when position is
specified
* eye coordinates
 world coordinates
* model coordinates
— Push and pop matrices to uniquely control a
light’s position

As mentioned previoudly, alight’s position is transformed by the current
model-view matrix when it is specified. As such, depending on when you
specify the light’s position, and what values are in the model- view matrix, you
can obtain different lighting effects.

In general, there are three coordinate systems where you can specify a
light’s position/direction
1) Eye coordinates - which is represented by an identity matrix in the
model-view. In this case, when the light’s position/direction is
specified, it remains fixed to the imaging plane. As such, regardless of
how the objects are manipulated, the highlights remain in the same
location relative to the eye.

2) World Coordinates - when only the viewing transformation is in the
model-view matrix. In this case, alight’s position/direction appears
fixed in the scene, as if the light were on a lamppost.

3) Model Coordinates - any combination of viewing and modeling
transformations is in the model- view matrix. This method allows
arbitrary, and even animated, position of alight using modeling
transformations.

-65-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Light Position Tutorial

<- center

This tutorial demonstrates the different lighting affects of specifying a
light’s position in eye and world coordinates. Experiment with how highlights
and illuminated areas change under the different lighting position
specifications.

- 66 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Tips for Better Lighting

» Recall lighting computed only at vertices

— model tessellation heavily affects lighting
results
* better results but more geometry to process
» Use a single infinite light for fastest
lighting
— minimal computation per vertex

Aswith al of computing, time versus space is the continual tradeoff. To
get the best results from OpenGL lighting, your models should be finely
tessellated to get the best specular highlights and diffuse color boundaries.
This yields better results, but usually at a cost of more geometric primitives,
which could slow application performance.

To achieve maximum performance for lighting in your applications, use a
single infinite light source. This minimizes the amount of work that OpenGL
has to do to light every vertex.

- 67 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Texture Mapping

- 68 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Pixel-based primitives

* Bitmaps
— 2D array of bit masks for pixels
* update pixel color based on current color
* Images
— 2D array of pixel color information
» complete color information for each pixel

* OpenGL does not understand image
formats

In addition to geometric primitives, OpenGL also supports pixel -based
primitives. These primitives contain explicit color information for each pixel
that they contain. They come in two types:

Bitmaps are single bit images, which are used as a mask to determine
which pixels to update. The current color, set with gl Col or () is
used to determine the new pixel color.

Images are blocks of pixels with complete color information for each
pixel.

OpenGL, however, does not understand image formats, like JPEG, PNG or
GIFs. In order for OpenGL to use the information contained in those file
formats, the file must be read and decoded to obtain the color information, at
which point, OpenGL can rasterize the color values.

- 69 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Positioning Image
Primitives

gl RasterPos3f(x, vy, z)

— raster position transformed like geometry
— discarded if raster position
Is outside of viewport

* may need to fine tune
viewport for desired
results

Raster Position

Images are positioned by specifying the raster position, which maps the
lower left corner of an image primitive to a point in space. Rager positions are
transformed and clipped the same as vertices. If araster position fails the clip
check, no fragments are rasterized.

- 70 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Rendering Bitmaps and
Images

* OpenGL can render blocks of pixels
— Doesn’t understand image formats
» Raster position controls placement of

entire image

— If the raster position is clipped, the entire
block of pixels is not rendered
gl DrawPi xel s(wi dth, height, format,

type, pixels);
gl Bitmap(wi dth, height, xorig, yorig,
xnove, ynove, bitmap);

In addition to rendering geometric primitives, OpenGL can also render
imaging primitives. gl Dr awPi xel s() will render arectangle of color values

with the lower-1eft corner of rectangle positioned at the current raster position
(set with gl Rast er Pos* ()). gl Bi t map() will use the provided bitmap,

which is arectangle with a single bit representing whether a pixel should be
colored or not. The bitmap’s lower-1eft corner will also be positioned at the
current raster position, and for any bits in the bitmap, the corresponding pixels
will be shaded the current color when gl Rast er Pos* () wascalled. (This
means that if you call

gl Col or3fv(colorl);
gl Rast er Pos2fv(pos);
gl Col or3fv(color2);
gl Bitmap(...);

The color used to shade pixels will be colorl, and not color2. Just one of
those things to look out for.

