An Introduction to

Graphics Programming

with

penGL.

Tutorial and Reference Manual

Toby Howard

School of Computer Science
University of Manchester

v3.3, January 13, 2010

Contents

1 About this manual 1
1.1 Howtoreadthismanual 1
1.2 JointheBugClub e 1
1.3 Acknowledgements 1
PART | OpenGL Tutorial 3
2 Introduction to OpenGL 5
2.1 WhatisOpenGL? 5
2.2 Awhirlwindtourof OpenGL 5
2.3 WhatisMesa?. 7
2.4 Using OpenGL away from the School 8
2.5 Resourcesandfurtherreading 8
2.6 Aboutthe notationusedinthismanual 9
2.7 Whatnext? e 10
3 Getting started with OpenGL 11
3.1 Compilingusingogl 11
3.2 Trysomeotherexamples 2 1
3.3 Yetmoreexamples 12
3.4 Whatnext? e e 12
4 Beginning OpenGL programming 13
4.1 TheOpenGLmodel 31
4.2 Platform- and device-independence L. 13
4.3 Example 1: abare-bones program 14
4.4 Callbackfunctions e 51

ii CONTENTS
45 Themaineventloop e 17
4.6 Example 2: akeyboardeventcallback 17
4.7 Example 3: customizingthewindow 19
4.8 Whatnext? e 20

5 2D and 3D graphics 21
5.1 Example 4: drawinga2Dtriangle, 12
5.2 Viewingusingthecamera. 2 2
5.3 The window reshape function 24
5.4 Example 5: a 3D cube with perspective projection 25
55 Whatnext? e 26

6 Animated graphics 27
6.1 Example6:arotatingcube 7 2
6.2 Double-buffering and animation 29
6.3 Exercise: smooththecube 30
6.4 Example 7: rotating objects followingthe mouse 1 3
6.5 Whatnext? 31

PART Il OpenGL Reference Manual 33

7 Graphics primitives 35
7.1 Coordinate Systems e e e 5 3
7.2 Definingavertex 6 3
7.3 OpenGLfunctionflavours 36
7.4 Defining shapes: primitives e 36
7.5 Drawing pointS e 37
7.6 Drawinglines e e 37
7.7 Drawingtriangles e 9 3
7.8 Drawing quadrilaterals L 40
7.9 Drawing polygons e e e e e e 40
7.10 GLUT's primitives e e e e e e 24

8 Modelling using transformations 45
8.1 Mectorsand matrices 5 4
8.2 Anote aboutmatrixordering e 46

CONTENTS iii

10

11

12

13

14

8.3 Selectingthecurrentmatrix 46
8.4 Settingthecurrentmatrix e 6
8.5 Operatingonthecurrentmatrix 48
8.6 Usingthematrixstacks
8.7 Creating arbitrary matrices 50
Viewing 53
9.1 Controllingthecamera
9.2 Projections e
9.3 Settingtheviewport e 7
9.4 Using multiplewindows e
9.5 Reversing the viewing pipeline o 58
Drawing pixels and images 61
10.1 Using object coordinates as pixel coordinates 61
10.2 Setting the pixel drawing position Lo 62
10.3 Drawing pixels e 2
Displaying text 65
11.1 GLUT'shitmapfonts e 5
11.2 Drawingasingle character 66
11.3 Drawingatextstring e 66
Interaction 67
12.1 Keyboardevents. e e e 67
12.2 Mouse events e e e 68
12.3 Controllingthe mouse cursor e 68
124 MeNUEVENIS e e e e e e e e 69
Colour 73
13.1 RGBcolourinOpenGL 73
Retained data 75
14.1 Immediate mode vsretainedmode
14.2 Retainedmode e
14.3 Usingdisplay lists e 6

14.4 Mixing immediate mode withretainedmode

49

53
55

58

\Y% CONTENTS

15 State 79
15.1 Stateenquiries e e e e e 79
15.2 Enquiringthe viewingstate, 80

16 Lighting 81
16.1 The OpenGL lightingmodel 18
16.2 Hiddensurfaceremoval 82
16.3 Defininglights 84
16.4 Definingthe shadingmodel 86
16.5 Definingmaterials 6 8
16.6 Defininglights 87
16.7 Thelightingequation 8 8

A The cogl script 91

B Using a makefile 93

C Advanced matrix operations 95

C.1 HowanOpenGLmatrixisstored 59

Chapter 1

About this manual

This manual is in two parts: the first (Chapters 2 to 6) is a handsutorial , which uses a series
of example programs to illustrate some of the main features of OpenGL. Toedspart (Chapter 7
onwards) is &Reference Manua) which describes some OpenGL functions in detail.

1.1 How to read this manual

If you're a newcomer to OpenGL, we recommend that you first read thedluthapters, in order,
and experiment with the example programs on-line. These chapters irgrdltieidbasic concepts
of OpenGL, and cover the details of how to compile and run OpenGL C amegjusing our local
GNU/Linux installation.

The reference chapters are intended to support the lecture materiddealaboratory programming
exercises.

1.2 Join the Bug Club

In the highly unlikely event that you find a bug in this manual, please email ugdtals. Suc-
cessful correspondents will receive honorary membership of the@®@ub. Send bug reports to
opengl@cs.man.ac.uk

1.3 Acknowledgements

It's a pleasure to thank Alan Murta and Julien Cartigny for helping with pdrteis manual. And
thank you to all the people who have made their excellent GNU/Linux softivasdy available:
Mesa (which includes GLU) was written by Brian Paul (www.mesa3d.ord)UTGwas originally
written by Mark J. Kilgard, who kindly provided additional help, although nasv use thereeglut

implementation (freeglut.sourceforge.net).

CHAPTER 1. ABOUT THIS MANUAL

Part |

OpenGL Tutorial

Chapter 2

Introduction to OpenGL

In recent years OpenGL has become a worldwide standard for 3D ¢engraphics programming.
It's very widely used: in industry, in research laboratories, in compusenegs — and for teaching
computer graphics.

OpenGL is a powerful, professional-level system, and it would take a ahanuch thicker than
this one to describe all its facilities completely. We have selectsdbaetof OpenGL — a portion
of OpenGL's functionality which is relevant to the COMP20072 Interac@raphics course, and
sufficient to support its programming labs.

2.1 Whatis OpenGL?

OpenGL has it origins in the earlier GL (“Graphics Library”) system whias invented by Silicon
Graphics Inc. as the means for programming their high-performancéabped graphics worksta-
tions. As time went on, people became interested in porting GL to other kinds afinea and in
1992 a variation of GL — called OpenGL — was announced. Unlike GL, Gpanas specifically
designed to belatform-independent, so it would work across a whole range of computer hardware
— not just Silicon Graphics machines. The combination of OpenGL's pometpartability led to its
rapid acceptance asstandard for computer graphics programming.

