
An Introduction to

Graphics Programming

with

Tutorial and Reference Manual

Toby Howard

School of Computer Science
University of Manchester

V3.3, January 13, 2010

Contents

1 About this manual 1

1.1 How to read this manual . 1

1.2 Join the Bug Club . 1

1.3 Acknowledgements . 1

PART I OpenGL Tutorial 3

2 Introduction to OpenGL 5

2.1 What is OpenGL? . 5

2.2 A whirlwind tour of OpenGL . 5

2.3 What is Mesa? . 7

2.4 Using OpenGL away from the School .. . 8

2.5 Resources and further reading 8

2.6 About the notation used in this manual .9

2.7 What next? . 10

3 Getting started with OpenGL 11

3.1 Compiling usingcogl . 11

3.2 Try some other examples . 12

3.3 Yet more examples . 12

3.4 What next? . 12

4 Beginning OpenGL programming 13

4.1 The OpenGL model . 13

4.2 Platform- and device-independence 13

4.3 Example 1: a bare-bones program 14

4.4 Callback functions . 15

i

ii CONTENTS

4.5 The main event loop . 17

4.6 Example 2: a keyboard event callback 17

4.7 Example 3: customizing the window . 19

4.8 What next? . 20

5 2D and 3D graphics 21

5.1 Example 4: drawing a 2D triangle . 21

5.2 Viewing using the camera . 22

5.3 The window reshape function .. . 24

5.4 Example 5: a 3D cube with perspective projection 25

5.5 What next? . 26

6 Animated graphics 27

6.1 Example 6: a rotating cube . 27

6.2 Double-buffering and animation .. 29

6.3 Exercise: smooth the cube .30

6.4 Example 7: rotating objects following the mouse 31

6.5 What next? . 31

PART II OpenGL Reference Manual 33

7 Graphics primitives 35

7.1 Coordinate systems . 35

7.2 Defining a vertex . 36

7.3 OpenGL function flavours .. 36

7.4 Defining shapes: primitives .. 36

7.5 Drawing points . 37

7.6 Drawing lines . 37

7.7 Drawing triangles . 39

7.8 Drawing quadrilaterals .40

7.9 Drawing polygons .40

7.10 GLUT’s primitives . 42

8 Modelling using transformations 45

8.1 Vectors and matrices . 45

8.2 A note about matrix ordering .46

CONTENTS iii

8.3 Selecting the current matrix .46

8.4 Setting the current matrix . 46

8.5 Operating on the current matrix .. 48

8.6 Using the matrix stacks . 49

8.7 Creating arbitrary matrices .50

9 Viewing 53

9.1 Controlling the camera . 53

9.2 Projections . 55

9.3 Setting the viewport . 57

9.4 Using multiple windows . 58

9.5 Reversing the viewing pipeline .58

10 Drawing pixels and images 61

10.1 Using object coordinates as pixel coordinates 61

10.2 Setting the pixel drawing position .62

10.3 Drawing pixels . 62

11 Displaying text 65

11.1 GLUT’s bitmap fonts . 65

11.2 Drawing a single character .. . 66

11.3 Drawing a text string .66

12 Interaction 67

12.1 Keyboard events .. . 67

12.2 Mouse events .68

12.3 Controlling the mouse cursor .. 68

12.4 Menu events .69

13 Colour 73

13.1 RGB colour in OpenGL .73

14 Retained data 75

14.1 Immediate mode vs retained mode . 75

14.2 Retained mode . 76

14.3 Using display lists . 76

14.4 Mixing immediate mode with retained mode . 77

iv CONTENTS

15 State 79

15.1 State enquiries .79

15.2 Enquiring the viewing state .80

16 Lighting 81

16.1 The OpenGL lighting model . 81

16.2 Hidden surface removal 82

16.3 Defining lights . 84

16.4 Defining the shading model .. 86

16.5 Defining materials . 86

16.6 Defining lights . 87

16.7 The lighting equation . 88

A The cogl script 91

B Using a makefile 93

C Advanced matrix operations 95

C.1 How an OpenGL matrix is stored . 95

Chapter 1

About this manual

This manual is in two parts: the first (Chapters 2 to 6) is a hands-onTutorial , which uses a series
of example programs to illustrate some of the main features of OpenGL. The second part (Chapter 7
onwards) is aReference Manual, which describes some OpenGL functions in detail.

1.1 How to read this manual

If you’re a newcomer to OpenGL, we recommend that you first read the tutorial chapters, in order,
and experiment with the example programs on-line. These chapters introduce the basic concepts
of OpenGL, and cover the details of how to compile and run OpenGL C programs using our local
GNU/Linux installation.

The reference chapters are intended to support the lecture material andthe laboratory programming
exercises.

1.2 Join the Bug Club

In the highly unlikely event that you find a bug in this manual, please email us thedetails. Suc-
cessful correspondents will receive honorary membership of the BugClub. Send bug reports to
opengl@cs.man.ac.uk .

1.3 Acknowledgements

It’s a pleasure to thank Alan Murta and Julien Cartigny for helping with parts of this manual. And
thank you to all the people who have made their excellent GNU/Linux softwarefreely available:
Mesa (which includes GLU) was written by Brian Paul (www.mesa3d.org). GLUT was originally
written by Mark J. Kilgard, who kindly provided additional help, although wenow use thefreeglut
implementation (freeglut.sourceforge.net).

1

2 CHAPTER 1. ABOUT THIS MANUAL

Part I

OpenGL Tutorial

3

Chapter 2

Introduction to OpenGL

In recent years OpenGL has become a worldwide standard for 3D computer graphics programming.
It’s very widely used: in industry, in research laboratories, in computer games – and for teaching
computer graphics.

OpenGL is a powerful, professional-level system, and it would take a manual much thicker than
this one to describe all its facilities completely. We have selected asubsetof OpenGL – a portion
of OpenGL’s functionality which is relevant to the COMP20072 InteractiveGraphics course, and
sufficient to support its programming labs.

2.1 What is OpenGL?

OpenGL has it origins in the earlier GL (“Graphics Library”) system whichwas invented by Silicon
Graphics Inc. as the means for programming their high-performance specialised graphics worksta-
tions. As time went on, people became interested in porting GL to other kinds of machine, and in
1992 a variation of GL – called OpenGL – was announced. Unlike GL, OpenGL was specifically
designed to beplatform-independent, so it would work across a whole range of computer hardware
– not just Silicon Graphics machines. The combination of OpenGL’s power and portability led to its
rapid acceptance as astandard for computer graphics programming.

OpenGL itself isn’t a programming language, or a software library. It’s thespecificationof an Appli-
cation Programming Interface (API) for computer graphics programming. In other words, OpenGL
defines a set of functions for doing computer graphics.

What you actually use to do your graphics is animplementation of OpenGL. We use a free software
system calledMesa, which we’ll describe in Section 2.3.

2.2 A whirlwind tour of OpenGL

What exactly can OpenGL do? Here are some of its main features:

• It provides 3D geometric objects, such as lines, polygons, triangle meshes, spheres, cubes,
quadric surfaces, NURBS curves and surfaces;

5

6 CHAPTER 2. INTRODUCTION TO OPENGL

Figure 2.1: Where OpenGL fits in – a high-level view.

• It provides 3D modelling transformations, and viewing functions to create views of 3D scenes
using the idea of avirtual camera;

• It supports high-quality rendering of scenes, including hidden-surface removal, multiple light
sources, material types, transparency, textures, blending, fog;

• It provides display lists for creating graphics caches and hierarchicalmodels. It also supports
the interactive “picking” of objects;

• It supports the manipulation of images as pixels, enabling frame-buffer effects such as anti-
aliasing, motion blur, depth of field and soft shadows.

Figure 2.1 shows the relationship between an application and OpenGL in our local GNU/Linux envi-
ronment. An application programmer sees OpenGL as a single library providing a set of functions for
graphical input and output. In fact, it’s slightly more complicated than that.

2.2.1 The support libraries: GLU and GLUT

A key feature of the design of OpenGL is the separation ofinteraction (input and windowing func-
tions) from rendering. OpenGL itself is concerned only with graphics rendering. You can always
identify an OpenGL function: all OpenGL function names start with“gl” .

Over time, twoutility libraries have been developed which greatly extend the low-level (but very
efficient) functionality of OpenGL. The first is the “OpenGL Utility Library”,or GLU . The second is
the “OpenGL Utility Toolkit”, orGLUT :

• GLU provides functions for drawing more complex primitives than those of OpenGL, such as
curves and surfaces, and also functions to help specify 3D views of scenes. All GLU function
names start with“glu” .

2.3. WHAT IS MESA? 7

Figure 2.2: What is commonly called “OpenGL” is actually a set of three libraries: OpenGL itself,
and the supporting librariesGLU andGLUT .

• GLUT provides the facilities for interaction that OpenGL lacks. It provides functions for man-
aging windows on the display screen, and handling input events from the mouse and keyboard.
It provides some rudimentary tools for creating Graphical User Interfaces (GUIs). It also in-
cludes functions for conveniently drawing 3D objects like the platonic solids,and a teapot. All
GLUT function names start with“glut” .

Figure 2.2 shows the relationships between OpenGL, GLU, and GLUT. As you can see, it’s helpful to
think of “layers” of software, where each layer calls upon the facilities ofsoftware in a lower layer.

However, somewhat confusingly, when most people say “OpenGL”, what they really mean is “OpenGL
plusGLU plusGLUT ”. It’s a slightly lazy terminology, but we’ll use it too.

2.3 What is Mesa?

Mesa is a C implementation of a graphics system that looksextremely similar to the official OpenGL
specification. (We can’t actually say “Mesais an implementation of OpenGL” for legal reasons. But,
for all intents and purposes, it is really.)

Whereas OpenGL is intended to run on machines which have graphics support in hardware, Mesa
doesn’t require the presence of any special 3D graphics acceleration hardware – although it can cer-
tainly take advantage of it if it’s there. Of course, the performance of the graphics will be better with
hardware acceleration, but it’s still remarkably good without it on a reasonably fast PC.

8 CHAPTER 2. INTRODUCTION TO OPENGL

2.4 Using OpenGL away from the School

Mesa has been ported to many different platforms, including GNU/Linux, SunOS, DOS, Windows,
and OS/2. In the School, however, we currently support Mesaonly on GNU/Linux .

If you wish to run Mesa on GNU/Linux away from the School, refer to our local OpenGL Web pages
(see Section 2.5.1), which explain where to get the software, and give some installation guidelines.

For any other platform – specificallyWindows – see the next section for pointers to resources.

2.5 Resources and further reading

Here are some useful resources, and suggestions for further reading, should you wish to find out more.

2.5.1 On-line resources

• The Moodle Graphics Programmers’ forum at

moodle.cs.man.ac.uk/mod/forum/view.php?id=579

is for the place to go for graphics queries and chat. Post your OpenGL programming queries
here, and help others with theirs.

• Please don’t usethe local newsgroupman.cs.graphics– it’s deprecated. Use Moodle instead.

• Our local OpenGL Web pages:www.cs.man.ac.uk/applhax/OpenGL. Check here for up-to-
date details of the local installation.

• Local example programs: we have a number on-line, in/opt/info/courses/OpenGL/examples.

• The official home of OpenGL on the Web:www.opengl.org. Lots of pointers to on-line infor-
mation, tutorials, example programs, and downloadable software.

• The USENET OpenGL newsgroup:comp.graphics.api.opengl. This can be a great source
of help and information, for newcomers and experts alike. However, notethat it is highly
inadvisable to post pages of source code saying “my program doesn’t work”. Aswith all
newsgroups, lurk for a while and get a feel of the etiquette before posting.

2.5.2 Books

• Interactive Computer Graphics: A Top-Down Approach with OpenGL by Edward Angel.
Addison-Wesley, ISBN 0-201-85571-2. General introduction to computer graphics for people
new to the subject. This is a recommended textbook for the COMP20072 course.

• OpenGL Programming Guide, Fifth Edition: The Official Guide to Learning Open GL,
Version 1.2 by Mason Woo et al. Addison-Wesley, 0321335732. Also known as “The Red
Book”, provides complete coverage of OpenGL from simple to advanced,with many code
examples. Assumes familiarity with C, some maths, geometry. The coverage of thisbook far
exceeds the material taught in COMP20072. Earlier editions of this book areavailable free
online – seehttp://www.opengl.org/documentation/redbook/.

2.6. ABOUT THE NOTATION USED IN THIS MANUAL 9

2.5.3 Technical documentation

• You can find detailed technical OpenGL specification documents atwww.opengl.org/documentation/.

2.6 About the notation used in this manual

Experienced C programmers might wish to skip this section.

In this manual, when we introduce a new OpenGL function, we’ll give its definition, followed imme-
diately by a description of what it does.

To take an example at random, here’s the definition of the GLUT function which draws a sphere,
which you’ll meet on page 42:

void glutWireSphere (GLdouble radius,
GLint slices,
GLint stacks);

What this notation means is the following:

• The name of the function isglutWireSphere();

• The result type of the function isvoid ;

• The function has three arguments:

– radius , of typeGLdouble

– slices , of typeGLint

– stacks , of typeGLint

To actuallyusethis function in your program, you would do something like this:

GLdouble rad= 1.0;
GLint sl= 15;
GLint st= 20;

glutWireSphere (rad, sl, st);

Or, you could set the arguments directly, without declaring variables:

glutWireSphere (1.0, 15, 20);

Note that OpenGL defines its own names for data types, all of which begin withGL. Examples are:
GLdouble , GLint , GLfloat . The reason it’s done like this is to make the specification of OpenGL
language-independent. In most cases, it’ll be obvious what the data typemeans –GLint , for example,
is GL’s name for an integer, or anint in C. Where it isn’t obvious, we’ll tell you.

To continue with the example ofglutWireSphere(), this is how we’d write its description:

10 CHAPTER 2. INTRODUCTION TO OPENGL

glutWireSphere() draws a sphere, of radiusradius , centred on(0, 0, 0) in object co-
ordinates.slices is the number of subdivisions around theZ axis (like lines of lon-
gitude);stacks is the number of subdivisions along theZ axis (like lines of latitude).
Solid version:glutSolidSphere().

2.7 What next?

Now onto Chapter 3, which explains how to compile OpenGL programs using our local installation.

Chapter 3

Getting started with OpenGL

This chapter explains how to compile and link C programs with OpenGL using ourlocal installation.
There are two different ways to do this:

• Using the commandcogl – this is handy for compiling single standalone OpenGL pro-
grams, and is the recommended way for compiling programs in the COMP20072 lab;
(cogl is a Perl script and lives in/opt/common/bin).

• Using a makefile – this is a more flexible approach, necessary for larger projects which use
more than one source file. Use of a makefile isnot recommendedfor the COMP20072 lab.
See Appendix B for a sample makefile.

3.1 Compiling usingcogl

cogl is a command we’ve written locally to make compiling single programs with OpenGL as simple
as possible. (The Perl source code of cogl is listed in Appendix A).

We’ll use the example programthegears.c to illustrate the use ofcogl .

First, make sure you are running X Windows. Then, select an appropriate directory to work in, and
take your own private copy of the programthegears.c , as follows (the stringpunter$ stands for
whatever command prompt your shell window displays):

punter$ cp /opt/info/courses/OpenGL/examples/thegears .c .

(Don’t forget thatdot (.) as the second argument tocp .)

You compile and link the program as follows:

punter$ cogl thegears.c

This will produce an executable program calledthegears , which you run as follows:

punter$ thegears

11

12 CHAPTER 3. GETTING STARTED WITH OPENGL

You should see a square OpenGL window appear on your display, with something interesting happen-
ing within it. Move your mouse into the OpenGL window, and pressh on the keyboard to bring up
the help screen. Experiment with the program as it suggests.

3.2 Try some other examples

There are a number of other example programs in/opt/info/courses/OpenGL/examples/ ,
which we’d encourage you to copy, compile and play with. Here are some werecommend.