OpenGL doesn't understand image formats (e.g., GIF, JPEG, TIFF, etc.),
nor how to render an image in one of those formats. Y ou need to read the
image (probably using an image library, unless you' re ambitious0, and extract
the rectangle of pixel colors, which should then be passed into
gl DrawPi xel s().

-71 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Reading the Framebuffer

* Generated images can be read from the
framebuffer
— You get back a block of pixels

» Read widthxheight rectangle of pixels
— Lower-left corner of rectangle positioned
at (x, y)

gl ReadPi xel s(x, y, width, height,
format, type, pixels);

OpenGL can aso read the rendered pixels from the framebuffer ard return
those values back to you. You might use them in an image file (e.g., a GIF,
JPEG, TIFF, etc.), as aframe in amovie, or whatever. In addition to reading
the color buffer, you can also read the depth buffer, stencil buffer, and others.
The format parameter controls what type of pixel values or color components
you want to render from the framebuffer.

A by-product of calling gl ReadPi xel s() isthat it will flush al
outstanding OpenGL calls before the framebuffer is read.

72 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Pixel Pipeline

* Programmable pixel storage
and transfer operations

gl Bitmap(), gl Drawki xel s()

Pixel Pixel-Transfer Rasterization

Per Fragment r
Storage Operations (including IAIE
. 5 peratlons Buffer
Modes (and Pixel Map) Pixel Zoom)
Texture gl CopyTex* | mage() ;

Memory

gl ReadPi xel s(), gl CopyPi xel s()

Just as there is a pipeline that geometric primitives go through when they
are processed, so do pixels. The pixels are read from main storage, processed
to obtain the internal format which OpenGL uses, which may include color
trandations or byte-swapping. After this, each pixel is rasterized into the
framebuffer.

In addition to rendering into the framebuffer, pixels can be copied from the
framebuffer back into host memory, or transferred into texture mepping
memory.

For best performance, the internal representation of a pixel array should
match the hardware. For example, with a 24 bit frame buffer, 8-8-8 RGB
would probably be a good match, but 10-10-10 RGB could be bad. Warning:
non-default values for pixel storage and transfer can be very slow.

-73-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Texture Mapping

Textures are images that can be thought of as continuous and be one, two,
three, or four dimensional. By convention, the coordinates of the image are s, t,
r and g. Thus for the two dimensional image above, a point in the image is
given by its (s, t) values with (0, 0) in the lower-left corner and (1, 1) in the
top-right corner.

A texture map for athree-dimensional geometric object in (X, y, z) world
coordinates maps a point in (s, t) space to a corresponding point on the screen.

- 74 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Texture Example

* The texture (below) is a
256 x 256 image that has
been mapped to a
rectangular polygon
which is viewed in
perspective

This example is from the texture mapping tutorial demo.

The size of textures must be a power of two. However, we can use image
manipulation routines to convert an image to the required size.

Texture can replace lighting and material effects or be used in
combination with them.

- 75 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Applying Textures |

* Three steps to applying a texture

1. specify the texture
* read or generate image
* assign to texture
* enable texturing

2. assign texture coordinates to vertices

3. specify texture parameters
* wrapping, filtering

In the ssimplest approach, we must perform these three steps.

Textures reside in texture memory. When we assign an image to a texture
it is copied from processor memory to texture memory where pixels are
formatted differently.

Texture coordinates are actually part of the state as are other vertex
attributes such as color and normals. As with colors, OpenGL interpolates
texture inside geometric objects.

Because textures are really discrete and of limited extent, text ure mapping
is subject to aliasing errors that can be controlled through filtering.

Texture memory is alimited resource and having only asingle active
texture can lead to inefficient code.