OpenGL itself isn’t a programming language, or a software library. It'stiexificationof an Appli-
cation Programming Interface (API) for computer graphics programmimgtHer words, OpenGL
defines a set of functions for doing computer graphics.

What you actually use to do your graphics isiamplementation of OpenGL. We use a free software
system calledMesa which we’ll describe in Section 2.3.

2.2 A whirlwind tour of OpenGL

What exactly can OpenGL do? Here are some of its main features:

¢ It provides 3D geometric objects, such as lines, polygons, triangle mesplesres, cubes,
quadric surfaces, NURBS curves and surfaces;

5

6 CHAPTER 2. INTRODUCTION TO OPENGL

Application program

Display screen

Figure 2.1: Where OpenGL fits in — a high-level view.

e |t provides 3D modelling transformations, and viewing functions to createsva# 3D scenes
using the idea of &irtual camera;

e It supports high-quality rendering of scenes, including hidden-sanfamoval, multiple light
sources, material types, transparency, textures, blending, fog;

e It provides display lists for creating graphics caches and hierarctmodkls. It also supports
the interactive “picking” of objects;

e It supports the manipulation of images as pixels, enabling frame-buffectefsuch as anti-
aliasing, motion blur, depth of field and soft shadows.

Figure 2.1 shows the relationship between an application and OpenGL incaliddlU/Linux envi-
ronment. An application programmer sees OpenGL as a single library prg\ddiat of functions for
graphical input and output. In fact, it’s slightly more complicated than that.

2.2.1 The support libraries: GLU and GLUT

A key feature of the design of OpenGL is the separatiomt&raction (input and windowing func-
tions) fromrendering. OpenGL itself is concerned only with graphics rendering. You canyawa
identify an OpenGL function: all OpenGL function names start Wigh .

Over time, twoultility libraries have been developed which greatly extend the low-level (but very
efficient) functionality of OpenGL. The first is the “OpenGL Utility Librarydr GLU. The second is
the “OpenGL Utility Toolkit”, orGLUT :

e GLU provides functions for drawing more complex primitives than those of Opesch as
curves and surfaces, and also functions to help specify 3D viewseoésc All GLU function
names start withiglu” .

2.3. WHAT IS MESA? 7

Application program
GLUT GLU
(OpenGL Utility Toolkit) (OpenGL Utility library)

1s often referred to as

This collection of libraries
> “OpenGL”

P

OpenGL library

Figure 2.2: What is commonly called “OpenGL” is actually a set of three libsaf@penGL itself,
and the supporting librarigsLU andGLUT .

e GLUT provides the facilities for interaction that OpenGL lacks. It providestions for man-
aging windows on the display screen, and handling input events from theaamd keyboard.
It provides some rudimentary tools for creating Graphical User Intesfg&UIs). It also in-
cludes functions for conveniently drawing 3D obijects like the platonic saiad,a teapot. All
GLUT function names start witfglut” .

Figure 2.2 shows the relationships between OpenGL, GLU, and GLUToAg&n see, it's helpful to
think of “layers” of software, where each layer calls upon the facilitiesaffware in a lower layer.

However, somewhat confusingly, when most people €49enGL", what they really mean isOpenGL
plusGLU plusGLUT". It's a slightly lazy terminology, but we’ll use it too.

2.3 Whatis Mesa?

Mesa is a C implementation of a graphics system that leak®mely similar to the official OpenGL
specification. (We can't actually say “Mesaan implementation of OpenGL” for legal reasons. But,
for all intents and purposes, it is really.)

Whereas OpenGL is intended to run on machines which have graphicsrsuppardware, Mesa
doesn’t require the presence of any special 3D graphics accefetatidware — although it can cer-
tainly take advantage of it if it's there. Of course, the performance of thpigcs will be better with
hardware acceleration, but it's still remarkably good without it on a neasly fast PC.

8 CHAPTER 2. INTRODUCTION TO OPENGL

2.4 Using OpenGL away from the School

Mesa has been ported to many different platforms, including GNU/LinurO&y) DOS, Windows,
and OS/2. In the School, however, we currently support Mesaon GNU/Linux.

If you wish to run Mesa on GNU/Linux away from the School, refer to oeal®penGL Web pages
(see Section 2.5.1), which explain where to get the software, and give sistallation guidelines.

For any other platform — specificalliyindows — see the next section for pointers to resources.

2.5 Resources and further reading

Here are some useful resources, and suggestions for furtha@rgesldould you wish to find out more.

2.5.1 On-line resources

e The Moodle Graphics Programmers’ forum at
moodle.cs.man.ac.uk/mod/forum/view.php?id=579

is for the place to go for graphics queries and chat. Post your Open@jtggnming queries
here, and help others with theirs.

e Please don’t usehe local newsgrouman.cs.graphics- it's deprecated. Use Moodle instead.

e Our local OpenGL Web pagesiww.cs.man.ac.uk/applhax/OpenGL Check here for up-to-
date details of the local installation.

e Local example programs: we have a number on-linégjrt/info/courses/OpenGL/examples

e The official home of OpenGL on the Wetnww.opengl.org Lots of pointers to on-line infor-
mation, tutorials, example programs, and downloadable software.

e The USENET OpenGL newsgrougomp.graphics.api.opengl This can be a great source
of help and information, for newcomers and experts alike. However, thateit is highly
inadvisable to post pages of source code saying “my program doesn’t work”.wils all
newsgroups, lurk for a while and get a feel of the etiquette before gpstin

2.5.2 Books

o Interactive Computer Graphics: A Top-Down Approach with OpenGL by Edward Angel.
Addison-Wesley, ISBN 0-201-85571-2. General introduction to cdempgraphics for people
new to the subject. This is a recommended textbook for the COMP20072cours

e OpenGL Programming Guide, Fifth Edition: The Official Guide to Learning Open GL,
Version 1.2 by Mason Woo et al. Addison-Wesley, 0321335732. Also known a% “Rbd
Book”, provides complete coverage of OpenGL from simple to advane@t, many code
examples. Assumes familiarity with C, some maths, geometry. The coverage bbtkidar
exceeds the material taught in COMP20072. Earlier editions of this boo&vaikable free
online — sedttp://www.opengl.org/documentation/red book/.

2.6. ABOUT THE NOTATION USED IN THIS MANUAL 9

2.5.3 Technical documentation

¢ You can find detailed technical OpenGL specification documentsat opengl.org/documentation/

2.6 About the notation used in this manual

Experienced C programmers might wish to skip this section.

In this manual, when we introduce a new OpenGL function, we’ll give itsieadn, followed imme-
diately by a description of what it does.