• tori : some doughnuts. Move the mouse slowly;

• teapots : draws our teapot collection;

• morph3d : might remind you of a certain screensaver;

• reflect : reflective texture mapping. Try the arrow keys;

• pointblast : a simple particle system. Try the mouse buttons;

• star : moving starfield. Hitt to warp;

• lorenz : chaos. Have aspirins handy.

3.3 Yet more examples

Here are some other examples to try, again in/opt/info/courses/OpenGL/examples/ .
These are part of thexscreensaver collection, and are already compiled for you, so justcd to
that directory, and run the programs. You’ll have to typecontrol-c in your shell to stop them
running:

• moebius : ants crawl inexplicably around a moebius strip;

• sproingies : multi-coloured bouncy things tumble down an infinite staircase, and occasion-
ally explode;

• superquadrics : 3D shapes morph into each other, based on the “superquadric” objects
developed by American graphics researcher Alan Barr;

• cage : be amazed as OpenGL draws an impossible object.

3.4 What next?

Now onto Chapter 4, which introduces the structure of an OpenGL program.

Chapter 4

Beginning OpenGL programming

In this and the next two chapters, we introduce the basic ideas of OpenGL ina tutorial fashion, using
a series of example programs.

4.1 The OpenGL model

Figure 4.1 shows the relationships between an application program, the graphics system, input and
output devices, and the user.

The application program has its own internalmodel of what it’s doing – its own interpretation of
what the graphics it’s manipulating actuallymeans. It draws the graphics using the facilities of the
graphics system– in our case, OpenGL. The user views the graphics, and usesinput devices, such as
a mouse, tointeract. Information about the user’s interactions are sent back to the application, which
decides what action to take. Typically, it will make changes to its internal model, which will cause the
graphics to be updated, and so anotherloop in the interaction cycle begins.

4.2 Platform- and device-independence

As we saw in Chapter 2, OpenGL is designed to be platform-independent and device-independent, so
it isn’t concerned with the exact makes and models of graphics display andinteraction hardware it
uses. Instead, OpenGL functions refer towindowsandevents:

• An OpenGLwindow is a rectangular area on a physical display screen into which OpenGL
draws graphics. Usually, an OpenGL window corresponds exactly to a window managed by the
“window manager”, such as X. (It’s also possible to have multiple OpenGL windows simulta-
neously active on a single display – see Section 9.4.)

• An OpenGLevent occurs when the user operates an input device. In order to respond tothe
input event, the application must provide a C function – known as acallback function – to
handle the event; OpenGL automatically calls the application’s function, passing it the event
data.

13

14 CHAPTER 4. BEGINNING OPENGL PROGRAMMING

Figure 4.1: The graphical interaction loop.

In fact, OpenGL doesn’t draw its graphics directly to the window. It actually draws into a data structure
(an array of pixels) inside OpenGL called theframe-buffer , often just called thebuffer . Periodically,
OpenGL copies the pixels in the frame buffer into the window. More on this in Section 6.2.

4.3 Example 1: a bare-bones program

We’ll begin with the simplest possible OpenGL program. It’sex1.c in the examples directory.
Take a copy of this program, and compile it withcogl :

punter$ cp /opt/info/courses/OpenGL/examples/ex1.c .
punter$ cogl ex1.c

When you runex1 , you should see an OpenGL window appear. To stop the program running, place
your mouse inside the shell window from which you ran the program, and hitcontrol-c .

Here’s the code forex1.c :

/ * ex1.c * /
#include <GL/glut.h>

void display (void) {
/ * Called when OpenGL needs to update the display * /

glClear (GL_COLOR_BUFFER_BIT); / * Clear the window * /
glFlush(); / * Force update of screen * /

}

4.4. CALLBACK FUNCTIONS 15

int main (int argc, char ** argv) {
glutInit (&argc, argv); / * Initialise OpenGL * /
glutCreateWindow ("ex1"); / * Create the window * /
glutDisplayFunc (display); / * Register the "display" function * /
glutMainLoop (); / * Enter the OpenGL main loop * /
return 0;

}
/ * end of ex1.c * /

The program begins with

#include <GL/glut.h>

All OpenGL programs must start with this line, which accesses all the OpenGLinclude files: it pulls
in all the function prototypes and other definitions used by OpenGL. Miss it out, andcogl will flatly
refuse to compile your program.

ex1.c contains two functions:display() , andmain() . The execution of all C programs starts
atmain() , so we’ll start there too.

We first call theglutInit() function:

void glutInit (int *argc,
char **argv);

glutInit() initializes the GLUT library, and it must be called before any other GLUT function. argc
and argv should be the arguments of the application’smain() – glutInit() understands several
command-line options, which are beyond the scope of this manual (see the GLUT manual for details).

Next, we callglutCreateWindow():

int glutCreateWindow (char *name);

glutCreateWindow() creates an OpenGL window for rendering and interaction, withnamedisplayed
in its titlebar. GLUT assigns this window an integer identifier, returned as the result of the function.
The window identifier is used when writing OpenGL programs which use multiple windows (de-
scribed in Section 9.4). By default, the window has a size of(300, 300) pixels, and its position is up
to the window manager to choose. If the functionsglutInitWindowSize() or glutInitWindowPosi-
tion() (page 19) have already been called, their arguments will control the size and position of the
window.

Next comes a call toglutDisplayFunc(), and this is a bit more interesting. It’s an example of one of
the cornerstones of OpenGL programming, which we’ll need to look at in detail – the use ofcallback
functions.

4.4 Callback functions

A callback function, more often just called acallback, is a C function, written by the application pro-
grammer. In programex1.c , display() is the only callback function we define. But there’s one

16 CHAPTER 4. BEGINNING OPENGL PROGRAMMING

important difference between a callback function and an ordinary C function: the application never
calls the callback function directly. Instead, the callback function is calledby OpenGL, whenever
OpenGL decides it needs to be called.

In ex1.c , we use the most basic callback of all – a function that draws the graphics that we want
OpenGL to display. We useglutDisplayFunc() to tell OpenGL which application function it should
call whenever it needs to refresh the window to draw graphics:

void glutDisplayFunc (void (*func)(void));

glutDisplayFunc() registers the name of the callback function to be invoked when OpenGL needs to
redisplay (or display for the first time) the contents of the window. The application must register a
display function – it isn’t optional.

The argument ofglutDisplayFunc() is rather cryptic, and worth a closer look:

void (* func)(void)

This says thatfunc() must be a function which returnsvoid , and has no arguments. In other
words, a function likedisplay() :

void display (void) {
/ * Called when OpenGL needs to update the display * /

glClear (GL_COLOR_BUFFER_BIT); / * Clear the window * /
glFlush(); / * Force update of screen * /

}

So to summarise, in our example the line:

glutDisplayFunc (display); / * Register the "display" function * /

tells OpenGL to call the application’s functiondisplay() function whenever it needs to redraw the
graphics.

It’s up to the application to define what thedisplay() function does – who else could know? In
ex1.c , thedisplay() function doesn’t do much: it simply callsglClear():

void glClear (GLbitfield mask);

glClear() clears one or more of OpenGL’s buffers, specified bymask. In this manual, we’ll only
be concerned with one buffer, theframe buffer , which holds the pixels which will be copied to the
window. This has the special nameGL COLORBUFFERBIT . WhenglClear() is called, each pixel
in the buffer is set to thecurrent clear colour, which is set to black by default. You set the current
clear colour using the functionglClearColor() (see page 74).

Now we have a call toglFlush():

void glFlush (void);

The purpose of this function is to instruct OpenGL to make sure the screen isup to date – it causes
the contents of any internal OpenGL buffers are “flushed” to the screen. Note that you only ever

4.5. THE MAIN EVENT LOOP 17

need to callglFlush() when you’re not usingdouble-buffering (which we’ll meet in Chapter 6). In
practice, most OpenGL programs will use double-buffering – to stop screen flicker – but for now in
these simple examples we’re not using it just yet.

What would happen if we didn’t callglFlush() at the end ofdisplay() ? Then, we couldn’t guar-
antee that the screen will show the up-to-date picture. And that’s clearly not desirable for a real-time
interactive graphics program!

4.5 The main event loop

glutMainLoop() starts the GLUT “event processing” loop:

void glutMainLoop (void);

Once started, this loop will carry on for as long as the program is running.Each time around the
loop, GLUT checks to see if anything has changed since last time, and calls the appropriate callback
functions.

In pseudocode, the action ofglutMainLoop() is this:

while (1) { / * loop forever * /
if (the application has changed the graphics) {

call the DISPLAY callback function;
}

if (the window has been moved or resized) {
call the RESHAPE callback function;
}

if (any keyboard and/or mouse events have happened) {
call the KEYBOARD and/or MOUSE callback function;
}

call the IDLE callback function;

} / * while * /

We’ll ignore thereshape() function for now, returning to it in Section 5.3. And we’ll look at the
idle() function in Section 6.1.

4.6 Example 2: a keyboard event callback

As we saw above, quittingex1.c must be done from the command-line, which isn’t very nice from
a user-interface point of view. Here’s how we can do it better, using a callback, in programex2.c :

/ * ex2.c * /
#include <GL/glut.h>
#include <stdio.h>

18 CHAPTER 4. BEGINNING OPENGL PROGRAMMING

void display (void) {
/ * Called when OpenGL needs to update the display * /

glClear (GL_COLOR_BUFFER_BIT); / * Clear the window * /
glFlush(); / * Force update of screen * /

}

void keyboard (unsigned char key, int x, int y) {
/ * Called when a key is pressed * /

if (key == 27) exit (0); / * 27 is the Escape key * /
else printf ("You pressed %c\n", key);

}

int main(int argc, char ** argv) {
glutInit (&argc, argv); / * Initialise OpenGL * /
glutCreateWindow ("ex2"); / * Create the window * /
glutDisplayFunc (display); / * Register the "display" function * /
glutKeyboardFunc (keyboard); / * Register the "keyboard" function * /
glutMainLoop (); / * Enter the OpenGL main loop * /
return 0;

}
/ * end of ex2.c * /

Try ex2.c out.

The addition we’ve made is to tell OpenGL what to do when it detects a keyboard event. We tell it to
call the functionkeyboard() usingglutKeyboardFunc():

void glutKeyboardFunc (void (*func)(unsigned char key, int x, int y));

glutKeyboardFunc() registers the application function to call when OpenGL detects a key press
generating an ASCII character. This can only occur when the mouse focus is inside the OpenGL
window.

Again, the specification of the argument type is a bit cryptic. It says that it expects a functionfunc()
which returnsvoid , and has the three argumentskey , x andy . So, it’s a function like this:

void keyboard (unsigned char key, int x, int y) {
/ * Called when a key is pressed * /
}

Three values are passed to the callback function:key is the ASCII code of the key pressed;x andy
give the pixel position of the mouse at the time.

Back toex2.c – inside thekeyboard() callback, we look at the value ofkey . If it’s 27 (the
ASCII code for theescape key – surely you knew that!) we call the standard C functionexit()
to terminate the program cleanly; otherwise, we print (in the shell window) a message saying which
key was pressed. Note thatex2.c needs an extra#include line:

#include <stdio.h>

4.7. EXAMPLE 3: CUSTOMIZING THE WINDOW 19

because we’re using theprintf() function.

Note:glutKeyboardFunc() only responds to pressed keys which have single ASCII codes. For other
keys, such as the arrow or function keys, use theglutSpecialFunc()function (page 67).

4.7 Example 3: customizing the window

In ex3.c we add a few new functions to give us better control over the drawing window:

/ * ex3.c * /
#include <GL/glut.h>

void display (void) {
/ * Called when OpenGL needs to update the display * /

glClearColor (1.0,1.0,1.0,0.0);
glClear (GL_COLOR_BUFFER_BIT); / * Clear the window * /
glFlush(); / * Force update of screen * /

}

void keyboard (unsigned char key, int x, int y) {
/ * Called when a key is pressed * /

if (key == 27) exit (0); / * 27 is the Escape key * /
}

int main(int argc, char ** argv) {
glutInit (&argc, argv); / * Initialise OpenGL * /
glutInitWindowSize (500, 500); / * Set the window size * /
glutInitWindowPosition (100, 100); / * Set the window position * /
glutCreateWindow ("ex3"); / * Create the window * /
glutDisplayFunc (display); / * Register the "display" function * /
glutKeyboardFunc (keyboard); / * Register the "keyboard" function * /
glutMainLoop (); / * Enter the OpenGL main loop * /
return 0;

}
/ * end of ex3.c * /

Try ex3.c out.

First, we specify a size and position for the window usingglutInitWindowSize() :

void glutInitWindowSize (int width,
int height);

glutInitWindowSize() sets the value of GLUT’sinitial window size to the size specified bywidth
andheight , measured in pixels.

20 CHAPTER 4. BEGINNING OPENGL PROGRAMMING

Similarly, glutInitWindowPosition() sets the value of GLUT’sinitial window position :

void glutInitWindowPosition (int x,
int y);

x andy give the position of the top left corner of the window measured in pixels fromthe top left
corner of the X display.

4.8 What next?

Now onto Chapter 5, which looks at 2D and 3D graphics.

Chapter 5

2D and 3D graphics

In this chapter we start doing some graphics. We’ll begin by extendingex3.c to do some 2D drawing
– just a triangle, but it’ll serve to illustrate how drawing works in OpenGL.

5.1 Example 4: drawing a 2D triangle

ex4.c draws a triangle, using the coordinates shown in Figure 5.1.

Figure 5.1: The triangle from exampleex4.c . It’s defined on theZ = 0 plane. TheZ axis comes
out of the page towards you.

Here’s the code:

/ * ex4.c * /
#include <GL/glut.h>

void display (void) {
/ * Called when OpenGL needs to update the display * /

glClear (GL_COLOR_BUFFER_BIT); / * Clear the window * /
glLoadIdentity ();
gluLookAt (0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

21

22 CHAPTER 5. 2D AND 3D GRAPHICS

glBegin (GL_LINE_LOOP); / * Draw a triangle * /
glVertex3f(-0.3, -0.3, 0.0);
glVertex3f(0.0, 0.3, 0.0);
glVertex3f(0.3, -0.3, 0.0);

glEnd();
glFlush(); / * Force update of screen * /

}

void keyboard (unsigned char key, int x, int y) {
/ * Called when a key is pressed * /

if (key == 27) exit (0); / * 27 is the Escape key * /
}

void reshape (int width, int height)
{ / * Called when the window is created, moved or resized * /

glViewport (0, 0, (GLsizei) width, (GLsizei) height);
glMatrixMode (GL_PROJECTION); / * Select the projection matrix * /
glLoadIdentity (); / * Initialise it * /
glOrtho(-1.0,1.0, -1.0,1.0, -1.0,1.0); / * The unit cube * /
glMatrixMode (GL_MODELVIEW); / * Select the modelview matrix * /

}

int main(int argc, char ** argv) {
glutInit (&argc, argv); / * Initialise OpenGL * /
glutInitWindowSize (500, 500); / * Set the window size * /
glutInitWindowPosition (100, 100); / * Set the window position * /
glutCreateWindow ("ex4"); / * Create the window * /
glutDisplayFunc (display); / * Register the "display" function * /
glutReshapeFunc (reshape); / * Register the "reshape" function * /
glutKeyboardFunc (keyboard); / * Register the "keyboard" function * /
glutMainLoop (); / * Enter the OpenGL main loop * /
return 0;

}
/ * end of ex4.c * /

Try ex4.c out. You should see a white triangle on a black background.

Although this is a simple example, it illustrates one of the most crucial aspects of OpenGL–viewing.
OpenGL is a system for drawing 3D graphics. But display screens are 2D – they’re flat. Figure 5.2
shows the situation.

In exampleeg4.c , we draw the triangle on theZ = 0 plane. But this is still 3D graphics!