- 76 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Texture Objects

» Have OpenGL store your images
— one image per texture object

— may be shared by several graphics contexts

« (Generate texture names
gl GenTextures(n, *texlds);

The first step in creating texture objects is to have OpenGL reserve some
indices for your objects. gl GenText ur es() will request n texture ids and

return those values back to you in t ex| ds.

To begin defining a texture object, you cal gl Bi ndText ur e() with the

id of the object you want to create. The target is one of
GL_TEXTURE_ {123} D() . All texturing calls become part of the object
until the next gl Bi ndText ur e() iscalled.

To have OpenGL use a particular texture object, call
gl Bi ndText ur e() with thetarget and id of the object you want to be
active.

To delete texture objects, use gl Del et eText ures(n, *texlds
) , wheret ex| ds isan array of texture object identifiers to be deleted.

77 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Texture Objects (cont'd.)

» Create texture objects with texture data and
state

gl Bi ndTexture(target, id);
 Bind textures before using
gl Bi ndTexture(target, id);

- 78 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Specify the Texture Image

» Define a texture image from an array of
texels in CPU memory
gl Texl mage2D(target, |evel, conponents,
w, h, border, format, type, *texels);
— dimensions of image must be powers of 2

» Texel colors are processed by pixel pipeline

— pixel scales, biases and lookups can be
done

Specifying the texels for a texture is done using the
gl Texl mage{ 123} D() call. Thiswill transfer the texelsin CPU memory
to OpenGL, where they will be processed and converted into an internal
format.

The array of texels sent to OpenGL with gl Tex| mage* () must bea
power of two in both directions. An optional one texel wide border may be
added around the image. Thisis useful for certain wrapping modes.

The level parameter is used for defining how OpenGL should use this
image when mapping texels to pixels. Generaly, you'll set the level to O,
unless you are using a texturing technique called mipmapping, which we will
discuss in the next section.

-79-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Converting A Texture
Image

* If dimensions of image are not power of 2
gl uScal el rage(format, w_.in, h_in,
type_in, *data_ in, w.out, h_out,
type_out, *data_out);

—* inis for source image
—* outis for destination image
* Image interpolated and filtered during scaling

If your image does not meet the power of two requirement for a dimension,
thegl uScal el mage() call will resample an image to a particular size. It

uses a simple box filter to interpolate the new images pixels from the source
image.

Additionally, gl uScal el nage() can be used to convert from one data
type (i.e. GL_FLOAT) to another type, which may better match the internal
format in which OpenGL stores your texture.

Note that use of gl uScal el mage() canalso save memory.

- 80 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Mapping a Texture

» Based on parametric texture coordinates
» gl TexCoor d* () specified at each vertex

Texture Space Object Space
(s, t) =(0.2,0.8)

When you want to map a texture onto a geometric primitive, you need to
provide texture coordinates. Thegl TexCoor d* () call setsthe current
texture coordinates. Valid texture coordinates are between 0 ad 1, for each
texture dimension, and the default texture coordinate is (0, 0, 0, 1). If you pass
fewer texture coordinates than the currently active texture mode (for example,
usinggl TexCoor dld() whileG._TEXTURE 2D isenabled), the
additionally required texture coordinates take on default values.

-81-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Tutorial: Texture

Tardure- SpAce view

AR R

- 82 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Applying Textures I

— specify textures in texture objects

— set texture filter

— set texture function

— set texture wrap mode

— set optional perspective correction hint
— bind texture object

— enable texturing

— supply texture coordinates for vertex
» coordinates can also be generated

The general steps to enable texturing are listed above. Some steps are
optional, and due to the number of combinations, complete coverage of the
topic is outside the scope of this course.

Here we use the texture object approach. Using texture objects may enable
your OpenGL implementation to make some optimizations behind the scenes.

Aswith any other OpenGL state, texture mapping requires that
gl Enabl e() becalled. The tokensfor texturing are:

GL_TEXTURE_1D- onedimensional texturing
GL_TEXTURE_2D- two dimensiona texturing
GL_TEXTURE_3D- three dimensional texturing

2D texturing is the most commonly used. 1D texturing is useful for
applying contours to objects (like atitude contours to mountains). 3D
texturing is useful for volume rendering.