To take an example at random, here’s the definition of the GLUT functionhmhiaws a sphere,
which you’'ll meet on page 42:

void glutWireSphere (GLdouble radius,
GLint slices,
GLint stacks);

What this notation means is the following:

e The name of the function glutWireSphere();
e The result type of the function igid ;
e The function has three arguments:

— radius , of typeGLdouble

— slices , of typeGLint
— stacks , of typeGLint

To actuallyusethis function in your program, you would do something like this:

GLdouble rad= 1.0;
GLint sl= 15;
GLint st= 20;

glutWireSphere (rad, sl, st);
Or, you could set the arguments directly, without declaring variables:
glutWireSphere (1.0, 15, 20);

Note that OpenGL defines its own names for data types, all of which beginGlitExamples are:
GLdouble , GLint , GLfloat . Thereasonit’s done like this is to make the specification of OpenGL
language-independent. In most cases, it'll be obvious what the datesgues -GLint |, for example,

is GL's name for an integer, or ant in C. Where it isn’'t obvious, we’ll tell you.

To continue with the example glutWireSphere(), this is how we’d write its description:

10 CHAPTER 2. INTRODUCTION TO OPENGL

glutWireSphere() draws a sphere, of radiwadius , centred orn(0,0,0) in object co-
ordinates.slices is the number of subdivisions around theaxis (like lines of lon-
gitude);stacks is the number of subdivisions along theaxis (like lines of latitude).
Solid version:glutSolidSphere()

2.7 What next?

Now onto Chapter 3, which explains how to compile OpenGL programs usinipcal installation.

Chapter 3

Getting started with OpenGL

This chapter explains how to compile and link C programs with OpenGL usintpoalrinstallation.
There are two different ways to do this:

e Using the commandogl - this is handy for compiling single standalone OpenGL pro-
grams, and is the recommended way for compiling programs in the COMR0072 lah
(cogl is a Perl script and lives ifopt/common/bin).

e Using a makefile — this is a more flexible approach, necessary for larggrcts which use
more than one source file. Use of a makefiledg recommendedfor the COMP20072 lab.
See Appendix B for a sample makefile.

3.1 Compiling usingcogl|

cogl is acommand we've written locally to make compiling single programs with OpenGingdes
as possible. (The Perl source code of cogl is listed in Appendix A).

We'll use the example prograthegears.c to illustrate the use afogl .

First, make sure you are running X Windows. Then, select an appteptigctory to work in, and
take your own private copy of the prograhregears.c , as follows (the stringunter$ stands for
whatever command prompt your shell window displays):

punter$ cp /opt/info/courses/OpenGL/examples/thegears .C .

(Don't forget thatdot (.) as the second argumentdp.)
You compile and link the program as follows:

punter$ cogl thegears.c
This will produce an executable program caltedgears , which you run as follows:

punter$ thegears

11

12 CHAPTER 3. GETTING STARTED WITH OPENGL

You should see a square OpenGL window appear on your display, witbthing interesting happen-
ing within it. Move your mouse into the OpenGL window, and priessn the keyboard to bring up
the help screen. Experiment with the program as it suggests.

3.2 Try some other examples

There are a number of other example programept/info/courses/OpenGL/examples/ ,
which we’d encourage you to copy, compile and play with. Here are sonmreceenmend.

tori : some doughnuts. Move the mouse slowly;

teapots : draws our teapot collection;

morph3d : might remind you of a certain screensaver;

reflect : reflective texture mapping. Try the arrow keys;

pointblast : a simple particle system. Try the mouse buttons;

star : moving starfield. Hit to warp;

lorenz : chaos. Have aspirins handy.

3.3 Yet more examples

Here are some other examples to try, agairapt/info/courses/OpenGL/examples/
These are part of thescreensaver collection, and are already compiled for you, so jodtto
that directory, and run the programs. You'll have to tygmtrol-c in your shell to stop them
running:

e moebius : ants crawl inexplicably around a moebius strip;

e sproingies : multi-coloured bouncy things tumble down an infinite staircase, and oceasion
ally explode;

e superquadrics : 3D shapes morph into each other, based on the “superquadric” objects
developed by American graphics researcher Alan Barr;

e cage : be amazed as OpenGL draws an impossible object.

3.4 What next?

Now onto Chapter 4, which introduces the structure of an OpenGL progra

Chapter 4

Beginning OpenGL programming

In this and the next two chapters, we introduce the basic ideas of Opergiuiarial fashion, using
a series of example programs.

4.1 The OpenGL model

Figure 4.1 shows the relationships between an application program, tHaagagstem, input and
output devices, and the user.

The application program has its own internainodel of what it's doing — its own interpretation of
what the graphics it's manipulating actualtyeans It draws the graphics using the facilities of the
graphics system-in our case, OpenGL. The user views the graphics, andmnysesdevices such as

a mouse, tanteract. Information about the user’s interactions are sent back to the applicatinch
decides what action to take. Typically, it will make changes to its internal modhéthwwill cause the
graphics to be updated, and so anotbep in the interaction cycle begins.

4.2 Platform- and device-independence

As we saw in Chapter 2, OpenGL is designed to be platform-independadieaice-independent, so
it isn’t concerned with the exact makes and models of graphics displayngrdction hardware it
uses. Instead, OpenGL functions refemtimdows andevents

e An OpenGLwindow is a rectangular area on a physical display screen into which OpenGL
draws graphics. Usually, an OpenGL window corresponds exactly togow managed by the
“window manager”, such as X. (It's also possible to have multiple OpenGldeviis simulta-
neously active on a single display — see Section 9.4.)

e An OpenGLeventoccurs when the user operates an input device. In order to respthe to
input event, the application must provide a C function — known aalllback function — to
handle the event; OpenGL automatically calls the application’s function, gpidime event
data.

13

14 CHAPTER 4. BEGINNING OPENGL PROGRAMMING

Application model

Application program

A
Y

Graphics system (OpenGL)

V

Mouse etc. Dlsplay screen)
(4

Figure 4.1: The graphical interaction loop.

In fact, OpenGL doesn’t draw its graphics directly to the window. It dbtuaws into a data structure
(an array of pixels) inside OpenGL called thheme-buffer, often just called theuffer. Periodically,
OpenGL copies the pixels in the frame buffer into the window. More on this ati&@e6.2.

4.3 Example 1: a bare-bones program

We'll begin with the simplest possible OpenGL program. &sl.c in the examples directory.
Take a copy of this program, and compile it witbgl :

punter$ cp /opt/info/courses/OpenGL/examples/exl.c .
punter$ cogl exl.c

When you rurex1, you should see an OpenGL window appear. To stop the program gyrpiace
your mouse inside the shell window from which you ran the program, arabhttol-c

Here’s the code foexl.c :

[+ exl.c =/
#include <GL/glut.h>

void display (void) {

/* Called when OpenGL needs to update the display * [
glClear (GL_COLOR_BUFFER_BIT); / = Clear the window */
glFlush(); / * Force update of screen */

}

4.4. CALLBACK FUNCTIONS 15

int main (int argc, char ** argv) {
glutinit (&argc, argv); / * |nitialise OpenGL */
glutCreateWindow ("ex1"); / * Create the window * [
glutDisplayFunc (display); / * Register the "display" function */
glutMainLoop (); / * Enter the OpenGL main loop */
return O;

}

[+ end of exl.c * [

The program begins with

#include <GL/glut.h>

All OpenGL programs must start with this line, which accesses all the Opémehide files: it pulls
in all the function prototypes and other definitions used by OpenGL. Misg,iemdcogl will flatly
refuse to compile your program.

exl.c contains two functionsdisplay() , andmain() . The execution of all C programs starts
atmain() , so we'll start there too.