5.2 Viewing using the camera

The idea of creating a 2D view of a 3D scene is simple: we “take a picture” of thescene using a
camera, and display the camera’s picture in the window on the display screen. For convenience,
OpenGL splits the process into three separate steps:

• Step one: First, we specify the position and orientation of the camera, using the function glu-

5.2. VIEWING USING THE CAMERA 23

Figure 5.2: OpenGL’s 3D “world”, and the 2D display screen.

LookAt() ;

• Step two: Second, we decide what kind of projection we’d like the camera to create.We can
choose anorthographic projection (also known as aparallel projection) using the function
glOrtho() (page 56); or aperspectiveprojection using the functiongluPerspective()(page 56);

• Step three: Finally, we specify the size and shape of the camera’s image we wish to see in
the window, usingglViewport() (page 58). This last step is optional – by default the camera’s
image is displayed using the whole window.

In OpenGL, the camera model described above is always active – you can’t switch it off. It’s imple-
mented usingtransformation matrices, and we describe this in detail in Chapter 9. For now, here’s
a brief description of the process.

OpenGL keeps two transformation matrices: themodelviewmatrix,M ; and theprojection matrix ,
P . The modelview matrix holds a transformation which composes the scene in worldcoordinates,
and then takes a view of the scene using the camera (step one, above). The projection matrix applies
the camera projection (step two, above).

Whenever the application program specifies a coordinatec for drawing, OpenGL transforms the co-
ordinate in two stages, as follows, to give a new coordinatec′. First it transforms the coordinatec by
the matrixM , and then by the matrixP , as follows:

c′ = P · M · c

When an OpenGL application starts up,P andM are unit matrices – they apply theidentity trans-
formation to coordinates, which has no effect on the coordinates. It’sentirely up to the application
to ensure that theM andP matrices always have suitable values. Normally, an application will setM

in its display() function, andP in its reshape() function, as we shall now describe.

24 CHAPTER 5. 2D AND 3D GRAPHICS

5.3 The window reshape function

After creating the window, and registering the display and keyboard callbacks, we now register a new
function, thereshape() callback:

void glutReshapeFunc (void (*func)(int width, int height));

glutReshapeFunc()registers the application callback to call when the window is first created, and also
if the window manager subsequently informs OpenGL that the user has reshaped the window. The
new height and width of the window, in pixels, are passed to the callback. Typically, the callback will
use these values to define the way that OpenGL’s virtual camera projects itsimage onto the window,
as we see in the next section.

5.3.1 Specifying the projection

We usually specify the projection in thereshape() callback function, because the projection will
often need to be adjusted if the user changes the shape of the window. In exampleex4.c we use an
orthographic (also known as “parallel”) projection:

void reshape (int width, int height)
{ / * Called when the window is created, moved or resized * /

glViewport (0, 0, (GLsizei) width, (GLsizei) height);
glMatrixMode (GL_PROJECTION); / * Select the projection matrix * /
glLoadIdentity ();
glOrtho(-1.0,1.0, -1.0,1.0, -1.0,1.0); / * The unit cube * /
glMatrixMode (GL_MODELVIEW); / * Select the modelview matrix * /

}

We begin by setting theviewport usingglViewport() , which specifies a rectangular portion of the
window in which to display the camera’s image. As in this example, it’s common to use the the whole
of the window, so we set the viewport to be a rectangle of equal dimensionsto the window. We’ll look
atglViewport() in detail in Section 9.3.

Next, we set up an orthographic projection.glMatrixMode() (page 47) selects which matrix subse-
quent functions will affect – in this case we select the projection matrix (P). Then we initialise it to
the unit transformation withglLoadIdentity() (page 48). This is very important, as we shall see in
a moment. Then, we select the orthographic projection usingglOrtho() (page 56). The projection
we’ve chosen maps a unit cube, centred on the origin, onto the viewport.

glOrtho() actually does two things: first it creates a new temporary matrix (let’s call itT) to implement
the projection, and then it multipliesP with T , as follows:

P = P · T

That’s why we need to make sureP is initialised to the unit transformation first.

Note that thereshape() function ends with another call toglMatrixMode() , which this time se-
lects the modelview matrix (M) for subsequent modification, for when we position the camera in the
display() function.

5.4. EXAMPLE 5: A 3D CUBE WITH PERSPECTIVE PROJECTION 25

5.3.2 Positioning the camera

This is usually done in the application’sdisplay() function, using the functiongluLookAt() . We’ll
describe this function in detail in Section 9.1. Inex4.c , we use it to position the camera on theZ

axis at(0.0, 0.0, 0.5), looking towards the origin:

glLoadIdentity (); / * start with a unit modelview matrix * /
gluLookAt (0.0, 0.0, 0.5, / * position of camera * /

0.0, 0.0, 0.0, / * point at which camera looks * /
0.0, 1.0, 0.0); / * "up" direction of camera * /

Again, becausegluLookAt() creates a new transformation and multiplies it into the current matrix
(M in this case), we need to ensure thatM is first initialised usingglLoadIdentity() .

5.4 Example 5: a 3D cube with perspective projection

We now turn to 3D drawing, andex5.c draws a cube, centred on the origin:

/ * ex5.c * /
#include <GL/glut.h>

void display (void) {
/ * Called when OpenGL needs to update the display * /

glClear (GL_COLOR_BUFFER_BIT); / * Clear the window * /
glLoadIdentity ();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glutWireCube(2.0);
glFlush(); / * Force update of screen * /

}

void keyboard (unsigned char key, int x, int y) {
/ * Called when a key is pressed * /

if (key == 27) exit (0); / * 27 is the Escape key * /
}

void reshape (int w, int h) {
/ * Called if the window is moved or resized * /

glViewport (0, 0, (GLsizei)w, (GLsizei)h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective (60, (GLfloat)w / (GLfloat)h, 1.0, 100.0);
glMatrixMode (GL_MODELVIEW);

}

int main(int argc, char ** argv) {
glutInit (&argc, argv); / * Initialise OpenGL * /
glutInitWindowSize (500, 500); / * Set the window size * /
glutInitWindowPosition (100, 100); / * Set the window position * /
glutCreateWindow ("ex5"); / * Create the window * /
glutDisplayFunc (display); / * Register the "display" function * /

26 CHAPTER 5. 2D AND 3D GRAPHICS

glutKeyboardFunc (keyboard); / * Register the "keyboard" function * /
glutReshapeFunc (reshape); / * Register the "reshape" function * /
glutMainLoop (); / * Enter the OpenGL main loop * /
return 0;

}
/ * end of ex5.c * /

Try ex5.c out.

In display() , we callglutWireCube(), which draws a wire-frame cube (see page 42). This time,
however, we view it using aperspectiveprojection as specified in ourreshape() function:

gluPerspective (60, / * field of view in degrees * /
(GLfloat)w / (GLfloat)h, / * aspect ratio of view * /
1.0, 100.0); / * near and far clipping planes * /

gluPerspective()sets a perspective projection, so we see the kind of view a camera would normally
give, where lines further away from the viewer appear smaller. Here, we specify a field of view of 60
degrees, and an aspect (width-to-height) ratio for the view which exactlymatches the aspect ratio of
the window. We’ll explain the use of clipping planes in Chapter 9.

5.5 What next?

Now onto Chapter 6, which looks at the use ofdouble buffering for achieving smooth animation.

Chapter 6

Animated graphics

Computer graphics really comes to life when we draw images thatmove.

6.1 Example 6: a rotating cube

In this next example –ex6.c – we’ll make OpenGL spin the cube about its centre. Have a look at
the code, then take a copy of the program, and compile and run it:

/ * ex6.c * /
#include <GL/glut.h>

GLfloat angle= 0.0;

void spin (void) {
angle+= 1.0;
glutPostRedisplay();

}

void display(void) {
glClear (GL_COLOR_BUFFER_BIT);
glLoadIdentity ();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glRotatef(angle, 1, 0, 0);
glRotatef(angle, 0, 1, 0);
glRotatef(angle, 0, 0, 1);
glutWireCube(2.0);
glFlush(); / * Force update of screen * /

}

void reshape (int w, int h) {
glViewport (0, 0, (GLsizei)w, (GLsizei)h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective (60, (GLfloat) w / (GLfloat) h, 1.0, 100.0);
glMatrixMode (GL_MODELVIEW);

}

27

28 CHAPTER 6. ANIMATED GRAPHICS

void keyboard(unsigned char key, int x, int y) {
if (key == 27) exit (0); / * escape key * /

}

int main(int argc, char ** argv) {
glutInit(&argc, argv);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow ("ex6: A rotating cube.");
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutKeyboardFunc(keyboard);
glutIdleFunc(spin); / * Register the "idle" function * /
glutMainLoop();
return 0;

}
/ * end of ex6.c * /

You should see the cube rotating, but in a rather broken-up sort of way. We’ll come back to that in a
moment.

The engine behind the animation is the event loop. UsingglutIdleFunc(), we register an application
callback function that gets called each time around theglutMainLoop() :

void glutIdleFunc (void (*func)(void));

glutIdleFunc() registers a callback which will be automatically be called by OpenGL ineach cycle
of the event loop,after OpenGL has checked for any events and called the relevant callbacks.

In ex6.c , the idle function we’ve registered is calledspin() :

void spin (void) {
angle+= 1.0;
glutPostRedisplay();

}

Firstspin() increments the global variableangle . Then, it callsglutPostRedisplay(), which tells
OpenGL that the window needs redrawing:

void glutPostRedisplay (void);

glutPostRedisplay() tells OpenGL that the application is asking for the display to be refreshed.
OpenGL will call the application’sdisplay() callback at the next opportunity, which will be during
the next cycle of the event loop.

Note: While OpenGL is processing a single cycle of the event loop, several callbacks may callglut-
PostRedisplay(). Nevertheless, OpenGL won’t actually call the display callback until all outstanding
events have been dealt with. And, within one cycle of the event loop, a succession of outstanding calls
to glutPostRedisplay()will be treated as a single call toglutPostRedisplay(), so display callbacks
will only be executed once – which is probably what you want.

6.2. DOUBLE-BUFFERING AND ANIMATION 29

Figure 6.1: Single buffering.

Figure 6.2: Double buffering.

6.2 Double-buffering and animation

As we saw, the rotating cube looks horrible. Why?

The problem is that OpenGL is operatingasynchronouslywith the refreshing of the display. OpenGL
is pumping out frames too fast: it’s writing (into the frame-buffer) a new image ofthe cube in a slightly
rotated position,before the previous image has been completely displayed.

Recall the architecture of raster displays: as shown in Figure 6.1, the pixel data is stored in the frame
buffer, which is repeatedly read (typically at 60 Hz) by the digital-to-analogue converter (DAC) to
control the intensity of the electron beam as it sweeps across the screen,one scan-line at a time. With
a single frame-buffer, the renderer (OpenGL) is writing pixel informationinto the bufferat the same
time the DAC is reading the information out. If the writer and the reader are out ofsync, the reader can
never be guaranteed to read and display a complete frame – so the viewer always sees images which
comprise part of one frame and part of another. This is very disturbing tothe eye – and destroys any
possibility of seeing smooth animation.

One solution is to use an additional buffer, as shown in Figure 6.2. The ideahere is that one buffer,
called the “back buffer” is only everwritten to by the renderer. The other buffer – the “front buffer” –
is only everread by the DAC. The renderer writes its new frame into the back buffer, and whenthat’s
done, it then requests that the back and front buffers be swapped over. Thetrick is to perform the
swapping while the DAC is performing itsvertical retrace, which is when it’s finished a complete
sweep of its buffer, and is resetting to begin again. There’s enough slack time here to swap the contents
of the two buffers over. This method will ensure that the DAC only ever reads and displays a complete
frame.

By default, OpenGL works insingle-buffer mode, and so we get the fragmented animation seen in

30 CHAPTER 6. ANIMATED GRAPHICS

ex6.c . But we can tell OpenGL to use double-buffering, usingglutInitDisplayMode() :

void glutInitDisplayMode (unsigned int mode);

glutInitDisplayMode() sets thecurrent display mode, which which will be used for a window cre-
ated usingglutCreateWindow(). mode is:

• GLUTSINGLE: selects a single-buffered window – which is the default ifglutInitDisplay-
Mode isn’t called;

• GLUTDOUBLE: selects a double-buffered window;

(There are more display modes, beyond the scope of this manual. For a fulldescription, see the GLUT
manual or the Red Book.)

For example, to select a double-buffered window you would call:

glutInitDisplayMode (GLUT_DOUBLE);
glutCreateWindow ("my window");

Once we’re using double-buffering, we can tell OpenGL that a frame is complete, and that the buffers
should be swapped usingglutSwapBuffers():

void glutSwapBuffers (void);

glutSwapBuffers() swaps the back buffer with the front buffer, at the next opportunity, which is
normally the next vertical retrace of the monitor. The contents of the new back buffer (which was the
old front buffer) are undefined.

Note: Swapping the buffers doesn’t have the side effect ofclearing any buffers. Clearing a buffer
must be done explicitly by the application, by callingglClear(). Note again that now we’re using
double-buffering, it’s no longer necessary to useglFlush().

6.3 Exercise: smooth the cube

Edit your copy ofex6.c as follows:

• In main() , after the call toglutInit() , insert a call toglutInitDisplayMode() to select a
double-buffered window;

• In display() , after the call toglutWireCube(), insert a call toglutSwapBuffers().

• Also, removethe call toglFlush(). We don’t need that anymore, since it gets called internally by
glutSwapBuffers(). And if we leaveglFlush() in the code, not only will its effect be redundant,
but it’ll also slow the program down.

See the difference? Smooth animation!

6.4. EXAMPLE 7: ROTATING OBJECTS FOLLOWING THE MOUSE 31

6.4 Example 7: rotating objects following the mouse

Finally, we now extendex6.c to display a few different objects, and to follow the mouse around.

We won’t describe the code here – have a look atex7.c on-line for yourself. And try running it.
Cycle between the various objects by pressing thespace key.

The main new functions we use areglutPassiveMotionFunc()(page 68) andgluUnProject() (page 59).

6.5 What next?

This is the end of the Tutorial section of the manual. The remaining chapters form the OpenGL
Reference Manual.

32 CHAPTER 6. ANIMATED GRAPHICS

Part II

OpenGL Reference Manual

33

Chapter 7

Graphics primitives

In this chapter we describe the coordinate system OpenGL uses, and someof the OpenGL graphics
primitives.

7.1 Coordinate systems

OpenGL uses right-handed Cartesian coordinate systems, as shown in Figure 7.1.

Figure 7.1: A right-handed coordinate system. The positiveZ axis comes out of the page.

By convention, we draw the positiveX axis heading rightwards, the positiveY axis heading vertically,
with the positiveZ axis heading out of the page towards you.

All the OpenGL functions which create graphical primitives such as lines and polygons work inobject
coordinates. OpenGL automatically transforms object coordinates, first by themodelview matrix
(M) and then by theprojection matrix (P). We describe the modelview matrix and the projection
matrix in Chapters 8 and 9.

35

36 CHAPTER 7. GRAPHICS PRIMITIVES

7.2 Defining a vertex

The basic building block for creating graphics with OpenGL is apoint in 3D space. To describe a
shape, you specify the set of points that together make up the shape. In OpenGL terminology, a point
in 3D space is called avertex.

You define a single vertex using the functionglVertex3f():

void glVertex3f (GLfloat x,
GLfloat y,
GLfloat z);

Here, the “3f” part of the function name means that the function takes threearguments, each of which
is aGLfloat . As we described in Section 2.6, GL uses its own data types.GLfloat is equivalent
to the C typefloat .