- 83 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Texture Application
Methods

 Filter Modes

— minification or magnification

— special mipmap minification filters
* Wrap Modes

— clamping or repeating
e Texture Functions

— how to mix primitive’s color with texture’s color
* blend, modulate or replace texels

Textures and the objects being textured are rarely the same size (in pixels).
Filter modes determine the methods used by how texels should be expanded
(magnification), or shrunk (minification) to match a pixel’ssize. An
additional technique, called mipmapping is a special instance of aminification
filter.

Wrap modes determine how to process texture coordinates outside of the
[0,1] range. The available modes are:

GL_CLAMP - clamp any values outside the range to closest valid value,
causing the edges of the texture to be “smeared” across the primitive

GL__REPEAT - use only the fractional part of the texture coordinate,
causing the texture to repeat across an object

Finally, the texture environment describes how a primitives fragment
colors and texel colors should be combined to produce the final framebuffer
color. Depending upon the type of texture (i.e. intensity texture vs. RGBA
texture) and the mode, pixels and texels may be simply multiplied, linearly
combined, or the texel may replace the fragment’s color altogether.

-84 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Filter Modes

Example:
gl TexParaneteri (target, type,

Texture Polygon Texture Polygon
Magnification Minification

Filter modes control how pixels are minified or magnified. Generally a
color is computed using the nearest texel or by alinear average of several
texels.

The filter type, aboveisoneof G._ TEXTURE_M N _FI LTER or
GL_TEXTURE_MAG FI LTER

The modeisoneof GL_NEAREST, GL_LI NEAR, or special modes for

mipmapping. Mipmapping modes are used for minification only, and can have
values of:
GL_NEAREST_M PMAP_NEAREST

GL_NEAREST_M PMAP_LI NEAR
GL_LI NEAR_M PVAP_NEAREST
GL_LI NEAR_M PNVAP_LI NEAR
Full coverage of mipmap texture filters is outside the scope of this course.

-85 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Mipmapped Textures

Mipmap allows for prefiltered texture maps of
decreasing resolutions

Lessens interpolation errors for smaller textured
objects

Declare mipmap level during texture definition
gl Texl mage*D(G._TEXTURE *D, |evel, ...)
GLU mipmap builder routines

gl uBui | d* DM pmaps(...)

OpenGL 1.2 introduces advanced LOD controls

As primitives become smaller in screen space, a texture may appear to
shimmer as the minification filters creates rougher approximations.
Mipmapping is an attempt to reduce the shimmer effect by creating several
approximations of the original image at lower resolutions.

Each mipmap level should have an image which is one-half the height and
width of the previous level, to a minimum of one texel in either dimension.
For example, level O could be 32 x 8 texels. Then level 1 would be 16 x 4;
level 2would be 8 x 2; level 3,4 x 1; level 4, 2 x 1, and finally, level 5, 1 x 1.

Thegl uBui | d*Dm pmaps() routineswill automatically generate
each mipmap image, and call gl Texl mage* D() with the appropriate level
value.

OpenGL 1.2 introduces control over the minimum and maximum mipmap
levels, so you do not have to specify every mipmap level (and also add more
levels, on the fly).

- 86 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Wrapping Mode

* Example:
gl TexPar ameteri (GL_TEXTURE_2D,
GL_TEXTURE WRAP_S, G._CLAWP)
gl TexParaneteri (GL_TEXTURE_2D,
GL_TEXTURE_WRAP_T, G._REPEAT)

GL_REPEAT GL_CLAMP
wrapping wrapping

Wrap mode determines what should happen if atexture coordinate lies
outside of the [0,1] range. If the G._ REPEAT wrap mode is used, for texture

coordinate values less than zero or greater than one, the integer isignored and
only the fractional value is used.

If the GL_CLAMP wrap mode is used, the texture value at the extreme
(either O or 1) is used.