We first call theglutlnit() function:

void glutlnit (int *argc,
char **argv);

glutinit() initializes the GLUT library, and it must be called before any other GLUT fi@nc argc
andargv should be the arguments of the applicatiomain() — glutlnit() understands several
command-line options, which are beyond the scope of this manual (see the @anual for details).

Next, we callglutCreateWindow():

int glutCreateWindow (char *name);

glutCreateWindow() creates an OpenGL window for rendering and interaction, matine displayed
in its titlebar. GLUT assigns this window an integer identifier, returned as shdtref the function.
The window identifier is used when writing OpenGL programs which use multipelows (de-
scribed in Section 9.4). By default, the window has a siz€660, 300) pixels, and its position is up
to the window manager to choose. If the functighstinitWindowSize() or glutinitWindowPosi-
tion() (page 19) have already been called, their arguments will control the sizeasition of the
window.

Next comes a call tglutDisplayFunc(), and this is a bit more interesting. It's an example of one of
the cornerstones of OpenGL programming, which we’ll need to look attaildethe use otallback
functions.

4.4 Callback functions

A callback function, more often just callectallback, is a C function, written by the application pro-
grammer. In programexl1.c , display() is the only callback function we define. But there’s one

16 CHAPTER 4. BEGINNING OPENGL PROGRAMMING

important difference between a callback function and an ordinary Qitumcthe application never
calls the callback function directly. Instead, the callback function is cddle@penGL, whenever
OpenGL decides it needs to be called.

In exl.c , we use the most basic callback of all — a function that draws the graplats/éwant
OpenGL to display. We usglutDisplayFunc() to tell OpenGL which application function it should
call whenever it needs to refresh the window to draw graphics:

void glutDisplayFunc (void (*func)(void));

glutDisplayFunc() registers the name of the callback function to be invoked when OpenGls need
redisplay (or display for the first time) the contents of the window. The agjmbic must register a
display function — it isn’t optional.

The argument oflutDisplayFunc() is rather cryptic, and worth a closer look:
void (*func)(void)

This says thafunc() must be a function which returnid , and has no arguments. In other
words, a function likalisplay()

void display (void) {

/ = Called when OpenGL needs to update the display * [
glClear (GL_COLOR_BUFFER_BIT); / * Clear the window */
glFlush(); / * Force update of screen * [
}

So to summarise, in our example the line:
glutDisplayFunc (display); / * Register the "display" function * [

tells OpenGL to call the application’s functiaisplay() function whenever it needs to redraw the
graphics.

It's up to the application to define what tiésplay() function does — who else could know? In
exl.c ,thedisplay() function doesn’t do much: it simply caligClear():

void glClear (GLbitfield mask);

glClear() clears one or more of OpenGL's buffers, specifiedniigsk. In this manual, we’ll only
be concerned with one buffer, thie@me buffer, which holds the pixels which will be copied to the
window. This has the special narfid. COLORBUFFERBIT . WhenglClear() is called, each pixel
in the buffer is set to theurrent clear colour, which is set to black by default. You set the current
clear colour using the functiogiClearColor() (see page 74).

Now we have a call tglFlush():

void glFlush (void);

The purpose of this function is to instruct OpenGL to make sure the scregntésdate — it causes
the contents of any internal OpenGL buffers are “flushed” to the scrédote that you only ever

4.5. THE MAIN EVENT LOOP 17

need to calglFlush() when you're not usinglouble-buffering (which we’ll meet in Chapter 6). In
practice, most OpenGL programs will use double-buffering — to stoperdiieker — but for now in
these simple examples we’re not using it just yet.

What would happen if we didn’t cailFlush() at the end oflisplay() ? Then, we couldn’t guar-
antee that the screen will show the up-to-date picture. And that's clearlyesorable for a real-time
interactive graphics program!

4.5 The main event loop

glutMainLoop() starts the GLUT “event processing” loop:

void glutMainLoop (void);

Once started, this loop will carry on for as long as the program is runridagh time around the
loop, GLUT checks to see if anything has changed since last time, and a#gpnopriate callback
functions.

In pseudocode, the action glutMainLoop() is this:

while (1) { / * |loop forever */
if (the application has changed the graphics) {
call the DISPLAY callback function;

}

if (the window has been moved or resized) {
call the RESHAPE callback function;

}

if (any keyboard and/or mouse events have happened) {
call the KEYBOARD and/or MOUSE callback function;

}

call the IDLE callback function;

} /1« while «/

We'll ignore thereshape() function for now, returning to it in Section 5.3. And we’ll look at the
idle() function in Section 6.1.

4.6 Example 2: a keyboard event callback

As we saw above, quittingxl.c must be done from the command-line, which isn’t very nice from
a user-interface point of view. Here’s how we can do it better, usirajlback, in progranex2.c :

| *x ex2.c */
#include <GL/glut.h>
#include <stdio.h>

18

CHAPTER 4. BEGINNING OPENGL PROGRAMMING

void display (void) {

/ = Called when OpenGL needs to update the display * |
glClear (GL_COLOR_BUFFER_BIT); / = Clear the window */
glFlush(); / * Force update of screen */

}

void keyboard (unsigned char key, int x, int y) {

/ + Called when a key is pressed */
if (key == 27) exit (0); / * 27 is the Escape key */
else printf ("You pressed %c\n", key);

}

int main(int argc, char * argv) {
glutinit (&argc, argv); / * |nitialise OpenGL */
glutCreateWindow ("ex2"); / * Create the window */
glutDisplayFunc (display); / * Register the "display" function */
glutkeyboardFunc (keyboard); / * Register the "keyboard" function */
glutMainLoop (); / * Enter the OpenGL main loop */
return O;

}

/ *end of ex2.c * [

Try ex2.c out.

The addition we've made is to tell OpenGL what to do when it detects a kegtevant. We tell it to
call the functiorkeyboard() usingglutKeyboardFunc():

void glutKeyboardFunc (void (*func)(unsigned char key, int x, inty));

glutkeyboardFunc() registers the application function to call when OpenGL detects a key press
generating an ASCII character. This can only occur when the mouses fednside the OpenGL
window.

Again, the specification of the argument type is a bit cryptic. It says thapéas a functiorfiunc()
which returnsvoid , and has the three argumekey , x andy. So, it’s a function like this:

void keyboard (unsigned char key, int x, int y) {
/+ Called when a key is pressed */

}

Three values are passed to the callback functiay: is the ASCII code of the key pressedandy
give the pixel position of the mouse at the time.