So, for example, to define the vertex at (10,8,5), shown in Figure 7.1, youwould call:

glVertex3f (10.0, 8.0, 5.0);

7.3 OpenGL function flavours

Many OpenGL functions come in several flavours. For example, suppose you only ever want to do 2D
drawing, so you’re only concerned with specifying vertices in theXY plane, and all vertices will have
a Z coordinate of 0. To make life easier, OpenGL offers a variant form of the glVertex3f() function,
calledglVertex2f():

void glVertex2f (GLfloat x,
GLfloat y);

Internally, this function still creates a 3D vertex, but it sets itsZ coordinate to0.0 for you, to save you
the bother. But in this manual, we will always use the 3D form of functions – the less functions we
have to remember, the better!

7.4 Defining shapes: primitives

A vertex on its own isn’t very interesting. Now we look at how to group vertices together intovertex
lists, which define geometrical shapes. The grouping of vertices is done with the glBegin() and
glEnd() functions:

void glBegin (GLenum mode);

glBegin() defines the start of a vertex list.mode determines the kind of shape the vertices describe,
which can be:

• A set of unconnected points (GL POINTS);

7.5. DRAWING POINTS 37

• Lines (GL LINES , GL LINE STRIP, GL LINE LOOP);

• The boundary of a single convex polygon (GL POLYGON);

• A collection of triangles (GL TRIANGLES, GL TRIANGLE STRIP, GL TRIANGLE FAN);

• A collection of quadrilaterals (GL QUADS, GL QUADSTRIP).

void glEnd (void);

glEnd() defines the end of a vertex list.

7.5 Drawing points

We use the followingmode in glBegin() to draw points:

• GL POINTS: each vertex represents a point.

glBegin (GL_POINTS);
glVertex3f (0.0, 6.0, 4.0);
glVertex3f (0.0, 8.0, 0.0);
glVertex3f (8.0, 6.0, 0.0);
glVertex3f (8.0, 3.0, 0.0);
glVertex3f (6.0, 0.0, 5.0);
glVertex3f (2.0, 0.0, 5.0);

glEnd ();

7.6 Drawing lines

In the functionglBegin(), the values ofmode which interpret vertices as points to connect with lines
are:

• GL LINES : each pair of vertices is drawn as a separate line.

• GL LINE STRIP: all the vertices are joined up with lines.

• GL LINE LOOP: all the vertices are joined up with lines, and an extra line is drawn from the
last vertex to the first.

Figure 7.2 illustrates how the same set of vertices can be drawn as lines in different ways according
to mode:

glBegin (GL_LINES); / * or GL_LINE_STRIP or GL_LINE_LOOP * /
glVertex3f (0.0, 6.0, 4.0);
glVertex3f (0.0, 8.0, 0.0);
glVertex3f (8.0, 6.0, 0.0);

38 CHAPTER 7. GRAPHICS PRIMITIVES

glVertex3f (8.0, 3.0, 0.0);
glVertex3f (6.0, 0.0, 5.0);
glVertex3f (2.0, 0.0, 5.0);

glEnd ();

Figure 7.2: The same set of vertices drawn using different line styles.

As well as geometry, primitives also haveattributes, which control ther visual style.

7.6.1 Line attributes

void glLineWidth (GLfloat width);

glLineWidth() sets the curent line width, measured in pixels. The default value is 1.0.

void glLineStipple (GLint factor,
GLushort pattern);

glLineStipple() sets the stippling pattern for lines, which enables lines to be drawn in a flexible variety
of dot/dash patterns. By default, stippling is switched off (see Section 7.6.2),and must be enabled by
calling:

glEnable(GL_LINE_STIPPLE);

Line stippling works on a pixel-by-pixel basis, as the line is rendered into theframe buffer.pattern
is a 16-bit series of 0s and 1s. When OpenGL renders a line, for each pixel it is about to write, it first
consults the next bit inpattern , starting at thelow-order bit , If this bit is a 1, the pixel is written,
in the current drawing colour. If the bit is a 0, the pixel is not written.

For example, suppose the pattern specified was (to choose a random example) 0x3E1F. In binary this
is:

0011 1110 0001 1111

So, when drawing a line, OpenGL would draw the first 5 pixels on, the next4 off, then one on, the
next five on, and the next 2 off. For the next pixel, OpenGL would return to the low-order bit of the
pattern, and repeat.

7.7. DRAWING TRIANGLES 39

factor is a way of elongating the pattern – it multiplies each sub-sequence of consecutive 0s and 1s.
For example, if factor=3, then if the bit series 0110 appeared in the pattern, it would be “stretched” to
be 01111110.

Handy values ofpattern , with factor set to 1.0, are:

Pattern Rough idea of what the line looks like

0x1111

0x3333

0x0F0F

0xAAAA

0xFFFF

7.6.2 Enabling OpenGL capabilities

void glEnable (GLenum capability);

void glDisable (GLenum capability);

OpenGL has a number of capabilities which by default are not active – forreasons of efficiency.
These include lighting, texturing, hidden surface removal and line stippling.To use one of these
capabilities, it must be explicitly “enabled” by the application, usingglEnable(). The capability may
be subsequently disabled usingglDisable(). Some of the valid values ofcapability are:

• GL LINE STIPPLE

• GL LIGHTING

• GL FOG

• GL DEPTHTEST

7.7 Drawing triangles

The different values ofmode in glBegin() to create triangles are:

• GL TRIANGLES: each triplet of points is drawn as a separate triangle. If the number of vertices
is not an exact multiple of 3, the final one or two vertices are ignored.

• GL TRIANGLE STRIP: constructs a set of triangles with the vertices v0, v1, v2 then v2, v1,
v3 then v2, v3, v4 and so on. The ordering is to ensure that the triangles are all drawn correctly
form part of surface.

40 CHAPTER 7. GRAPHICS PRIMITIVES

• GL TRIANGLE FAN: draws a set of triangles with the vertices v0, v1, v2 then v0, v2, v3 then
v0, v3, v4 and so on.

glBegin (GL_TRIANGLES);
glVertex3f (0.0, 6.0, 4.0);
glVertex3f (0.0, 8.0, 0.0);
glVertex3f (8.0, 6.0, 0.0);
glVertex3f (8.0, 3.0, 0.0);
glVertex3f (6.0, 0.0, 5.0);
glVertex3f (2.0, 0.0, 5.0);

glEnd ();

7.8 Drawing quadrilaterals

We can use two values formode in glBegin() to create quadrilaterals.

• GL QUADS: each set of four vertices is drawn as a separate quadrilaterals. If thenumber of
vertices is not an exact multiple of 4, the final one, two or three vertices areignored.

• GL QUADSTRIP: constructs a set of quadrilaterals with the vertices v0, v1, v3, v2 then v2, v3,
v5, v4 then v4, v5, v7, v6 and so on.

glBegin (GL_QUADS); / * or GL_QUAD_STRIP * /
glVertex3f (0.0, 6.0, 4.0);
glVertex3f (0.0, 8.0, 0.0);
glVertex3f (8.0, 6.0, 0.0);
glVertex3f (8.0, 3.0, 0.0);
glVertex3f (6.0, 0.0, 5.0);
glVertex3f (2.0, 0.0, 5.0);

glEnd ();

7.9 Drawing polygons

We draw a polygon using the followingmode in glBegin():

• GL POLYGON: the vertices define the boundary of a single convex polygon.

The polygon specified must not intersect itself and must be convex. Figure 7.3 shows a polygon with
5 vertices, drawn with the following code:

glBegin (GL_POLYGON)
glVertex3f (0.0, 6.0, 0.0);
glVertex3f (0.0, 6.0, 6.0);
glVertex3f (6.0, 6.0, 6.0);
glVertex3f (9.0, 6.0, 2.0);
glVertex3f (9.0, 6.0, 0.0);

glEnd ();

7.9. DRAWING POLYGONS 41

Figure 7.3: A simple polygon with 5 vertices.

For efficiency and simplicity, OpenGL only guarantees to draw a polygoncorrectly if it’s convex. A
polygon is convex if, taking any pair of points inside the polygon and drawing a straight line between
them, all points along the line are also inside the polygon. Figure 7.4 shows a few examples of convex
polygons (on the left) and non-convex polygons (on the right).

Note: to draw a non-convex polgyon in OpenGL, it must first be broken into a set of convex polygons,
each of which is then drawn separately. This process is calledtesselation, and non-convex polygons
can be broken down this way. GLU provides a set of functions for doingthis – see the Red Book,
Chapter 11.

Polygons must also beplanar (completely flat) if they are to be rendered correctly.

Figure 7.4: Convex polygons (left) and non-convex polygons (right).

7.9.1 Polygon attributes

void glPolygonMode (GLenum face,
GLenum mode);

glPolygonMode()sets the drawing mode for polygons.

42 CHAPTER 7. GRAPHICS PRIMITIVES

face can beGL FRONT, GL BACKor GL FRONTANDBACK. modecan beGL FILL , orGL LINE .

7.10 GLUT’s primitives

GLUT provides a number of functions for easily drawing more complicated objects. Each comes in
two versions:wire andsolid. The wire forms are drawn using lines (GL LINE or GL LINE LOOP);
the solid forms use polygons (with surface normals, suitable for creating lit, shaded images). Note
that these objects do not use display lists (see Chapter 14).

7.10.1 Cube

void glutWireCube (GLdouble size);

glutWireCube() draws a cube, with edge lengthsize , centred on(0, 0, 0) in object coordinates.
Solid version:glutSolidCube().

7.10.2 Sphere

void glutWireSphere (GLdouble radius,
GLint slices,
GLint stacks);

glutWireSphere() draws a sphere, of radiusradius , centred on(0, 0, 0) in object coordinates.
slices is the number of subdivisions around theZ axis (like lines of longitude);stacks is the
number of subdivisions along theZ axis (like lines of latitude). Solid version:glutSolidSphere().

7.10.3 Cone

void glutWireCone (GLdouble base,
GLdouble height,
GLint slices,
GLint stacks);

glutWireCone() draws a cone, with base radiusradius , and heightheight . The cone is oriented
along theZ axis, with the base placed atZ = 0, and the apex atZ = height.slices is the number
of subdivisions around theZ axis; stacks is the number of subdivisions along theZ axis. Solid

7.10. GLUT’S PRIMITIVES 43

version:glutSolidCone().

void glutWireTorus (GLdouble innerRadius,
GLdouble outerRadius,
GLint nsides,
GLint rings);

glutWireTorus() draws a torus centred on(0, 0, 0) in object coordinates. The axis of the torus is
aligned with theZ axis. innerRadius andouterRadius give the inner and outer radii of the
torus respectively;nsides is the number of sides in each radial section, andrings is the number
of radial sections. Solid version:glutSolidTorus().

7.10.4 Platonic solids

void glutWireTetrahedron (void);

glutWireTetrahedron() draws a tetrahedron (4-sided regular object) of radius
√

3 centred on(0, 0, 0)
in object coordinates. Solid version:glutSolidTetrahedron().

void glutWireOctahedron (void);

glutWireOctahedron() draws an octahedron (8-sided regular object) of radius1 centred on(0, 0, 0)
in object coordinates. Solid version:glutSolidOctahedron().

void glutWireDodecahedron (void);

glutWireDodecahedron()draws a dodecahedron (12-sided regular object) of radius
√

3 centred on
(0, 0, 0) in object coordinates. Solid version:glutSolidDodecahedron().

void glutWireIcosahedron (void);

glutWireIcosahedron()draws an icosahedron (20-sided regular object) of radius1 centred on(0, 0, 0)
in object coordinates. Solid version:glutSolidIcosahedron().

7.10.5 Teapot

void glutWireTeapot (GLdouble scale);

glutWireTeapot() draws a teapot, scaled byscale . Solid version:glutSolidTeapot().

44 CHAPTER 7. GRAPHICS PRIMITIVES

Chapter 8

Modelling using transformations

This chapter is about modelling: we explain how to use transformations to assemble 3D scenes.
Chapter 9 explains how to create a view of the scene using the camera model.

8.1 Vectors and matrices

We saw in Section 7.1 that a 3D vertex – a point in space – is represented asx, y, z, mathematically,
we write a 3D point as acolumn vector: If we have a pointp, we write it as:

p ←











x

y

z

1











You’ll notice the extra ‘1’ at the bottom of the vector – this is known as ahomogeneousrepresentation.
To cut a long story short, the use of such vector representations is a mathematical trick which allows
all common transformation types to be expressed in a consistent manner using4 × 4 matrices.

Warning: beware that some Computer Graphics textbooks represent coordinates as row vectors.
Using row vectors doesn’t change the basic methods used for matrix transformations, but the order
in which matrices appear, and their rows and columns, are reversed. Trying to think in terms of both
column and row vectors is a recipe for disaster. Stick to column vectors always.

In OpenGL all coordinate transformations are specified using4 × 4 matrices. If we transform a point
p with a matrixM (for example, a scale bysx, sy, sz), we get a transformed pointp′, as follows:











x′

y′

z′

1











←











sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1











·











x

y

z

1











or, more succinctly:

p′ ← M · p

45

46 CHAPTER 8. MODELLING USING TRANSFORMATIONS

If we subsequently transformp′ by another matrixN , to givep′′, we have:

p′′ ← N · p′

so expressing the entire transformation we have:

p′′ ← N · M · p

8.2 A note about matrix ordering

Notice that the order in which the matrices are written, reading from left to right, is thereverseof
the order in which their transformations are applied. In the above example, the first transformation
applied top is M , and the transformed point is then subsequently transformed byN .

In general, matrix multiplication isnot commutative. So, with two matricesM andN ,

M · N 6= N · M

In other words, theorder in which transformation matrices are applied is crucial.

One of the most common problems in computer graphics,blank screen syndrome (BSS), is often
due to incorrectly ordered matrix transformations. Your image has been lovingly computed, but it is
being displayed several miles to the West of your display screen; or that tiny blob in the left-hand
corner of your screen is your image, compressed into a few pixels.

8.3 Selecting the current matrix

OpenGL maintains two separate4 × 4 transformation matrices:

• themodelviewmatrix; this is used to accumulate modelling transformations, and also to specify
the position and orientation of the camera;

• theprojection matrix; this is used to specify how the 3D OpenGL world is transformed into a
2D camera image for subsequent display. The projection matrix performs either a perspective
or othographic (parallel) projection.

At any time, one or the other of these matrices is selected for use, and is calledthecurrent matrix ,
or sometimesC for short. Most of the OpenGL functions for managing transformations affect the
contents ofC.

8.4 Setting the current matrix

If our first transformationM represents a scale by(sx, sy, sz), and the second transformationN a
translation by(tx, ty, tz), we would code this in OpenGL as follows:

8.4. SETTING THE CURRENT MATRIX 47

Figure 8.1: An OpenGL modelview matrix stack. The top element of theselectedstack is often
referred to as the “current matrix”C.

glMatrixMode (GL_MODELVIEW); / * Select the modelview matrix * /
glLoadIdentity (); / * Set the current matrix to identity * /
glTranslatef (tx, ty, tz); / * Post-multiply by (tx,ty,tz) * /
glScalef (sx, sy, sz); / * Post-multiply by (sx,sy,sz) * /
glVertex3f(x, y, z); / * Define the vertex * /

Note that all the OpenGL functions which affect the current matrixC do so bypost-multiplication .
This means that we write the sequence of OpenGL transformation functions inthe reverse order to
the effect they actually have on vertices. This can take a bit of getting usedto.

In fact, the modelview matrix isn’t a single matrix stored somewhere inside OpenGL – it’s actually the
top matrix on astack of modelview matrices. This is shown in Figure 8.1. Similarly, the projection
matrix is the top matrix on astackof projection matrices. We’ll see later why OpenGL uses stacks of
matrices.

Figure 8.2 shows how the modelview and projection matrices on the top of their respective stacks
affect a vertex specified by the application.

void glMatrixMode (GLenum mode);

glMatrixMode() selects the matrix stack, and makes the top matrix on the stack the “current matrix”
(C). mode selects the matrix stack, as follows:

• GL MODELVIEW: selects the modelview matrix stack;

• GL PROJECTION: selects the projection matrix stack.