-87-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Texture Functions

» Controls how texture is applied

gl TexEnv{fi}[v](G._TEXTURE _ENV, prop,
par am)

« GL_TEXTURE_ENV_MODE modes
— GL_MODULATE
— GL_BLEND
— GL_REPLACE

» Set blend color with
GL_TEXTURE_ENV_COLOR

The texture mode determines how texels and fragment colors are
combined. The most common modes are:

GL_MODULATE - multiply texel and fragment color
GL_BLEND - linearly blend texel, fragment, env color
GL_REPLACE - replace fragment’s color with texel

If propisGL_TEXTURE_ENV_COLOR, param is an array of four floating

point values representing the color to be used with the G._ BLEND texture
function.

- 88 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Perspective Correction
Hint

e Texture coordinate and color interpolation
— either linearly in screen space
— or using depth/perspective values (slower)

* Noticeable for polygons “on edge”

gl H nt (G._PERSPECTI VE_CORRECTI ON_HI NT, hint)
where hi nt is one of
 GL_DONT_CARE
« GL_NI CEST
e G._FASTEST

An OpenGL implementation may chose to ignore hints.

- 89 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Advanced OpenGL Topics

-90 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Working with OpenGL
Extensions

* OpenGL is always changing
— features are first introduced as extensions

e Callgl Get String(G._EXTENSI ONS) to see
the extensions for your OpenGL implementation

« gl ext . h contains latest function names and
tokens
* May need to query a function pointer to
gain access to extension’s function

— Window system dependent pointer request
function
e gl XGet ProcAddress(), wgl Get ProcAddress()

OpenGL is continually adding new features. These new functions and
operations are first introduced as extensions to OpenGL. If they are adopted
by the OpenGL community, they may be added into the core of OpenGL when
OpenGL'’s revision changes.

To access extensions, you should first check that the implementation
you're working with supports the extensions that you need to use. Calling
gl Get St ri ng(G._EXTENSI ONS) will return back the list of extensions
that your OpenGL implementation supports.

Once you know that your extension is supported, you may need to request
apointer in order to be able to call the function (this has little to do with
OpenGL itself, but more with the variations in how operating systems and
drivers relate; however, this technique will work on ailmost all OpenGL
implementations). In order to obtain the function pointer, you need to query
the windowing system for that function. Since this operation is window-
system dependent, the function used varies from system to system (this
functionality hasn’t been implemented in GLUT at the time of this writing).
For the X Window System, you would call gl XGet Pr ocAddr ess() , and
for Microsoft Windows, you'd call wgl Get Pr ocAddr esss() . Either
function will either return NULL if the function’s not available (i.e., the
extension’s not supported), or a pointer to the function.

Thefilegl ext . h, which is maintained at the ww. opengl . or g

website, contains the latest list of OpenGL extensions with their functions and
tokens.

01 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Alpha: the 4 Color
Component

* Measure of Opacity
— simulate translucent objects
* glass, water, etc.
— composite images
— antialiasing
— ignored if blending is not enabled
gl Enabl e(G._BLEND)

The alpha component for a color is a measure of the fragment’s opacity. As
with other OpenGL color components, its value ranges from 0.0 (which
represents completely transparent) to 1.0 (completely opague).

Alpha values are important for a number of uses:
 simulating translucent objects like glass, water, etc.
* blending and compositing images
* antialiasing geometric primitives

Blending can be enabled using gl Enabl e(G._BLEND) .

-992 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Blending

« Combine fragments with pixel values that
are already in the framebuffer
gl Bl endFunc(src, dst)

C =srcC; +dstC,

Blending
Equation
Blended
Fragment Pixel
(src)

Framebuffer

Pixel
(dst)

Blending combines fragments with pixels to produce a new pixel color. If a
fragment makes it to the blending stage, the pixel is read from the

framebuffer’ s position, combined with the fragment’s color and then written
back to the position.