Back toex2.c - inside thekeyboard() callback, we look at the value ¢y . If it's 27 (the
ASCII code for theescape key — surely you knew that!) we call the standard C functaii()

to terminate the program cleanly; otherwise, we print (in the shell window)ssage saying which
key was pressed. Note thex2.c needs an extrdinclude line:

#include <stdio.h>

4.7. EXAMPLE 3: CUSTOMIZING THE WINDOW 19

because we're using thintf() function.

Note: glutkeyboardFunc() only responds to pressed keys which have single ASCII codes. Far oth
keys, such as the arrow or function keys, useglSpecialFunc()function (page 67).

4.7 Example 3: customizing the window

In ex3.c we add a few new functions to give us better control over the drawingomind

[+ ex3.c =/
#include <GL/glut.h>

void display (void) {

/= Called when OpenGL needs to update the display */
glClearColor (1.0,1.0,1.0,0.0);
glClear (GL_COLOR_BUFFER_BIT); / = Clear the window */

glFlush(); / * Force update of screen */

}

void keyboard (unsigned char key, int x, int y) {

[+ Called when a key is pressed */
if (key == 27) exit (0); / * 27 is the Escape key */

}

int main(int argc, char ** argv) {
glutinit (&argc, argv); / * [|nitialise OpenGL */
glutlnitWindowSize (500, 500); / * Set the window size * [
glutinitWindowPosition (100, 100); / * Set the window position */
glutCreateWindow ("ex3"); / * Create the window =/
glutDisplayFunc (display); / * Register the "display" function */
glutkeyboardFunc (keyboard); / * Register the "keyboard" function */
glutMainLoop (); / * Enter the OpenGL main loop */
return O;

}

[+ end of ex3.c * [

Try ex3.c out.
First, we specify a size and position for the window usghgtinitWindowSize():

void glutlnitWindowsSize (int width,
int height);

glutinitWindowSize() sets the value of GLUT &itial window size to the size specified byidth
andheight , measured in pixels.

20 CHAPTER 4. BEGINNING OPENGL PROGRAMMING

Similarly, glutinitWindowPosition() sets the value of GLUT 'mitial window position :

void glutinitWindowPosition (int x,
inty);

x andy give the position of the top left corner of the window measured in pixels fitweriop left
corner of the X display.

4.8 What next?

Now onto Chapter 5, which looks at 2D and 3D graphics.

Chapter 5

2D and 3D graphics

In this chapter we start doing some graphics. We'll begin by exterelBgc to do some 2D drawing
— just a triangle, but it'll serve to illustrate how drawing works in OpenGL.

5.1 Example 4: drawing a 2D triangle

ex4.c draws a triangle, using the coordinates shown in Figure 5.1.

Y

(0.0, 0.3, 0.0)

(-0.3,-0.3, 0.0) (0.3,-0.3, 0.0)

Figure 5.1: The triangle from exampéx4.c . It's defined on the&Z = 0 plane. TheZ axis comes
out of the page towards you.

Here's the code:

[+ exd.c =/
#include <GL/glut.h>

void display (void) {

/ = Called when OpenGL needs to update the display */
glClear (GL_COLOR_BUFFER_BIT); / * Clear the window */
glLoadldentity ();
gluLookAt (0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

21

22 CHAPTER 5. 2D AND 3D GRAPHICS

glBegin (GL_LINE_LOOP); / * Draw a triangle */
glVertex3f(-0.3, -0.3, 0.0);
glVertex3f(0.0, 0.3, 0.0);
glVertex3f(0.3, -0.3, 0.0);

glEnd();

glFlush(); / * Force update of screen */

}

void keyboard (unsigned char key, int x, int y) {

/* Called when a key is pressed */
if (key == 27) exit (0); / * 27 is the Escape key */

}

void reshape (int width, int height)

{ / = Called when the window is created, moved or resized */
glViewport (0, 0, (GLsizei) width, (GLsizei) height);
glMatrixMode (GL_PROJECTION); / * Select the projection matrix */
glLoadldentity (); / * Initialise it */
glOrtho(-1.0,1.0, -1.0,1.0, -1.0,1.0); / * The unit cube */
glMatrixMode (GL_MODELVIEW); [/ =* Select the modelview matrix */

}

int main(int argc, char ** argv) {
glutinit (&argc, argv); / * |nitialise OpenGL */
glutinitWindowsSize (500, 500); / * Set the window size */
glutinitWindowPosition (100, 100); / * Set the window position */
glutCreateWindow ("ex4"); / * Create the window */
glutDisplayFunc (display); / * Register the "display" function * |
glutReshapeFunc (reshape); / * Register the "reshape" function */
glutkeyboardFunc (keyboard); / * Register the "keyboard" function */
glutMainLoop (); / * Enter the OpenGL main loop */
return O;

}

/* end of ex4.c * [

Try ex4.c out. You should see a white triangle on a black background.

Although this is a simple example, it illustrates one of the most crucial aspecigasf@.—viewing.
OpenGL is a system for drawing 3D graphics. But display screenslxretBey're flat. Figure 5.2
shows the situation.

In exampleeg4.c , we draw the triangle on th# = 0 plane. But this is still 3D graphics!
5.2 Viewing using the camera

The idea of creating a 2D view of a 3D scene is simple: we “take a picture” ofdbee using a
camera, and display the camera’s picture in the window on the display screen. drReemience,
OpenGL splits the process into three separate steps:

e Step one First, we specify the position and orientation of the camera, using the fargitie

5.2. VIEWING USING THE CAMERA 23

Y ~ B
3 2
A\ J
7 N _/
OpenGL’s 3D graphics “world” The flat display screen

Figure 5.2: OpenGL's 3D “world”, and the 2D display screen.

LookAt();

e Step twa Second, we decide what kind of projection we'd like the camera to crédtecan
choose arorthographic projection (also known as jparallel projection) using the function
glOrtho() (page 56); or @erspectiveprojection using the functiogluPerspective()page 56);

e Step three Finally, we specify the size and shape of the camera’s image we wish to see in
the window, usingylViewport() (page 58). This last step is optional — by default the camera’s
image is displayed using the whole window.

In OpenGL, the camera model described above is always active — ydwswatch it off. It's imple-
mented usingransformation matrices, and we describe this in detail in Chapter 9. For now, here’s
a brief description of the process.

OpenGL keeps two transformation matrices: mhedelview matrix, M'; and theprojection matrix ,
P. The modelview matrix holds a transformation which composes the scene in eomidinates,
and then takes a view of the scene using the camera (step one, abowgyodttion matrix applies
the camera projection (step two, above).

Whenever the application program specifies a coordin&be drawing, OpenGL transforms the co-
ordinate in two stages, as follows, to give a new coordinat€irst it transforms the coordinateby
the matrixM, and then by the matri®, as follows:

d=P-M-c

When an OpenGL application starts up,and M are unit matrices — they apply tldentity trans-
formation to coordinates, which has no effect on the coordinatesetitgely up to the application
to ensure that thé/ and P matrices always have suitable values. Normally, an application will5et
in its display() function, andP in itsreshape() function, as we shall now describe.