Once a current matrix has been selected usingglMatrixMode() , all subsequent matrix functions (such
asglRotatef(), etc.) affect the current matrix. For example, to load a translation by(x, y, z) into the
modelview matrix, the code would be:

glMatrixMode (GL_MODELVIEW);

48 CHAPTER 8. MODELLING USING TRANSFORMATIONS

Figure 8.2: The OpenGL viewing pipeline, showing the sequence of transformations and operations
applied to a 3D vertex.

glLoadIdentity ();
glTranslatef (x, y, z);

Subsequent matrix operations will continue to affect the current modelviewmatrix, until glMatrix-
Mode() is called again to select a different matrix.

8.5 Operating on the current matrix

There are a number of utility functions for changing the current matrix.

8.5.1 Setting to identity

void glLoadIdentity (void);

glLoadIdentity() sets the current matrixC to be the identity matrixI:

C ← I

where

I =











1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1











8.6. USING THE MATRIX STACKS 49

8.5.2 Translation

void glTranslatef (GLfloat x,
GLfloat y,
GLfloat z);

glTranslatef() creates a matrixM which performs a translation by(x, y, z), and then post-multiplies
the current matrix byM as follows:

C ← C · M

8.5.3 Scaling

void glScalef (GLfloat x,
GLfloat y,
GLfloat z);

glScalef()creates a matrixM which performs a scale by(x, y, z), and then post-multiplies the current
matrix byM as follows:

C ← C · M

8.5.4 Rotation

void glRotatef (GLfloat angle,
GLfloat x,
GLfloat y,
GLfloat z);

glRotatef creates a matrixM which performs a counter-clockwise rotation ofangle degrees. The
axis about which the rotation occurs is the vector from the origin(0, 0, 0) to the point(x, y, z), and
then post-multiplies the current matrix byM as follows:

C ← C · M

8.6 Using the matrix stacks

Because all the OpenGL transformation functions (likeglTranslate()) always change the current ma-
trix by post-multiplying with the new transformation, sometimes it can be awkward to easily get the
correct sequence of transformations. This is where the matrix stacks comein.

There are two separate matrix stacks: one for the modelview matrix and one for the projection matrix.
Only one matrix stack is current at a particular time, and this is selected by callingglMatrixMode() .

50 CHAPTER 8. MODELLING USING TRANSFORMATIONS

There are two functions which operate on the current matrix stack:glPushMatrix() andglPopMa-
trix() . They behave as you might expect:

void glPushMatrix (void);

glPushMatrix() Pushes the current matrix stack down one level. The matrix on the top of the stack is
copied into the next-to-top position, as shown in Figure 8.3. The current matrix stack is determined by
the most recent call toglMatrixMode() . C is not changed. It is an error ifglPushMatrix() is called
when the stack is full.

Figure 8.3: The effect of callingglPushMatrix() on the current OpenGL matrix stack. The figure
shows the stack before (left) and after (right)glPushMatrix() is called

Correspondingly, there’s a function to pop a matrix off the stack:

void glPopMatrix (void);

glPopMatrix() pops the current matrix stack, moving each matrix in the stack one position towards
the top of the stack, as shown in Figure 8.4. The current matrix stack is determined by the most recent
call to glMatrixMode() . C becomes the matrix previously at the second-to-top of the stack. It is an
error if glPopMatrix() is called when the stack contains only one matrix.

8.7 Creating arbitrary matrices

You can usually create the matrices you need by using the simple matrix manipulationfunctions
glLoadIdentity() , glTranslate(), glScale()andglRotate(), but sometimes – and this is an advanced
topic – you need to provide arbitrary4 × 4 matrices of your own. See Appendix C for details of how
to do this.

8.7. CREATING ARBITRARY MATRICES 51

Figure 8.4: The effect of callingglPopMatrix() on an OpenGL matrix stack. The figure shows the
stack before (left) and after (right)glPopMatrix() is called.

52 CHAPTER 8. MODELLING USING TRANSFORMATIONS

Chapter 9

Viewing

In this chapter we look at how to use the OpenGLviewing model. The idea is simple: we create a 3D
scene using modelling transformations. We then “take a picture” of the sceneusing acamera, and
display the camera’s picture on the display screen. For convenience, OpenGL splits the process into
three separate parts:

• First, we specify the position and orientation of the camera, usinggluLookAt() .

• Second, we decide what kind of picture we’d like the camera to create. Usually, for 2D graphics
we’ll use an orthographic (also known as “parallel”) view usingglOrtho()). For 3D viewing,
we’ll usually want a perspective view, usinggluPerspective().

• Finally, we describe how to map the camera’s image onto the display screen, using glView-
port() .

9.1 Controlling the camera

Let’s look again at the OpenGL viewing pipeline, in Figure 9.1.

We set the position and orientation of the OpenGL camera, as shown in Figure9.2, usingglu-
LookAt() :

void gluLookAt (GLdouble eyex,
GLdouble eyey,
GLdouble eyez,
GLdouble centerx,
GLdouble centery,
GLdouble centerz,
GLdouble upx,
GLdouble upy,
GLdouble upz);

The position of the camera in space – sometimes also called theeyepoint – is given by(eyex,
eyey, eyez) . (centerx, centery, centerz) specifies alook point for the camera to

53

54 CHAPTER 9. VIEWING

Figure 9.1: The OpenGL viewing pipeline, showing the sequence of transformations and operations
applied to a 3D vertex.

“look at”, and a good choice for this would a point of interest in the scene,and often the center
of the scene is used. Together, the points(eyex, eyey, eyez) and(centerx, centery,
centerz) define aview vector. The last set ofgluLookAt() ’s arguments specify theup vector of
the camera. This defines the camera’s orientation at the eyepoint.

There is no need for the view vector and the up vector to be defined at right angles to each other
(although if they’re parallel weird views may result). Often the up vector is set to a fixed direction in
the scene, e.g. pointing up the worldY axis. In the general case, OpenGL twists the camera around the
view vector axis until the top of the camera matches the specified up direction asclosely as possible.

WhatgluLookAt() actually does is to create a transformation matrix which encapsulates all the spec-
ified camera parameters. This is called the “viewing matrix”, orV . gluLookAt() then post-multiplies
the current modelview matrix (C) by V :

C ← C · V

If you don’t callgluLookAt() , the OpenGL camera is given some default settings:

• it’s located at the origin,(0, 0, 0);

• it looks down the negativeZ axis;

• its “up” direction is parallel to theY axis.

This is the same as if you had calledgluLookAt() as follows:

gluLookAt (0.0, 0.0, 0.0, / * camera position * /
0.0, 0.0, -1.0, / * point of interest * /
0.0, 1.0, 0.0); / * up direction * /

Note that the value−1.0 could be any negative float, because this is just specifying the direction
“down the negativeZ axis”.

9.2. PROJECTIONS 55

Figure 9.2: The OpenGL camera.

9.2 Projections

Now that we’ve positioned and pointed the OpenGL camera, the next step is tospecify what kind
of image we want. This is done using theprojection matrix , P . OpenGL applies the projection
transformationafter it has applied the modelview transformation.

9.2.1 The view volume

Consider the real world camera analogy, in which we choose the lens type (wide-angle, telephoto etc.).
The choice of lens affects the field of view, and selects what portion of the3D world will appear within
the bounds of final image. The volume of space which eventually appears inthe image is known as the
view volume (or view frustum). As well as discarding objects which lie outside the image “frame”
OpenGL also imposes limits on how far away objects must be from the camera in order to appear in
the final picture.

The actual 3D shape of the view volume depends on what kind of projectionis used. For orthographic
(parallel) projections the view volume is box-shaped, whereas perspective projections have a view
volume shaped like a truncated pyramid. The facets encasing the view volume effectively define six
clipping planes, which partition the frustum interior from the unseen outside world.

56 CHAPTER 9. VIEWING

9.2.2 Orthographic projection

glOrtho() creates a matrix for an orthographic projection, and post-multiplies the current matrix
(which is normally the projection matrix) by it:

void glOrtho (GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top,
GLdouble near,
GLdouble far);

Figure 9.3 illustrates how the arguments are interpreted. The values define abox-shaped view volume.
It is important to set the values such thatleft < right , bottom < top andnear < far . The
contents of the view volume are projected onto a rectangular region in theXY plane, with an aspect
ratio (right - left) / (top - bottom).

Figure 9.3: The orthographic viewing voulme specified byglOrtho .

9.2.3 Perspective projection

gluPerspective()creates a matrix for a perspctive projection, and post-multiplies the current matrix
(which will normally be the projection matrix) by it:

void gluPerspective (GLdouble fovy,
GLdouble aspect,
GLdoublea near,
GLdouble far);

Figure 9.4 illustrates how the arguments are interpreted.fovy is the angle (in degrees) of the image’s

9.3. SETTING THE VIEWPORT 57

vertical field of view;aspect is the aspect ratio of the frustum – its width divided by its height;
andnear andfar respectively specify the positions of the near and far clipping planes, measured as
their distances from thecentre of projection (eyepoint).near andfar must have positive values.

Figure 9.4: The perspective viewing frustum specified bygluPerspective.

9.3 Setting the viewport

glViewport() sets the position and size of theviewport – the rectangular area in the display window
in which the final image is drawn, as shown in Figure 9.5:

Figure 9.5: How the viewport is defined.

58 CHAPTER 9. VIEWING

void glViewport (GLint x,
GLint y,
GLsizei width,
GLsizei height);

x andy specify the lower-left corner of the viewport, andwidth andheight specify its width and
height. If a viewport is not set explicitly it defaults to fill the entire OpenGL window. This means that
if the window’s aspect ratio does not match that defined ingluPersepctive()or glOrtho() (e.g. after
a window resize) the displayed image will appear distorted.glViewport() may also be used to draw
several separate images within a single OpenGL window.

9.4 Using multiple windows

Most OpenGL programs use a single drawing window. However GLUT does support the use of
multiple windows simultaneously. During execution of an OpenGL program, all rendering appears
on thecurrent window . By default, the current window is always the most recently created window
(by glutCreateWindow()). If you want to use multiple windows, first create each window and note
the window identifier returned by each call toglutCreateWindow(). Then, select a window to render
usingglutSetWindow():

void glutSetWindow (int window);

To find out which window is currently selected, callglutSetWindow():

int glutGetWindow (void);

You can also destroy windows, using:

void glutDestroyWindow (int window);

Obviously, you can’t refer to the window identifier for a window which hasbeen destroyed.

9.5 Reversing the viewing pipeline

Sometimes you’ll want to click a pixel point in the window and find out what point in your original
object coordinates it corresponds to. This is easy to work out – all you have to do is to invert the
viewport, projection and modelview transformations as follows:

Given an object coordinatePo, its corresponding pixel coordinatePp is given by:

Pp = Mviewport · Mprojection· Mmodelview· Po

9.5. REVERSING THE VIEWING PIPELINE 59

So, if we knowPp, we can obtainPo by applying theinverseof each of the transformations:

Po = M−1

modelview· M−1

projection· M
−1

viewport · Pp

But there’s a problem with doing this. Because a screen pixel position is 2D, and our original object
coordinates were 3D, every point along a vector in object coordinates can project to the same 2D
screen position. This means it isn’t possible to perform anunambiguous reverse projection from
screen to world. So, the application must choose az value for the pixel too, which lies between the
near and far clipping planes.

int gluUnProject (GLdouble winx,
GLdouble winy,
GLdouble winz,
const GLdouble modelMatrix [16],
const GLdouble projMatrix [16],
const GLint viewport [4],
GLdouble *objx,
GLdouble *objy,
GLdouble *objz);

gluUnProject() maps the window coordinateswinx , winy , winz into object coordinatesobjx ,
objy , objz .

The following code, taken from the example programunproject.c , shows howgluUnproject() is
typically used:

GLdouble projmatrix[16], mvmatrix[16];
GLint viewport[4];

glGetIntegerv (GL_VIEWPORT, viewport);
glGetDoublev (GL_MODELVIEW_MATRIX, mvmatrix);
glGetDoublev (GL_PROJECTION_MATRIX, projmatrix);
/ * note viewport[3] is height of window in pixels * /
realy = viewport[3] - (GLint) y - 1;
printf ("Coordinates at cursor are (%4d, %4d)\n", x, realy) ;
gluUnProject ((GLdouble) x, (GLdouble) realy, 0.0,

mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
printf ("World coords at z=0.0 are (%f, %f, %f)\n",

wx, wy, wz);
gluUnProject ((GLdouble) x, (GLdouble) realy, 1.0,

mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
printf ("World coords at z=1.0 are (%f, %f, %f)\n",

wx, wy, wz);

See Section 15.1 for descriptions of the functionsglGetIntegerv() andglGetDoublev().

60 CHAPTER 9. VIEWING

Chapter 10

Drawing pixels and images

Sometimes, for image processing applications, you need access pixels directly. Often the most conve-
nient way to do this is to set up a view which gives a one-to-one mapping between object coordinates
and pixel coordinates.

10.1 Using object coordinates as pixel coordinates

To do this, you define an orthographic projection, where the width and height of the viewing volume
exactly match the width and height of the viewport. Normally you will draw on thez = 0 plane, so
we set the near and far clipping planes to−1.0 and1.0 respectively.

To begin with, let’s assume your program’smain has created an OpenGLwindow of an appropriate
size:

glutInitWindowSize (360, 335);
glutInitWindowPosition (100, 100);
glutCreateWindow ("Pixel world");

It’s usual to place the projection specification in thereshape function:

void reshape (int width, int height)
{

glViewport (0, 0, (GLsizei) width, (GLsizei) height);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
glOrtho (0.0, (GLfloat) width, 0.0, (GLfloat) height, -1.0 , 1.0);
glMatrixMode (GL_MODELVIEW);
glLoadIdentity ();

}

then the object coordinate point(60.0, 40.0, 0.0) would map to the OpenGLwindow pixel at(60, 40).

61

62 CHAPTER 10. DRAWING PIXELS AND IMAGES

Figure 10.1: The pixel rectangle drawn byglDrawPixelsat the current raster position.

10.2 Setting the pixel drawing position

The functionglRasterPos3f()sets thecurrent raster position – the pixel position at which the next
pixel rectangle specified usingglDrawPixels()will be drawn:

void glRasterPos3f (GLfloat x,
GLfloat y,
GLfloat z);

The position(x, y, z) is expressed in object coordinates, and is transformed in the normal way by the
modelview and projection matrices.

10.3 Drawing pixels

glDrawPixelsdraws a rectangle of pixels, withwidth pixels horizontally, andheight pixels verti-
cally.

void glDrawPixels (GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
const GLvoid *pixels);

The bottom left-hand corner of the pixel rectangle is positioned at thecurrent raster position.

pixels is a pointer to an array containing the actual pixel data. Because pixel datacan be encoded
in several different ways, the type ofpixels is a (void *) pointer.format andtype specify the

10.3. DRAWING PIXELS 63

pixel data encoding: normallyformat will be GL RGB, which states that each pixel is described by
three sequential values giving the red, green and blue componets;type specifies the data type used
for each of the R, G and B components, and will normally beGL FLOAT, with each of the R, G and
B values in the range [0.0,1.0].

For example, used in conjunction with the viewing code in Section 10.1, the following code defines
and draws a pixel rectangle of size 240 by 255, positioned at (60,40). The result is shown in Fig-
ure 10.1:

#define WIDTH 240
#define HEIGHT 255

GLfloat image[WIDTH][HEIGHT][3]; / * pixel data, R,G,B * /

/ * code omitted to write pixel values into ’image’ * /

void display (void)
{

glClear(GL_COLOR_BUFFER_BIT);
glRasterPos3f(60.0, 40.0, 0.0);
glDrawPixels(WIDTH, HEIGHT, GL_RGB, GL_FLOAT, image);

}

64 CHAPTER 10. DRAWING PIXELS AND IMAGES

Chapter 11

Displaying text

Unlike many graphics systems, OpenGL doesn’t directly support the specification and rendering of
text. It’s left up to the application programmer to draw text using one of two approaches:

• Define the shape of a character as collection of pixels in a bitmap. Here, the shape of a character
is not geometric, and so it isn’t affected at all by the modelview and projection matrices.