The fragment and pixel each have a factor which controls their
contribution to the final pixel color. These blending factors are set using
gl Bl endFunc() , which sets the source factor, which is used to scale the

incoming fragment color, and the destination blending factor, which scales the
pixel read from the framebuffer. Common OpenGL blending factors are:

GL_ONE GL_ZERO
GL_SRC_ALPHA GL_ONE_M NUS_SRC_ALPHA

They are then combined using the blending equation, which is addition by
default.

Blending is enabled using gl Enabl e(G._BLEND)

Note: If your OpenGL implementation supportsthe G._ARB_i magi ng
extension, you can modify the blending equation as well.

-03 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Antialiasing

* Removing the Jaggies

gl Enabl e(node)
« GL_PO NT_SMOOTH
« GL_LI NE_SMOOTH
« GL_POLYGON_SMOOTH

— alpha value computed by computing
sub-pixel coverage

— available in both RGBA and colormap modes

Antialiasing is a process to remove the jaggies which is the common name
for jagged edges of rasterized geometric primitives. OpenGL supports
antialiasing of all geometric primitives by enabling both G._BLEND and one
of the constants listed above.

Antialiasing is accomplished in RGBA mode by computing an apha value
for each pixel that the primitive touches. This value is computed by
subdividing the pixel into subpixels and determining the ratio used subpixels to
total subpixels for that pixel. Using the computed alpha value, the fragment’s
colors are blended into the existing color in the framebuffer for that pixel.

Color index mode requires aramp of colors in the colormap to simulate the
different values for each of the pixel coverage ratios.
In certain cases, G._POLYGON_SMOOTH may not provide sufficient

results, particularly if polygons share edges. As such, using the accumulation
buffer for full scene antialising may be a better solution.

04 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Summary /Q & A

- 905 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

On-Line Resources

— http://ww. opengl . org
« start here; up to date specification and lots of sample code
— news: conp. gr aphi cs. api . opengl
— http://ww. sgi.com sof t war e/ opengl
— http://ww. mesa3d. or g/
 Brian Paul's Mesa 3D
— http://ww. cs. ut ah. edu/ ~nar obi ns/ opengl . ht m

* very special thanks to Nate Robins for the OpenGL Tutors
* source code for tutors available here!

- 906 -

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Books

OpenGL Programming Guide, 4" Edition
OpenGL Reference Manual, 4t Edition
OpenGL Shading Language

Interactive Computer Graphics: A top-
down approach with OpenGL, 3" Edition

OpenGL Programming for the X Window
SYAIEIN
— includes many GLUT examples

The OpenGL Programming Guide is often referred to as the “Red Book”
due to the color of its cover. Likewise, The OpenGL Reference Manual is aso
called the “Blue Book.”

Mark Kilgard's OpenGL Programming for the X Window System, isthe
“Green Book”, and Ron Fosner’s OpenGL Programming for Microsoft
Windows which has a white cover is sometimes called the “Alpha Book.”

All of the OpenGL programming series books, along with Interactive
Computer Graphics: A top-down approach with OpenGL are published by
Addison-Wesley Publishers.

-97-

SIGGRAPH 2004 - An Interactive Introduction to OpenGL Programming

Thanks for Coming

* Questions and Answers
Dave Shreiner shrei ner @gi . com
Ed Angel angel @s. unm edu
Vicki Shreiner vshrei ner @gi . com

- 08 -

Bibliography

The OpenGL Programming Guide: The Official Guide to Learning OpenGL,
Version 1.4, 4" Edition

The OpenGL Architecture Review Board, Dave Shreiner, Mason Woo, Jackie
Neider, and Tom Davis.