24 CHAPTER 5. 2D AND 3D GRAPHICS
5.3 The window reshape function

After creating the window, and registering the display and keyboard c&bave now register a new
function, thereshape() callback:

void glutReshapeFunc (void (*func)(int width, int height));

glutReshapeFunc(yegisters the application callback to call when the window is first createdylan
if the window manager subsequently informs OpenGL that the user haspegsithe window. The
new height and width of the window, in pixels, are passed to the callbagically, the callback will
use these values to define the way that OpenGL's virtual camera projeictsige onto the window,
as we see in the next section.

5.3.1 Specifying the projection

We usually specify the projection in tlieshape() callback function, because the projection will
often need to be adjusted if the user changes the shape of the windoxanpleex4.c we use an
orthographic (also known as “parallel”) projection:

void reshape (int width, int height)

{ / » Called when the window is created, moved or resized */
glViewport (0, 0, (GLsizei) width, (GLsizei) height);
glMatrixMode (GL_PROJECTION); / = Select the projection matrix */
glLoadldentity ();
glOrtho(-1.0,1.0, -1.0,1.0, -1.0,1.0); / * The unit cube */
glMatrixMode (GL_MODELVIEW); [/ * Select the modelview matrix */
}

We begin by setting theiewport using glViewport(), which specifies a rectangular portion of the
window in which to display the camera’s image. As in this example, it's common to asbkdiwhole
of the window, so we set the viewport to be a rectangle of equal dimensiohs window. We'll look
atglViewport() in detail in Section 9.3.

Next, we set up an orthographic projectiaziMatrixMode() (page 47) selects which matrix subse-
quent functions will affect — in this case we select the projection mak)x Then we initialise it to
the unit transformation witlglLoadldentity() (page 48). This is very important, as we shall see in
a moment. Then, we select the orthographic projection ugi@gtho() (page 56). The projection
we've chosen maps a unit cube, centred on the origin, onto the viewport.

glOrtho() actually does two things: firstit creates a new temporary matrix (let's GdJlt implement
the projection, and then it multiplieB with T, as follows:

P=P.T

That’s why we need to make sufeis initialised to the unit transformation first.

Note that thereshape() function ends with another call giMatrixMode() , which this time se-
lects the modelview matrix\(/) for subsequent modification, for when we position the camera in the
display() function.

5.4. EXAMPLE 5: A 3D CUBE WITH PERSPECTIVE PROJECTION 25

5.3.2 Positioning the camera

This is usually done in the applicatiordgsplay() function, using the functiogluLookAt() . We’'ll
describe this function in detail in Section 9.1. dr4.c , we use it to position the camera on the
axis at(0.0, 0.0, 0.5), looking towards the origin:

glLoadldentity (); / * start with a unit modelview matrix */
gluLookAt (0.0, 0.0, 0.5, / * position of camera */

0.0, 0.0, 0.0, / * point at which camera looks */

0.0, 1.0, 0.0); / * "up" direction of camera */

Again, becausgluLookAt() creates a new transformation and multiplies it into the current matrix
(M in this case), we need to ensure thats first initialised usingylLoadldentity() .

5.4 Example 5: a 3D cube with perspective projection

We now turn to 3D drawing, aneix5.c draws a cube, centred on the origin:

/= ex5.c =/
#include <GL/glut.h>

void display (void) {

/* Called when OpenGL needs to update the display */
glClear (GL_COLOR_BUFFER_BIT); / * Clear the window */
glLoadldentity ();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glutWireCube(2.0);

glFlush(); / * Force update of screen */

}

void keyboard (unsigned char key, int x, int y) {

/+ Called when a key is pressed */
if (key == 27) exit (0); / * 27 is the Escape key */

}

void reshape (int w, int h) {

/= Called if the window is moved or resized */
glViewport (0, 0, (GLsizei)w, (GLsizei)h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective (60, (GLfloat)w / (GLfloat)h, 1.0, 100.0);
gIMatrixMode (GL_MODELVIEW);

}

int main(int argc, char * argv) {
glutinit (&argc, argv); / * |nitialise OpenGL */
glutinitWindowsSize (500, 500); / * Set the window size */
glutinitWindowPosition (100, 100); / * Set the window position */
glutCreateWindow ("ex5"); / * Create the window */
glutDisplayFunc (display); / * Register the "display" function */

26 CHAPTER 5. 2D AND 3D GRAPHICS

glutkeyboardFunc (keyboard); / * Register the "keyboard" function */
glutReshapeFunc (reshape); / * Register the "reshape" function */
glutMainLoop (); / * Enter the OpenGL main loop */

return O;

}

/+* end of ex5.c * [

Try ex5.c out.

Indisplay() , we callglutWireCube(), which draws a wire-frame cube (see page 42). This time,
however, we view it using perspectiveprojection as specified in oueshape() function:

gluPerspective (60, / + field of view in degrees */
(GLfloat)w / (GLfloat)h, / * aspect ratio of view */
1.0, 100.0); / * near and far clipping planes */

gluPerspective()sets a perspective projection, so we see the kind of view a camera waouhadlho
give, where lines further away from the viewer appear smaller. Hezespecify a field of view of 60
degrees, and an aspect (width-to-height) ratio for the view which exawettghes the aspect ratio of
the window. We’ll explain the use of clipping planes in Chapter 9.

5.5 What next?

Now onto Chapter 6, which looks at the usadofuble buffering for achieving smooth animation.

Chapter 6

Animated graphics

Computer graphics really comes to life when we draw imagestioae.

6.1 Example 6: a rotating cube

In this next example ex6.c — we’ll make OpenGL spin the cube about its centre. Have a look at
the code, then take a copy of the program, and compile and run it;

[+ ex6.c x/
#include <GL/glut.h>

GLfloat angle= 0.0;

void spin (void) {
angle+= 1.0;
glutPostRedisplay();
}

void display(void) {
glClear (GL_COLOR_BUFFER_BIT);
glLoadldentity ();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glRotatef(angle, 1, 0, 0);
glRotatef(angle, 0, 1, 0);
glRotatef(angle, 0, 0, 1);
glutWireCube(2.0);
glFlush(); / * Force update of screen */

}

void reshape (int w, int h) {
glViewport (0, 0, (GLsizei)w, (GLsizei)h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective (60, (GLfloat) w / (GLfloat) h, 1.0, 100.0);
gIMatrixMode (GL_MODELVIEW);

27

28 CHAPTER 6. ANIMATED GRAPHICS

void keyboard(unsigned char key, int x, int y) {
if (key == 27) exit (0); / * escape key x/
}

int main(int argc, char ** argv) {
glutinit(&argc, argv);
glutinitWindowSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow ("ex6: A rotating cube.");
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutkeyboardFunc(keyboard);
glutldleFunc(spin); / * Register the "idle" function */
glutMainLoop();
return O;

}

/* end of ex6.c * [

You should see the cube rotating, but in a rather broken-up sort of Wa¥l come back to that in a
moment.