• Draw the shape of each character using OpenGL primitives, most commonly lines. With this
approach, each character is a little geometrical object, and can be transformed using the mod-
elview and projection matrices like ordinary OpenGL primitives.

Clearly, both of these methods mean that the application programmer would haveto do quite a lot of
work to draw text! Fortunately, however, the GLUT library comes to the rescue.

GLUT provides a number of font definitions in both the bitmap and line (also known as “stroke”)
forms. Here, we only describe GLUT’s bitmap text, which is most commonly used. For details of
GLUT’s stroke text, see the GLUT manual.

11.1 GLUT’s bitmap fonts

GLUT defines three groups of bitmap fonts, based on standard X-windows fonts:

• A fixed-width font, where each character occupies a pixel rectangle offixed size, either9 × 15
or 8 × 13: GLUTBITMAP 9 BY 15 , GLUTBITMAP 8 BY 13 ;

• A proportionally-spaced Times-Roman font, at 10 or 24 points:GLUTBITMAP TIMES ROMAN10 ,
GLUTBITMAP TIMES ROMAN24 ;

• A proportionally-spaced Helvetica font, at 10, 12 or 24 points:GLUTBITMAP HELVETICA 10 ,
GLUTBITMAP HELVETICA 12 , GLUTBITMAP HELVETICA 18 .

You can see these fonts (and a stroke font) demonstrated in the example program font.c (You’ll
need to copy an extra filetkmap.c from /opt/info/courses/OpenGL/examples/ into the same folder
you havefont.c). Use the arrow keys to rotate the fonts – you’ll see that the stroke font isproperly
transformed, but the only the start points of the bitmap fonts move.

65

66 CHAPTER 11. DISPLAYING TEXT

11.2 Drawing a single character

void glutBitmapCharacter (void *font,
int char);

glutBitmapCharacter() draws the single character whose ASCII code ischar , from font font .
The position at which the character’s bitmap is drawn is thecurrent raster position, set byglRaster-
Pos3f().

11.3 Drawing a text string

An application will often wish to display text strings. Here’s a simple function to do that (taken from
thegears.c):

void drawString (void * font, float x, float y, char * str) {
/ * Draws string ’str’ in font ’font’, at world (x,y,0) * /

char * ch;
glRasterPos3f(x, y, 0.0);
for (ch= str; * ch; ch++)

glutBitmapCharacter(font, (int) * ch);
}

We might call this function as follows, to draw a string at world(−7.0, 0.0, 0.0):

glColor3f(1.0, 1.0, 1.0); / * Select white * /
drawString (GLUT_BITMAP_HELVETICA_18, -7.0, 0.0, "Press Esc to quit");

Note: make sure the Z-coordinate of your bitmap text remains inside the frustum. If it doesn’t,
OpenGL will clip the entire text out. (Note also that if you’re doing lighting (seeChapter 16) – you’ll
have to ensure lighting is disabled while you’re drawing bitmap text.)

Chapter 12

Interaction

The basic OpenGL library has no facilities for interaction – it’s only concerned with rendering. This
was a design decision made in the interests of efficiency and portability.

The GLUT library provides some very rudimentary facilities for creating graphical user interfaces
(GUIs). Specifically, theglutMainLoop() function traps events, and allows an application to deal
with them in three ways:

• Mouse eventsare triggered when a mouse button is pressed, and also when the mouse changes
position;

• Keyboard eventsare triggered when the user hits an ASCII key or a cursor movement/function
key;

• Menu eventsare triggered when the application has defined GLUT pop-up menus and assigned
them to mouse buttons.

12.1 Keyboard events

For keyboard events, GLUT calls the application callback function registered by glutKeyboard-
Func() or glutSpecialFunc():

void glutKeyboardFunc (void (*func)(unsigned char key, int x, int y));

glutKeyboardFunc() registers the application function to call when OpenGL detects a key press
generating an ASCII character. This can only occur when the mouse focus is inside the OpenGL
window.

void glutSpecialFunc (void (*func)(int key, int x, int y));

glutSpecialFunc() registers the application callback to call when OpenGL detects a that key press
generating a non-ASCII character has occurred. This can only occur when the mouse focus is inside
the OpenGL window. Three values are passed to the callback:key is an integer code for the key
pressed;x andy give the pixel position of the mouse. Some useful codes are:

67

68 CHAPTER 12. INTERACTION

GLUT_KEY_LEFT Left arrow key
GLUT_KEY_RIGHT Right arrow key
GLUT_KEY_UP Up arrow key
GLUT_KEY_DOWN Down arrow key
GLUT_KEY_F1 F1 function key (and similarly F2-F12)

12.2 Mouse events

void glutMouseFunc (void (*func)(int button, int state, int x, int y));

glutMouseFunc() registers an application callback function which GLUT will call when the user
presses a mouse button within the window. The following values are passed tothe callback function:

• button records which button was pressed, and can be

– GLUTLEFT BUTTON

– GLUTMIDDLE BUTTON

– GLUTRIGHT BUTTON

• state records whether the event was generated by pressing the button (GLUTDOWN), or re-
leasing it (GLUTUP).

• x , y give the current mouse position in pixels. Note: when using OpenGL with X, the mousey
position is measured from thetop of the window.

void glutMotionFunc (void (*func)(int x, int y));

glutMotionFunc() registers an application callback function which GLUT will call when the mouse
moves within the window while one of its buttons is pressed. The current mousepositionx , y is
passed to the callback function.

void glutPassiveMotionFunc (void (*func)(int x, int y));

glutPassiveMotionFunc()has the same job asglutMotionFunc() , but no buttons need to be pressed
for an event to be generated.

12.3 Controlling the mouse cursor

You can set the position of the cursor usingglutWarpPointer() :

void glutWarpPointer (int x,
int y);

where (x,y) is in pixels relative to the window’s origin (top-left).

12.4. MENU EVENTS 69

To change the shape of the mouse cursor, useglutSetCursor():

void glutSetCursor (int cursor);

Wherecursor is one of the following:

GLUT_CURSOR_NONE /* Turns the cursor off * /

GLUT_CURSOR_RIGHT_ARROW /* Basic arrows * /
GLUT_CURSOR_LEFT_ARROW

GLUT_CURSOR_INFO /* Symbolic cursor shapes * /
GLUT_CURSOR_DESTROY
GLUT_CURSOR_HELP
GLUT_CURSOR_CYCLE
GLUT_CURSOR_SPRAY
GLUT_CURSOR_WAIT
GLUT_CURSOR_TEXT
GLUT_CURSOR_CROSSHAIR

GLUT_CURSOR_UP_DOWN /* Directional cursors * /
GLUT_CURSOR_LEFT_RIGHT

GLUT_CURSOR_TOP_SIDE /* Sizing cursors * /
GLUT_CURSOR_BOTTOM_SIDE
GLUT_CURSOR_LEFT_SIDE
GLUT_CURSOR_RIGHT_SIDE
GLUT_CURSOR_TOP_LEFT_CORNER
GLUT_CURSOR_TOP_RIGHT_CORNER
GLUT_CURSOR_BOTTOM_RIGHT_CORNER
GLUT_CURSOR_BOTTOM_LEFT_CORNER

GLUT_CURSOR_INHERIT /* Inherit from parent window * /

GLUT_CURSOR_FULL_CROSSHAIR /* Fullscreen crosshair (if available) * /

12.4 Menu events

GLUT menus are very straightforward to use. Once defined by the application and attached to a
specified mouse button, they pop up on the window at the position of the mouse when the appropriate
button is pressed. The user then makes a selection from the items in the menu, and GLUT calls an
application callback function for the menu, passing as an argument the number of the selected item.
GLUT menus can have items which invoke pop-up sub-menus.

The following example program,menu.c shows how to create two menus, one attached to the right
mouse button, and one to the middle mouse button. Try running the program.

/ * menu.c * /
#include <GL/glut.h>
#include <stdio.h>

70 CHAPTER 12. INTERACTION

void display (void)
{ / * Callback called when OpenGL needs to update the display * /

glClear (GL_COLOR_BUFFER_BIT); / * Clear the window * /
}

void keyboard (unsigned char key, int x, int y)
{ / * Callback called when a key is pressed * /

if (key == 27) { exit (0); } / * 27 is the Escape key * /
}

void tobys_bistro (int item)
{ / * Callback called when the user clicks the right mouse button * /

printf ("Toby’s bistro: you clicked item %d\n", item);
}

void steves_chippy (int item)
{ / * Callback called when the user clicks the middle mouse button * /

printf ("Steve’s chippy: you clicked item %d\n", item);
}

int main (int argc, char ** argv)
{

glutInit (&argc, argv); / * Initialise OpenGL * /
glutCreateWindow ("Menus"); / * Create the window * /
glutDisplayFunc (display); / * Register the "display" function * /
glutKeyboardFunc (keyboard); / * Register the "keyboard" function * /

glutCreateMenu (tobys_bistro); / * Create the first menu & add items * /
glutAddMenuEntry ("Petto di Tacchino alla Napoletana", 1) ;
glutAddMenuEntry ("Bruschetta al Pomodoro e Olive", 2);
glutAddMenuEntry ("Chianti Classico", 3);
glutAttachMenu (GLUT_RIGHT_BUTTON); / * Attach it to the right button * /

glutCreateMenu (steves_chippy); / * Create the second menu & add items * /
glutAddMenuEntry ("Rissoles", 1);
glutAddMenuEntry ("Curry sauce", 2);
glutAddMenuEntry ("Vimto", 3);
glutAttachMenu (GLUT_MIDDLE_BUTTON); / * Attach it to the middle button * /

glutMainLoop (); / * Enter the OpenGL main loop * /
return 0;

}
/ * end of menu.c * /

12.4.1 Defining menus

int glutCreateMenu (void (*func) (int value));

glutCreateMenu() creates a new pop-up menu, which becomes thecurrent menu. The argument is

12.4. MENU EVENTS 71

the name of the application’s callback function which is called when an item in the menu is selected
by the user.glutCreateMenu() allocates the new menu a uniqueint identifier number, which it
returns.

void glutAddMenuEntry (char *name,
int value);

glutAddMenuEntry() adds new item to the end of the current menu.name is the text to display in
the item.value is the value passed to the application’s callback if this item is selected by the user.

void glutAddSubMenu (char *name,
int menu);

glutAddSubMenu() adds a new sub-menu to the end of the current menu.name is the text to display
in the item in the current menu which, when pressed, will display the sub-menu. menu is the identifer
of the sub-menu, which is created separately with a call toglutCreateMenu().

void glutAttachMenu (int button);

glutAttachMenu() attaches the current menu to mouse buttonbutton . Whenever this button is
subsequently pressed, the menu will pop up.button must be one of:

• GLUTLEFT BUTTON

• GLUTMIDDLE BUTTON

• GLUTRIGHT BUTTON

void glutSetMenu (int menu);

glutSetMenu()sets thecurrent menu to the menu whose identifier ismenu.

12.4.2 Changing menus dynamically

It’s also possible to change the items in a menu as the program runs.

void glutChangeToMenuEntry (int entry,
char * name,
int value);

glutChangeToMenuEntry() changes an entry in the current menu.

72 CHAPTER 12. INTERACTION

Chapter 13

Colour

We express colour using acolour model, which gives us a way of assigning numerical values to
colours. A common simple model is the Red-Green-Blue (RGB) model, where a colour is represented
by a mixture of the three primary colours red, green and blue. This is illustrated in Figure 13.1.

Figure 13.1: The RGB colour model.

13.1 RGB colour in OpenGL

OpenGL supports the RGB colour model, in a slightly extended form. OpenGL adds a fourth compo-
nent to the colour, calledalpha, and the revised model is called theRGBA model. Alpha represents
the opacity (or, equivalently the transparency) of a colour, and is usedwhen blending colours together.

73

74 CHAPTER 13. COLOUR

We don’t discuss the use of alpha further in this manual.

void glClearColor (GLclampf red,
GLclampf green,
GLclampf blue,
GLclampf alpha);

glClearColor() sets the current clearing colour to be used when clearing a buffer usingglClear().
red , green andblue are the RGB components of the colour. TheGLclampf datatype limits
these values to floats in the range[0.0, 1.0]. Setalpha to 0.0.

void glColor3f (GLclampf red,
GLclampf green,
GLclampf blue);

glColor3f() sets the current drawing colour, using a triple of RGB values in the range[0.0, 1.0].

Chapter 14

Retained data

Graphics systems typically act in two ways:

• Immediate mode: whenever an applicationdefinesa primitive, it isdrawn immediately.

• Retained mode: the actions ofdefining a primitive anddrawing a primitive are treated quite
separately. When an application defines a primitive, the graphics system keeps a record of the
definition as adisplay list, but the primitive isn’t drawn. Subsequently, the application requests
that the stored primitive be drawn.

OpenGL provides both ways of working.

14.1 Immediate mode vs retained mode

By default, OpenGL works inimmediate mode: whenever a primitive is defined, OpenGL draws it
immediately. Once it has been drawn and rendered as pixels, OpenGL forgets all about the original
primitive.

For example, if we execute the code:

glBegin(GL_TRIANGLES)
glVertex(1.0, 3.0, 0.0);
glVertex(5.0, 3.0, 0.0);
glVertex(3.0, 4.0, 0.0);

glEnd();

OpenGL will draw the triangle defined by the three vertices, once they havebeen transformed by the
graphics pipeline, as pixels in the display buffer. But OpenGL does not keep any internal record of
the original definition of the vertices in object coordinates.

The use of immediate mode has a very important consequence for the application programmer: to
ensure that the contents of display are up-to-date, the application must execute all the code that defines
primitives (including setting transformations and rendering parameters).

There’s another way to use OpenGL, calledretained mode, which is quite different fromimmediate
mode.

75

76 CHAPTER 14. RETAINED DATA

14.2 Retained mode

Here, the graphical shapes which are to be drawn are specified within a display list. The OpenGL
display list mechanism is best thought of as acachefor graphics. It isn’t a full-fledged data structure
which the application can manipulate. Once created, a display list:

• cannot be edited – its data is execute-only.

• cannot be queried – an application cannot “read back” the data stored ina display list.

If display lists sound very restricted in their functionality, that’s exactly the intention. The OpenGL
display list is designed for efficiency, not versatility.

14.3 Using display lists

glNewList() creates and opens a new display list namedlist :

void glNewList (GLuint list,
GLenum mode);

All subsequent OpenGL commands will be stored in the display list. Thelist argument is a positive
integer which identifies the display list being created. It is up to the programmerto allocate unique
list values for each display list.mode determines what happens while the list is being created.
There are two options:

• GL COMPILE: the commands are not executed as they are stored in the display list. This means
the contents of the display list will not be drawn until the display list is called using glCallList() .

• GL COMPILEANDEXECUTE: the commands are executed as soon as they are stored in the
display list.

Only one display list can be open for writing at a time: OpenGL will report an error if another display
list is already open. If a display list with the namelist already exists when,glNewList() is called,
OpenGL automatically empties the existing display list, and overwrites it with the new definition.

void glEndList (void);

glEndList() closes the currently open display list, marking the end of its definition.

The following example creates a simple display list which draws a green triangle:

GLuint TRI= 1;

glNewList (TRI, GL_COMPILE);
glBegin (GL_TRIANGLES);
glColor3f (0.0, 1.0, 0.0); / * Green * /
glVertex3f (1.0, 3.0, 0.0);

14.4. MIXING IMMEDIATE MODE WITH RETAINED MODE 77

glVertex3f (5.0, 3.0, 0.0);
glVertex3f (3.0, 4.0, 0.0);
glEnd ();

glEndList ();

Note that here we’ve used a symbolic constantTRI for the name of the display list, rather than the
raw number1. This helps readability.