Addison-Wesley / November 2003

ISBN: 0321173481

The OpenGL Reference Manual, Version 1.4, 4™ Edition

The OpenGL Architecture Review Board; Edited by Dave Shreiner
Addison-Wesley / February 2004

ISBN: 032117383X

Interactive Computer Graphics: A Top-Down Approach with OpenGL, 3" Edition
Ed Angel

Addison-Wesley / July 2002

ISBN: 0201773430

OpenGL: A Primer, 2" Edition
Ed Angel

Addison-Wedley / June 2001
ISBN: 0321237625

OpenGL Programming for the X Window System
Mark Kilgard

AddisonWesley / August 1996

ISBN: 0201483599

OpenGL Programming for Windows 95 and Windows NT
Ron Fosner

Addison-Wesley/ October 1996

ISBN: 0201407094

The OpenGL Shading Language
Randi Rost

Addison-Wesley / February 2004
ISBN: 0321197895

The OpenGL Extensions Guide
Eric Lengyel

Charles River Media/ July 2003
ISBN: 1584502940

- 100 -

Glossary
antialiasing

back buffer

callback functions

enumerated types

eye coordinates

flat shading
frame

front buffer

geometric primitives

gouraud- (or smooth) shaded
homogenous coordinates

image primitives

jaggies

A technigue to reduce the visual artifacts (commonly
called the jaggies) that result from rasterization of
geometric primitives into the framebuffer. Most often
the technique employs a pha-blending, or usage of a
nulti-sampled framebuffer.

The nonvisible rendering buffer where images are
rendered before a buffer swap. When a swap buffer
occurs (e.g., when the applications calls

gl ut SwapBuf f er s()) thefront buffer and the
back buffer are exchanged.

A function that is called when a certain event occurs.
The GLUT library uses callback functions asit’'s
principle means of alowing you to control the
response to various user input (e.g., pressed keys,
moving the mouse, resizing the window, etc.)

Specific types that OpenGL defines to help with cross-
platform compatibility.

The three-dimensional coordinate system used by
OpenGL. World coordinates are transformed into eye-
coordinates by the application of the model- view
matrix.

Using the same color for all fragments that are defined
by a geometric primitive.

A completed rendering. An animation, for example, is
a sequence of frames.

The visible buffer in double-buffering mode. This
buffer is displayed while rendering is directed to the
back buffer.

Points, lines, or polygons: the only rendering
primitives available in core OpenGL.

Interpolating colors across a geometric primitive.

Four-dimensional coordinates, (X, Y, z, w) used for
representing vertices. The reason they’re called
“homogenous’ isthat al transformations reduce to a
4x4 matrix multiplication operation.

Pixel rectangles or bitmaps that can be rendered
directly into the framebuffer.

The stair-stepping effect that occurs when rendering

- 101 -

modd coordinates

multi-sampled buffer

pipelined architecture

rendering
setting state

State

stipples

texture mapping

texture object

world coordinates

diagonal edges in the framebuffer. Antialiasing is
used to reduce the effects of the jaggies.

The three-dimensional coordinate system where your
models are defined. Model coordinates are the one
that’s you pass into OpenGL using the

gl Vertex* () functions.

A framebuffer where each pixd is represented by a
collection of sub-pixels. When a primitive is rendered,
each sub-pixel is colored, and when the processing of
al sub-pixelsis completed, the results of the sub-
pixels are combined to form the final pixel color in the
framebuffer. This allows the system to better antiaias
primitives.

A model for specifying the operations that OpenGL
executes in processing geometric and image
primitives.

The process of drawing in computer graphics.

Modifying OpenGL’sinterna state to change how will
render primitives.

OpenGL’sinternal vaues that are used when
rendering. Most OpenGL functions are for setting
sSate.

Patterns applied to lines and polygons. Stipples differ
from texture maps as they determine whether apixel is
to be rendered or not, as compared to atexture's
modification of apixel’scolor.

A process of coloring a pixel based on looking up
colorsin an image. Textue mapping alows you to
specify considerable more detail to a geometric
primitive than is possible using just gouraud shading
alone.

An OpenGL object that manages the state for a texture
map. Using texture objects helps to manage

OpenGL’ sresources more efficiently to increase
performance.

The coordinate system where all of your models live
and are position in. In genera if you only specify a
viewing transformation, and never any modeling
transformations, then all of the coordinates you pass
into OpenGL will be world coordinates.

- 102 -