The engine behind the animation is the event loop. UgingdleFunc(), we register an application
callback function that gets called each time aroundgiihéMainLoop() :

void glutldleFunc (void (*func)(void));

glutldleFunc() registers a callback which will be automatically be called by OpenGéaich cycle
of the event loopafter OpenGL has checked for any events and called the relevant callbacks.

In ex6.c , the idle function we've registered is callsgdin()

void spin (void) {
angle+= 1.0;
glutPostRedisplay();
}

Firstspin() increments the global variabéagle . Then, it callsglutPostRedisplay() which tells
OpenGL that the window needs redrawing:

void glutPostRedisplay (void);

glutPostRedisplay() tells OpenGL that the application is asking for the display to be refreshed.
OpenGL will call the application’display() callback at the next opportunity, which will be during
the next cycle of the event loop.

Note: While OpenGL is processing a single cycle of the event loop, severahcalilbmay calplut-
PostRedisplay() Nevertheless, OpenGL won't actually call the display callback until aitanding
events have been dealt with. And, within one cycle of the event loop,cession of outstanding calls
to glutPostRedisplay()will be treated as a single call utPostRedisplay() so display callbacks
will only be executed once — which is probably what you want.

6.2. DOUBLE-BUFFERING AND ANIMATION 29

DAC

Renderer Writing Reading

(OpenGL) Frame buffer Screen

Figure 6.1: Single buffering.

Renderer Writing =

(OpenGL) Back” buffer

“Front” buffer

Buffers swapped during
DAC’s vertical retrace

Figure 6.2: Double buffering.

6.2 Double-buffering and animation

As we saw, the rotating cube looks horrible. Why?

The problem is that OpenGL is operatiagynchronouslywith the refreshing of the display. OpenGL
is pumping out frames too fast: it's writing (into the frame-buffer) a new imagketube in a slightly
rotated positionbefore the previous image has been completely displayed.

Recall the architecture of raster displays: as shown in Figure 6.1, thiedpiteeis stored in the frame
buffer, which is repeatedly read (typically at 60 Hz) by the digital-to-agaéoconverter (DAC) to
control the intensity of the electron beam as it sweeps across the soneestan-line at a time. With
a single frame-buffer, the renderer (OpenGL) is writing pixel informaiima the bufferat the same
time the DAC is reading the information out. If the writer and the reader are aytraf, the reader can
never be guaranteed to read and display a complete frame — so the vieags akes images which
comprise part of one frame and part of another. This is very disturbititgeteye — and destroys any
possibility of seeing smooth animation.

One solution is to use an additional buffer, as shown in Figure 6.2. Thehigleais that one buffer,
called the “back buffer” is only evewritten to by the renderer. The other buffer — the “front buffer” —
is only everread by the DAC. The renderer writes its new frame into the back buffer, and wiatis
done, it then requests that the back and front buffers be swapped Dhetrick is to perform the
swapping while the DAC is performing itgertical retrace, which is when it's finished a complete
sweep of its buffer, and is resetting to begin again. There’s enoudhtsiaEhere to swap the contents
of the two buffers over. This method will ensure that the DAC only evails@and displays a complete
frame.

By default, OpenGL works isingle-buffer mode, and so we get the fragmented animation seen in

30 CHAPTER 6. ANIMATED GRAPHICS

ex6.c . But we can tell OpenGL to use double-buffering, usighgtInitDisplayMode() :

void glutinitDisplayMode (unsigned int mode);

glutinitDisplayMode() sets thecurrent display mode, which which will be used for a window cre-
ated usingylutCreateWindow(). mode is:

e GLUTSINGLE: selects a single-buffered window — which is the defauljliftinitDisplay-
Mode isn't called;
e GLUTDOUBLESselects a double-buffered window;

(There are more display modes, beyond the scope of this manual. Fodadatiption, see the GLUT
manual or the Red Book.)

For example, to select a double-buffered window you would call:

glutinitDisplayMode (GLUT_DOUBLE);
glutCreateWindow ("my window");

Once we're using double-buffering, we can tell OpenGL that a framerigptete, and that the buffers
should be swapped usimgutSwapBuffers().

void glutSwapBuffers (void);

glutSwapBuffers() swaps the back buffer with the front buffer, at the next opportunityictv is
normally the next vertical retrace of the monitor. The contents of the nelwthéter (which was the
old front buffer) are undefined.

Note: Swapping the buffers doesn’'t have the side effeatlefiring any buffers. Clearing a buffer
must be done explicitly by the application, by calligtfClear(). Note again that now we're using
double-buffering, it's no longer necessary to gelush().

6.3 Exercise: smooth the cube
Edit your copy ofex6.c as follows:

e In main() , after the call toglutinit() , insert a call toglutinitDisplayMode() to select a
double-buffered window;

e Indisplay() , after the call tagglutWireCube(), insert a call talutSwapBuffers().

¢ Also,removethe call toglFlush(). We don’t need that anymore, since it gets called internally by
glutSwapBuffers(). And if we leaveglFlush() in the code, not only will its effect be redundant,
but it'll also slow the program down.

See the difference? Smooth animation!

6.4. EXAMPLE 7: ROTATING OBJECTS FOLLOWING THE MOUSE 31

6.4 Example 7: rotating objects following the mouse

Finally, we now exten@x6.c to display a few different objects, and to follow the mouse around.

We won't describe the code here — have a lookxat.c on-line for yourself. And try running it.
Cycle between the various objects by pressingsitece key.

The main new functions we use ajieitPassiveMotionFunc()(page 68) andluUnProject() (page 59).

6.5 What next?

This is the end of the Tutorial section of the manual. The remaining chapterstfee OpenGL
Reference Manual.

32

CHAPTER 6. ANIMATED GRAPHICS

Part Il

OpenGL Reference Manual

33

Chapter 7

Graphics primitives

In this chapter we describe the coordinate system OpenGL uses, and&tdmeOpenGL graphics
primitives.

7.1 Coordinate systems

OpenGL uses right-handed Cartesian coordinate systems, as showana Fid.

Y
A

x,y,2)

Figure 7.1: A right-handed coordinate system. The pos#iaxis comes out of the page.

By convention, we draw the positive axis heading rightwards, the positiVeaxis heading vertically,
with the positiveZ axis heading out of the page towards you.

All the OpenGL functions which create graphical primitives such as lindgpatygons work irobject
coordinates OpenGL automatically transforms object coordinates, first byntbdelview matrix
(M) and then by therojection matrix (P). We describe the modelview matrix and the projection
matrix in Chapters 8 and 9.

35

36 CHAPTER 7. GRAPHICS PRIMITIVES

7.2 Defining a vertex

The basic building block for creating graphics with OpenGL soint in 3D space To describe a
shape, you specify the set of points that together make up the shapeei@D terminology, a point
in 3D space is called zertex.