Once a display list has been created, it can be instanced repeatedly, using glCallList() :

void glCallList (GLuint list);

The effect of callingglCallList() on a display list namedlist is to execute again all the OpenGL
commands stored in the list. Any drawing specified by the commands will happen,as will any changes
to the OpenGL context – such as matrices and attributes.

Here’s how we could instance theTRI display list:

for (i= 0; i < 5; i++) { / * Instance a display list * /
glTranslatef (0.1, 0.0, 0.0);
glCallList (TRI);

}

This code will display five instances ofTRI , each instance shifted inx by 0.1 units.

14.4 Mixing immediate mode with retained mode

It’s perfectly acceptable to use immediate mode and retained mode at the same time. Consider the
following code fragment:

glColor3f (1.0, 0.0, 0.0); / * Red * /

glBegin (GL_LINES); / * Draw a line (immediate mode) * /
glVertex3f (0.0, 0.0, 0.0);
glVertex3f (0.2, 0.5, 0.0);

glEnd ();

for (i= 0; i < 5; i++) { / * Instance a display list * /
glTranslatef (0.1, 0.0, 0.0);
glCallList (TRI);

}

glBegin (GL_LINES); / * Draw another line (immediate mode) * /
glVertex3f (0.0, 0.0, 0.0);
glVertex3f (0.5, 0.5, 0.0);

glEnd ();

Here, we first set the current colour to red, then draw a line in immediate mode. Next, as in the
previous example, we draw five instances of the green triangle – and note how theglColor3f() call

78 CHAPTER 14. RETAINED DATA

(green) stored in theTRI display list overwrites the effect of the colour currently in effect when the
display list is called (red). Finally, we draw another line in immediate mode.Question: what colour
will the second line be?Answer: green, because green was the most recent colour selected (when the
TRI display list was called).

Chapter 15

State

OpenGL is astate machine: calling OpenGL functions change the state of the machine. This is
a fancy way of saying that inside the OpenGL system are a bunch of global variables which the
application can set and query. The current values of these variables control the way OpenGL behaves.

For example, callingglColor3f() sets thecurrent drawing colour , which will be used for drawing
primitives.

15.1 State enquiries

An application can query the values of state variables using a simple “keyword and value” model.
There’s a separate enquiry function for eachtype of state variable. For example, for integers:

int glGetIntegerv (GLenum pname,
GLint *params);

glGetIntegerv() enquires the integer state variable specified bypname. For example:

GLint col[1];

glGetIntegerv(GL_CURRENT_COLOR, col);

The value of the current drawing colour will be returned incol . Note that this is anarray variable.

Similarly, the functionglGetDoublev()enquires the current value of aGLdouble state variable:

int glGetDoublev (GLenum pname,
GLdouble *params);

There are similar functions for enquiring other types of state variable. Andthere are a huge number
of state variables – see Appendix B of the Red Book for a complete list.

79

80 CHAPTER 15. STATE

15.2 Enquiring the viewing state

Sometimes it’s necessary to enquire the current values of the viewing state. This can be done as
follows:

GLdouble projection[16], modelview[16];
GLint viewport[4];

glGetIntegerv (GL_VIEWPORT, viewport);
glGetDoublev (GL_MODELVIEW_MATRIX, modelview);
glGetDoublev (GL_PROJECTION_MATRIX, projection);

Chapter 16

Lighting

This chapter describes the facilities OpenGL provides for lighting and shading 3D scenes, so that the
objects in them look solid and (somewhat) realistic. Our intention here is to provide enough back-
ground and details to get you going, creating lit and shaded scenes. As always, for further information
refer to the Red Book, in particular Chapter 5.

16.1 The OpenGL lighting model

OpenGL provides a “local” lighting model, which computes the illumination of a singlepolygon with
respect to one or more light sources. It needs the following information in order to do this:

• The position of each light source

• The colour of each light source

• How the intensity of each light source decreases with distance

• The type of each light source: ambient, diffuse or specular

• The geometry of the polygon

• The colour of the polygon

In the real world, the interaction between light and matter is incredibly complicated. Much research
has been undertaken into techniques for simulating these interactions using mathematics and computer
graphics, and there are several sophisticated techniques which can create very realistic images. Two of
the best known are ray tracing and radiosity. These are called “global” models, because they consider
not only the interactions of one light and one object, but also the interactionsbetween all lights and
all objects in the scene. Such interactions are responsible, for example, for reflections and shadows.

The basic OpenGL lighting model cannot compute reflections and shadows,because it considers
each polygon in isolation from all others. This may come as a surprise, sincemany OpenGL-based
games clearly display sophisticated illumination. In many cases they do this by computing their own
illumination, and rendering it using OpenGL textures.

Nevertheless, OpenGL’s lighting model is useful, robust, and fast.

81

82 CHAPTER 16. LIGHTING

16.2 Hidden surface removal

If 3D scenes are to look plausible, we need to worry about “hidden surface removal”. If we have
a scene containing several objects, and we view the scene from a certainposition, one object might
obscure another. In order to display such a situation realistically, we must ensure that obscured parts
of objects do not get drawn. By default, OpenGL simply draws objects in theorder specified by the
programmer, taking no account of whether one object would obscure another for a given viewpoint.

OpenGL implements hidden-surface removal using a simple technique called depth-buffering (also
known as Z-buffering). This takes place during rasterization, using a “depth buffer” – an array which
records a depth value corresponding to each pixel in the window. Initially,each depth value is set to
be a very large number. Whenever a new pixel is generated, for exampleduring the scan-conversion
of a polygonP1, the pixel’s Z value is compared with the corresponding value in the depth-buffer. If
the pixel’s depth is less than that in the buffer, the pixel is drawn and its depthrecorded in the depth
buffer, over-writing the previous value. Otherwise, the pixel is not drawn and the depth buffer is not
updated.

Now, suppose subsequently that during the scan-conversion of polygon P2, the same pixel is gener-
ated, becauseP1 andP2 overlap in the scene. If the depth value ofP2’s pixel is greater than that stored
in the depth buffer, thenP2 is further away from the eye thanP1, and so is obscured byP1.

To tell OpenGL to perform hidden-surface removal using a depth buffer, you need to do three things.

First, in the call toglutInitDisplayMode() , instruct GLUT to create a depth buffer, specifyingGLUTDEPTH
in addition to any other flags you’re using:

glutInitDisplayMode (GLUT_DOUBLE | GLUT_DEPTH);

Second, enable the depth test, which is switched off by default, usingglEnable():

glEnable (GL_DEPTH_TEST);

Finally, you need to explictly clear the depth buffer (in other words, re-load it with large depth values)
each time around the rendering loop:

void display () {
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
/ * all your display code * /

}

Here’sex8.c , which draws a tumbling green cube orbiting a stationary red cube.

#include <GL/glut.h>

float r= 0.0;
int hidden= 0;

void init(void) {
glClearColor (0.0, 0.0, 0.0, 0.0);

}

16.2. HIDDEN SURFACE REMOVAL 83

void spin (void) {
r+= 1.0;
glutPostRedisplay();

}

void display(void) {
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

if (hidden) glEnable(GL_DEPTH_TEST);
else glDisable(GL_DEPTH_TEST);

glLoadIdentity ();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glColor3f (1.0, 0.0, 0.0);
glutSolidCube(1.0); / * Red cube * /

glRotatef(r * 2.0, 0, 1, 0); / * Orbit angle * /
glTranslatef(0.0, 0.0, 1.0); / * Orbit radius * /
glRotatef(r, 1, 0, 0); / * Tumble in x,y,z * /
glRotatef(r, 0, 1, 0);
glRotatef(r, 0, 0, 1);
glColor3f (0.0, 1.0, 0.0);
glutSolidCube(0.5); / * Green cube * /

glutSwapBuffers();
}

void reshape (int w, int h) {
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective (60, (GLfloat) w / (GLfloat) h, 1.0, 100.0);
glMatrixMode (GL_MODELVIEW);

}

void keyboard(unsigned char key, int x, int y) {
if (key == 27) { exit (0); } / * escape key * /
if (key == ’h’)

hidden= !hidden;
}

int main(int argc, char ** argv) {
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow ("ex8: Press ’h’ to toggle hidden surface removal.");
init ();
glutDisplayFunc (display);
glutReshapeFunc (reshape);
glutKeyboardFunc (keyboard);

84 CHAPTER 16. LIGHTING

glutIdleFunc (spin);
glutMainLoop ();
return 0;

}
/ * end of ex8.c * /

By default, hidden-surface removal is off, so the cubes are drawn in the order they’re coded in
display() – that’s the stationary red cube first, then the rotating green cube. Where they over-
lap, the green cube’s pixels will always over-write the red cube’s pixels.

Press ‘h’ to switch on hidden-surface removal, and you can now see when the green cube orbitsbehind
the red cube, and is therefore obscured by it.

Notice that the green cube is drawn in a single colour – and doesn’t look atall “solid”. We’ll see how
to address that in subsequent sections.

16.3 Defining lights

By default, lighting is off. It’s enabled as follows:

glEnable (GL_LIGHTING);

OpenGL provides at least eight lights, namedGL LIGHT0 throughGL LIGHT7 . By default, each
light is switched off, so a light must be enabled if it is to have any effect. Forexample, to use light 0:

glEnable (GL_LIGHT0);

As well as enabling a light, you need to set its position, colour and other attributes, but if you don’t,
the light has handy default values. In particular, its colour is white, and its located at the position
(0, 0, 1). We can use these defaults to add a light to the previous example, which we altered slightly
so that the orbiting object is now a sphere. Here’sex9.c :

/ * ex9.c * /
#include <GL/glut.h>

float r= 0.0;
int hidden= 1, flat= 1;

void init(void) {
glClearColor (0.0, 0.0, 0.0, 0.0);
glEnable (GL_LIGHTING);
glEnable (GL_LIGHT0);

}

void spin (void) {
r+= 1.0;
glutPostRedisplay();

}

16.3. DEFINING LIGHTS 85

void display(void) {
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

if (hidden) glEnable(GL_DEPTH_TEST);
else glDisable(GL_DEPTH_TEST);

if (flat) glShadeModel (GL_FLAT);
else glShadeModel (GL_SMOOTH);

glLoadIdentity ();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glColor3f (1.0, 0.0, 0.0);
glutSolidCube(1.0); / * Red cube * /

glRotatef(r * 2.0, 0, 1, 0); / * Orbit angle * /
glTranslatef(0.0, 0.0, 1.0); / * Orbit radius * /
glRotatef(r, 1, 0, 0); / * Tumble in x,y,z * /
glRotatef(r, 0, 1, 0);
glRotatef(r, 0, 0, 1);
glColor3f (0.0, 1.0, 0.0);
glutSolidSphere(0.5, 20, 15); / * Green sphere * /

glutSwapBuffers();
}

void reshape (int w, int h) {
glViewport (0, 0, (GLsizei) w, (GLsizei) h);
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective (60, (GLfloat) w / (GLfloat) h, 1.0, 100.0);
glMatrixMode (GL_MODELVIEW);

}

void keyboard(unsigned char key, int x, int y) {
if (key == 27) { exit (0); } / * escape key * /
if (key == ’h’) hidden= !hidden;
if (key == ’s’) flat= !flat;

}

int main(int argc, char ** argv) {
glutInit(&argc, argv);
glutInitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH);
glutInitWindowSize (500, 500);
glutInitWindowPosition (100, 100);
glutCreateWindow ("ex9");
init ();
glutDisplayFunc (display);
glutReshapeFunc (reshape);
glutKeyboardFunc (keyboard);
glutIdleFunc (spin);
glutMainLoop ();
return 0;

86 CHAPTER 16. LIGHTING

}
/ * end of ex9.c * /

Runningex9 , you’ll see the orbiting sphere lit byLIGHT0 , and now its different faces are shaded
according to how they’re oriented with respect to the light source.

Note that you can still use ‘h’ to toggle hidden surface removal. Try togglingit and observe the
incorrect results when it’s switched off. For lighting to work correctly, thedepth buffer must be
enabled.

16.4 Defining the shading model

In ex9 we make use of a new function,glShadeModel():

void glShadeModel (GLenum mode);

glShadeModel()specifies how OpenGL renders primitives. For example, when renderinga polygon,
if mode is GL FLAT, OpenGL chooses one vertex of the polygon, computes its colour, and assigns
this colour to all pixels in the polygon. Ifmode is GL SMOOTH, OpenGL computes a colour for each
vertex, and the interior pixels of the polygon are coloured by interpolating between the vertex colours.
If glShadeModel()is not called, the default behaviour isGL SMOOTH.

In ex9 , we initially selectGL FLAT, and the ‘s’ key toggles between this andGL SMOOTH.

16.5 Defining materials

There’s another difference between the visual appearances ofex8 and ex9 . In ex8 , we usegl-
Color3f() to set the colour of the two objects, so they’re drawn red and green. Inex9 , these colour
settings are still there, but now they don’t have any effect; instead, the objects take their colour only
from the light source. When lighting is enabled, we need to specify the intrinsic colours of objects in
a more sophisticated way.

OpenGL uses the concept ofmaterial properties. An object is considered to have a surface made of
a material with several properties, which determine how it interacts with light. These are:

• ambient colour: how well the material reflects ambient light

• diffuse colour: how well the material reflects diffuse light

• specular colour: how well the material reflects specular light

• emissiveness: whether the material emits light itself

• shininess: how glossy the material is

16.6. DEFINING LIGHTS 87

There’s a single function for setting material properties:

void glMaterialfv (GLenum face,
GLenum paramName,
TYPE *param);

face specifies which face of a primitive the material property should effect, andmay beGL FRONT,
GL BACKor GL FRONTANDBACK.

paramName selects which material property to change, as follows:

• GL AMBIENTsets the ambient colour (default is (0.2, 0.2, 0.2, 1.0));

• GL DIFFUSE sets diffuse colour (default is (0.8, 0.8, 0.8, 1.0));

• GL SPECULARsets the specular colour (default is (0.0, 0.0, 0.0, 1.0));

• GL EMISSION sets the emissive colour (default (0.0, 0.0, 0.0, 1.0));

• GL SHININESS sets the specular exponent (default 0.0);

param is the value to set. ForGL SHININESS, the type of this argument isGLfloat ; for all other
values ofmode, it’s GLfloat * .

Example programex10.c illustrates the use ofglMaterialfv() , to set the diffuse colours of the cube
and sphere. The following extract shows the relevant code:

GLfloat redDiffuseMaterial[] = {1.0, 0.0, 0.0, 0.0};
GLfloat greenDiffuseMaterial[] = {0.0, 1.0, 0.0, 0.0};

/ * code omitted * /

glMaterialfv(GL_FRONT, GL_DIFFUSE, redDiffuseMaterial);
glutSolidCube(1.0); / * Red cube * /

/ * code omitted * /

glMaterialfv(GL_FRONT, GL_DIFFUSE, greenDiffuseMateri al);
glutSolidSphere(0.5, 20, 15); / * Green sphere * /

16.6 Defining lights

The properties of a light are defined in a similar way to those of materials, usingglLightfv() :

void glLightfv (GLenum light,
GLenum paramName,
TYPE *param);

paramName selects which light property to change, as follows:

88 CHAPTER 16. LIGHTING

• GL AMBIENTsets the ambient light colour (default (0.0, 0.0, 0.0, 1.0))

• GL DIFFUSE sets the diffuse light colour (default (1.0, 1.0, 1.0, 1.0))

• GL SPECULARsets the specular light colour (default (1.0, 1.0, 1.0, 1.0))

• GL POSITION sets the position of the light (default (0.0, 0.0, 1.0, 0.0)). If thew coordinate
of the position is0.0, the light is considered to be at+∞, and the(x, y, z) components of its
position give the direction the light shines in.

• GL SPOTDIRECTION sets the direction of a spotlight (default (0.0, 0.0, -1.0))

• GL SPOTEXPONENTsets the exponent of a spotlight (default 0.0)

• GL SPOTCUTOFFsets the spotlight cutoff angle. The default value is 180.0, which indicates
the light is not a spotlight. Any other value indicates the light is a spotlight.

• GL CONSTANTATTENUATIONsets the constant attenuation factor (default 1.0)

• GL LINEAR ATTENUATIONsets the linear attenuation factor (default 0.0)

16.7 The lighting equation

OpenGL uses the following lighting equation to compute the colourV of a vertex:

V = Me + (Ig ∗ Ma) +
n−1
∑

i=0

Ai ∗ Si ∗ (ambi + diff i + speci)

where:

• Me is the material’s emission

• Ig is the scaled global ambient light

• Ma is the material’s ambient reflectivity

• Ai is the attentuation factor for lighti: 1

kci
+kli

di+kqi
d2

i

• wherekci
is the value ofGL CONSTANTATTENUATION

• kli is GL LINEAR ATTENUATION

• kqi
is GL QUADRATICATTENUATION

• di is the distance from light sourcei to the vertex.

• Si is the spotlight effect of lighti. If the light isn’t a spotlight,Si = 1.0; if the light is a spotlight,
but V is outside the light’s cone of illumination,Si = 0.0; otherwise,Si = max(v̂i · di, 0)ns ,
wherev̂ is the normalised vector from the position of lighti to vertexV , di is the direction of
light i, andns is GL SPOTEXPONENT.

16.7. THE LIGHTING EQUATION 89

• ambi is the ambient reflection component:Iai
∗ Ma

• diff i is the diffuse reflection component:max(L̂i · N̂ , 0) ∗ Idi
∗ Md

• speci is the specular reflection component:max(Ŝi · N̂ , 0)n ∗ Isi
∗ Ms)

• Md is the material’s diffuse reflectivity

• Ms is the material’s specular reflectivity

• Iai
is the ambient component of lighti

• Idi
is the diffuse component of lighti

• Isi
is the specular component of lighti

• L̂i is the normalised vector fromV to the position of light sourcei

• N̂ is the unit normal vector forV

• Ŝi is the normalised vector sum of̂Li and the normalised vector pointing fromV to the view-
point.

90 CHAPTER 16. LIGHTING

Appendix A

The cogl script

cogl is handy for compling a single OpenGL program, which is normally sufficient for simple ap-
plications.

#!/usr/bin/perl
#
This is for compiling and linking C
programs with Mesa, on Linux.
#
usage: cogl [-g] file.c
#
changed by TLJH 05/10/04 for new GLUT dist
changed by TLJH 30/01/02 to remove -lforms
#
Toby Howard, 5 November 1998, version 2
#
$CC= "gcc";
$CFLAGS= "-O3 -fomit-frame-pointer -march=i486 -Wall -pi pe -DFX -DXMESA ";
#
$LIB_PATHS= "-L/usr/X11/lib -L/usr/X11R6/lib ";
$LIB_PATHS= $LIB_PATHS . "-L/opt/common/lib/glut-3.7/l ib/glut ";
$HDR_PATHS= "-I/usr/X11R6/include ";
$HDR_PATHS= $HDR_PATHS . "-I/opt/common/lib/glut-3.7/i nclude ";
$OGL_LIBS= "-lglut -lGL -lGLU -lGL ";
$X_LIBS= "-lX11 -lXext -lXmu -lXt -lXi ";
#
$LIBS= $OGL_LIBS . $X_LIBS . "-lm ";

local $fin, $fout;

@dirs = split(/\//,$0); $O = "$dirs[$#dirs]"; # get the prog ram name into $O.

if (($#ARGV < 0) || ($#ARGV > 1)) { &usage; } # only one or two arg s

if ($#ARGV == 0) { # one arg
$fin= $ARGV[0];
}

elsif ($#ARGV == 1) { # two args

91

92 APPENDIX A. THE COGL SCRIPT

if ($ARGV[0] ne "-g") { &usage; }
else {

$CFLAGS .= "-g";
$fin= $ARGV[1];

}
}

if ($fin =˜ m/\.c$/) { # only accept file.c
$fout= $fin; $fout =˜ s/\.c$//; # Duff! Must be a nicer way.
}

else { &usage; }

print "$O v4, 01/10/04: compiling $fin; output program will be: $fout\n";

local ($ret)= system("$CC $CFLAGS $HDR_PATHS $fin $LIB_PA THS $LIBS -o $fout") >> 8;
if ($ret) {die ("$O: gcc failed.\n");}

sub usage {
print "usage: cogl [-g] file.c\n";
exit (1);

} # usage

that’s it.

You can find cogl on-line at:

/opt/common/bin/cogl

Appendix B

Using a makefile

cogl is handy for compling a single OpenGL program, which is normally sufficient for simple ap-
plications. For more complex projects, however, which split functions across several files, it’s better
to use a makefile.

We won’t discuss here the general principles of makefiles – that’s a wholetopic in itself – but here’s
a sample makefile for accessing the Mesa libraries on the Linux teaching system:

INCDIR = /usr/include
LIBDIR = /usr/lib
XLIBS = -L/usr/X11/lib -L/usr/X11R6/lib -lX11 -lXext -lXm u -lXt -lXi
GL_LIBS = -L$(LIBDIR) -lglut -lMesaGLU -lMesaGL -lm $(XLIB S)
CC = gcc
CFLAGS = -I${INCDIR} -O3 -fomit-frame-pointer -m486 -Wall -pipe

gears: gears.o
${CC} ${CFLAGS} gears.o -o gears ${GL_LIBS}

You can find this makefile on-line at:

/opt/info/courses/OpenGL/Makefile

93

94 APPENDIX B. USING A MAKEFILE

Appendix C

Advanced matrix operations

You can usually create the matrices you want by using the simple matrix manipulationfunctions
glLoadIdentity() , glTranslate(), glScale()andglRotate(), but sometimes you need to provide arbi-
trary4 × 4 matrices of your own. The functions described in this section enable you to do this. Refer
to Section C.1 for details of how OpenGL interprets the sequence of elements inan arbitrary matrix.

void glLoadMatrixf (const GLfloat *m);

glLoadMatrixf() takes a matrixm(a pointer to a sequence of 16 floats) and sets the current matrixC

to this matrix:

C ← m

glMultMatrixf() takes a matrixm(a pointer to a sequence of 16 floats) and post-multiplies it with the
current matrixC, as follows:

C ← C · m

void glMultMatrixf (const GLfloat *m);

C.1 How an OpenGL matrix is stored

By using the utility functions such asglRotatef(), glMultMatrixf() , and so on, it’s simple to create
and manipulate matrices. Some applications, however, may wish to create their own matrices, and
pass them to OpenGL.

In order to do this correctly, it’s necessary to know how OpenGL stores itsmatrices internally.

Suppose you wanted to create your own matrix and pass it to OpenGL. We’lltake the simple example

95

96 APPENDIX C. ADVANCED MATRIX OPERATIONS

of a matrix to perform a translation by(x, y, z), which has the mathematical form:











1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1











We would normally declare such a matrix in C as follows:

/ * assume x, y and z are already declared * /

float M[4][4]= { 1, 0, 0, x,
0, 1, 0, y,
0, 0, 1, z,
0, 0, 0, 1 };

C stores multi-dimensional arrays inrow-major format, soM is actually this sequence of 16 floats
(decimal points omitted for clarity):

{ 1, 0, 0, x, 0, 1, 0, y, 0, 0, 1, z, 0, 0, 0, 1 }

OpenGL, however expects matrices to be incolumn-major format, where an ordered sequence of
elementse1 throughe16 defines the following matrix:











e1 e5 e9 e13

e2 e6 e10 e14

e3 e7 e11 e15

e4 e8 e12 e16











This is the transpose of row-major format. So, if we pass the matrixMto OpenGL, as the argument to
glLoadMatrixf() or glMultMatrixf() , we won’t get the result we expect. OpenGL would access the
16 elements ofM“column-wise” and create the following OpenGL matrix:











1 0 0 0
0 1 0 0
0 0 1 0
x y z 1











This is a matrix for three-point perspective – not translation! The results will be spectacular, but
spectacularly wrong.

The safest thing to do is to stick to OpenGL’s functions for manipulating matrices– then you need
never worry about the way they’re stored. But if you do need to computeexotic matrices and pass
them to OpenGL, be very careful with the row/column ordering.

Index

The names of OpenGL functions are printed inbold, and a bold page number indicates the main
description of the function.

alpha, 73
animation, 27–31
arrow keys, 67
ASCII character code, 18
attributes, 38

blank screen syndrome, 46
books about OpenGL, 8

callback function, 15
display, 16, 17, 25
idle, 17, 28
keyboard, 17, 67
mouse, 17, 68
reshape, 17, 24, 61

camera
analogy with real camera, 22
defaults, 54
position and orientation, 25, 53
up direction, 54

cogl, 11, 91
colour, 73–74
cone, 42
convex polygon, 41
coordinate system, 35
cube, 42
current raster position, 62, 66
cursor, setting position and shape, 68

display lists, 75–78
display(), 17, 25
dodecahedron, 43
double buffering, 29

event, 13, 67
event loop, 17, 28, 67
ex1.c , 14

ex10.c , 87
ex2.c , 17
ex3.c , 19
ex4.c , 21
ex5.c , 25
ex6.c , 27
ex7.c , 31
ex8.c , 82
ex9.c , 84
eyepoint, 53

face, 42
factor, 39
frame-buffer, 14, 29
frustum, 55
function keys, 67
function names, 36

GL, 5
GL AMBIENT, 87, 88
GL BACK, 42, 87
GL COLOR BUFFER BIT, 16
GL CONSTANT ATTENUATION, 88
GL DEPTH TEST, 39
GL DIFFUSE, 87, 88
GL EMISSION, 87
GL FILL, 42
GL FOG, 39
GL FRONT, 42, 87
GL FRONT AND BACK, 42, 87
GL LIGHTING, 39
GL LINE, 42
GL LINE LOOP, 37, 42
GL LINE STIPPLE, 39
GL LINE STRIP, 37
GL LINEAR ATTENUATION, 88

97

98 INDEX

GL LINES, 37
GL MODELVIEW, 47
GL POINTS, 36, 37
GL POLYGON, 37, 40
GL POSITION, 88
GL PROJECTION, 47
GL QUAD STRIP, 37, 40
GL QUADRATIC ATTENUATION, 88
GL QUADS, 37, 40
GL SHININESS, 87
GL SPECULAR, 87, 88
GL SPOTCUTOFF, 88
GL SPOTDIRECTION, 88
GL SPOTEXPONENT, 88
GL TRIANGLE FAN, 37, 40
GL TRIANGLE STRIP, 37, 39
GL TRIANGLES, 37, 39
glBegin(), 36, 37, 39, 40
glCallList() , 76,77
glClear(), 16
glClearColor(), 16,74
glColor3f(), 74, 86
glDisable(), 39
glDrawPixels(), 62
glEnable(), 39, 82
glEnd(), 37
glEndList() , 76
glFlush(), 16, 17, 30
glGetDoublev(), 59,79
glGetIntegerv(), 59,79
glLightfv() , 87
glLineStipple(), 38
glLineWidth() , 38
glLoadIdentity() , 24, 25,48
glLoadMatrixf() , 95, 96
glMaterialfv() , 87
glMatrixMode() , 24,47, 50
glMultMatrixf() , 95, 96
glNewList(), 76
glOrtho() , 23, 24, 53,56
glPolygonMode(), 41
glPopMatrix() , 50, 51
glPushMatrix() , 50
glRasterPos3f(), 62, 66
glRotatef(), 49, 95
glScalef(), 49
glShadeModel(), 86

glTranslatef(), 49
GLU library, 6
gluLookAt() , 23, 25,53
gluPerspective(), 23, 26, 53,56
GLUT library, 7
GLUT BITMAP 8 BY 13, 65
GLUT BITMAP 9 BY 15, 65
GLUT BITMAP HELVETICA 10, 65
GLUT BITMAP HELVETICA 12, 65
GLUT BITMAP HELVETICA 18, 65
GLUT BITMAP TIMES ROMAN 10, 65
GLUT BITMAP TIMES ROMAN 24, 65
GLUT DOUBLE, 30
GLUT DOWN, 68
GLUT KEY DOWN, 68
GLUT KEY F1, 68
GLUT KEY LEFT, 68
GLUT KEY RIGHT, 68
GLUT KEY UP, 68
GLUT LEFT BUTTON, 68, 71
GLUT MIDDLE BUTTON, 68, 71
GLUT RIGHT BUTTON, 68, 71
GLUT SINGLE, 30
GLUT UP, 68
glutAddMenuEntry() , 71
glutAddSubMenu(), 71
glutAttachMenu() , 71
glutBitmapCharacter() , 66
glutChangeToMenuEntry(), 71
glutCreateMenu(), 70
glutCreateWindow(), 15
glutDestroyWindow(), 58
glutDisplayFunc(), 15,16
glutGetWindow(), 58
glutIdleFunc(), 28
glutInit() , 15, 30
glutInitDisplayMode() , 30, 82
glutInitWindowPosition() , 15,20
glutInitWindowSize() , 15,19
glutKeyboardFunc(), 18, 67
glutMainLoop() , 17, 67
glutMotionFunc() , 68
glutMouseFunc(), 68
glutPassiveMotionFunc(), 31,68
glutPostRedisplay(), 28
glutReshapeFunc(), 24
glutSetCursor(), 69

INDEX 99

glutSetMenu(), 71
glutSetWindow(), 58
glutSolidCone(), 43
glutSolidCube(), 42
glutSolidDodecahedron(), 43
glutSolidIcosahedron(), 43
glutSolidOctahedron(), 43
glutSolidSphere(), 10, 42
glutSolidTeapot(), 43
glutSolidTetrahedron(), 43
glutSolidTorus(), 43
glutSpecialFunc(), 67
glutSwapBuffers(), 30
glutWarpPointer() , 68
glutWireCone(), 42
glutWireCube(), 30,42
glutWireDodecahedron(), 43
glutWireIcosahedron(), 43
glutWireOctahedron(), 43
glutWireSphere(), 9, 42
glutWireTeapot(), 43
glutWireTetrahedron() , 43
glutWireTorus() , 43
gluUnProject(), 31,59
glVertex2f(), 36
glVertex3f(), 36
glViewport() , 23, 24, 53,58
graphics primitives, 35–43

hidden surface removal, 82

icosahedron, 43
immediate mode, 75
include files, 15
interaction, 67

lighting, 81–89
line attributes, 38
lines, 37

makefile, 11, 93
matrix

creating arbitrary 4x4, 50, 95–96
ordering of elements, 95
ordering of operations, 46
stacks, 49–50

menus, 70–71
Mesa, 5, 7

mode, 42
modelview matrix, 23, 46

object coordinates, 35
octahedron, 43

pattern, 38, 39
pixels, 61–63
platonic solids, 43
points, 37
polygon attributes, 41
polygons, 40

convex vs. non-convex, 41
primitives, 35–43
projection

orthographic, 24, 56
perspective, 25, 26, 56

projection matrix, 23, 46

quadrilaterals, 40

reshape, 61
retained mode, 75
RGB colour model, 73

sphere, 42
state, 79–80
state machine, 79
swapping buffers, 30

teapot, 7, 43
tesselation, 41
tetrahedron, 43
text, 65–66
torus, 43
transformations, 45–50
triangles, 39

vector, 45
vertex, 36
view volume, 55
viewing, 53–59
viewing pipeline, 47, 53
viewport, 24, 57

Web resources, 8
window, 13

default size and position, 15
display mode, 30

100 INDEX

reshape callback function, 24
setting size and position, 19
viewport, 24

Windows XP (etc), 8