You define a single vertex using the functigiVertex3f():

void glVertex3f (GLfloat x,
GLfloaty,
GLfloat z);

Here, the “3f” part of the function name means that the function takes #ngegnents, each of which
is aGLfloat . As we described in Section 2.6, GL uses its own data tygégloat is equivalent
to the C typdloat

So, for example, to define the vertex at (10,8,5), shown in Figure 7.1ypaoild call:

glVertex3f (10.0, 8.0, 5.0);

7.3 OpenGL function flavours

Many OpenGL functions come in several flavours. For example, seppmsonly ever want to do 2D
drawing, so you're only concerned with specifying vertices inXH€ plane, and all vertices will have
a Z coordinate of 0. To make life easier, OpenGL offers a variant formegtkertex3f() function,
calledglVertex2f():

void glVertex2f (GLfloat x,
GLfloaty);

Internally, this function still creates a 3D vertex, but it set«itsoordinate td).0 for you, to save you
the bother. But in this manual, we will always use the 3D form of functionsedhs functions we
have to remember, the better!

7.4 Defining shapes: primitives

A vertex on its own isn't very interesting. Now we look at how to group vesitogether inteertex
lists, which define geometrical shapes. The grouping of vertices is done vétblBegin() and
glEnd() functions:

void gIBegin (GLenum mode);

glBegin() defines the start of a vertex lignode determines the kind of shape the vertices describe,
which can be:

e A set of unconnected point&{_POINTYS);

7.5. DRAWING POINTS 37

e Lines GLLINES, GLLINE _STRIP, GLLINE _LOORB;

e The boundary of a single convex polygdal{ POLYGON

e A collection of trianglesGL TRIANGLES GL TRIANGLESTRIP, GLTRIANGLEFAN);
e A collection of quadrilateralSGL QUADSGL QUADSTRIP).

void glEnd (void);

glEnd() defines the end of a vertex list.

7.5 Drawing points
We use the followingnode in gIBegin() to draw points:
e GL POINTS: each vertex represents a point.

glBegin (GL_POINTS);
glvertex3f (0.0, 6.0, 4.0);
glVertex3f (0.0, 8.0, 0.0);
glVertex3f (8.0, 6.0, 0.0);
glVertex3f (8.0, 3.0, 0.0);
glVertex3f (6.0, 0.0, 5.0);
glVertex3f (2.0, 0.0, 5.0);

glEnd ();

7.6 Drawing lines

In the functionglBegin(), the values ofmode which interpret vertices as points to connect with lines
are:

e GLLINES: each pair of vertices is drawn as a separate line.
e GLLINE _STRIP: all the vertices are joined up with lines.
e GLLINE _LOORP all the vertices are joined up with lines, and an extra line is drawn from the

last vertex to the first.

Figure 7.2 illustrates how the same set of vertices can be drawn as linesairediffvays according
to mode:

glBegin (GL_LINES); / * or GL_LINE_STRIP or GL_LINE_LOOP x/
glVertex3f (0.0, 6.0, 4.0);
glVertex3f (0.0, 8.0, 0.0);
glVertex3f (8.0, 6.0, 0.0);

38 CHAPTER 7. GRAPHICS PRIMITIVES

glVertex3f (8.0, 3.0, 0.0);
glvertex3f (6.0, 0.0, 5.0);
glVertex3f (2.0, 0.0, 5.0);

glEnd ();
GL_LINES GL LINE STRIP GL _LINE LOOP
Y Y Y
10 10 10
/(0,8,0)
(0,6,4) (8,6,0)
@&@I
10 10 10
o&iﬁ X X X
7%10 s 7%10 7710

Figure 7.2: The same set of vertices drawn using different line styles.

As well as geometry, primitives also haattributes, which control ther visual style.

7.6.1 Line attributes

void glLineWidth (GLfloat width);

glLineWidth() sets the curent line width, measured in pixels. The default value is 1.0.

void glLineStipple (GLint factor,
GLushort pattern);

glLineStipple() sets the stippling pattern for lines, which enables lines to be drawn in a flexitéyw
of dot/dash patterns. By default, stippling is switched off (see Section 7a&h@)nust be enabled by
calling:

glEnable(GL_LINE_STIPPLE);

Line stippling works on a pixel-by-pixel basis, as the line is rendered intréinee buffer.pattern

is a 16-bit series of 0s and 1s. When OpenGL renders a line, for @ealtitps about to write, it first
consults the next bit ipattern , starting at théow-order bit, If this bit is a 1, the pixel is written,
in the current drawing colour. If the bit is a 0, the pixel is not written.

For example, suppose the pattern specified was (to choose a randopl&x@x3ELF. In binary this
is:

0011 1110 0001 1111

So, when drawing a line, OpenGL would draw the first 5 pixels on, the 4@ft, then one on, the
next five on, and the next 2 off. For the next pixel, OpenGL would retarthe low-order bit of the
pattern, and repeat.

7.7. DRAWING TRIANGLES 39

factor is a way of elongating the pattern — it multiplies each sub-sequence of ciedis and 1s.
For example, if factor=3, then if the bit series 0110 appeared in the pattemuld be “stretched” to
be 01111110.

Handy values opattern , with factor setto 1.0, are:

Pattern Rough idea of what the line looks like
Ox1111

0x3333

OxOFOF

OXAAAA .

OXFFFF

7.6.2 Enabling OpenGL capabilities

void glEnable (GLenum capability);

void glDisable (GLenum capability);

OpenGL has a number of capabilities which by default are not active +efmons of efficiency.
These include lighting, texturing, hidden surface removal and line stipplifgguse one of these
capabilities, it must be explicitly “enabled” by the application, usitignable(). The capability may
be subsequently disabled usigiisable(). Some of the valid values afpability are:

e GLLINE _STIPPLE
o GLLIGHTING

e GLFOG

e GLDEPTHTEST

7.7 Drawing triangles
The different values ahode in glBegin() to create triangles are:
e GLTRIANGLES each triplet of points is drawn as a separate triangle. If the numbertafe®r

is not an exact multiple of 3, the final one or two vertices are ignored.

e GL TRIANGLE STRIP: constructs a set of triangles with the vertices v0, v1, v2 then v2, v1,
v3 then v2, v3, v4 and so on. The ordering is to ensure that the triangled @rawn correctly
form part of surface.

40 CHAPTER 7. GRAPHICS PRIMITIVES

¢ GL TRIANGLEFAN draws a set of triangles with the vertices vO0, v1, v2 then vO0, v2, v3 then
v0, v3, v4 and so on.

glBegin (GL_TRIANGLES);
glVertex3f (0.0, 6.0, 4.0);
glvertex3f (0.0, 8.0, 0.0);
glVertex3f (8.0, 6.0, 0.0);
glVertex3f (8.0, 3.0, 0.0);
glVertex3f (6.0, 0.0, 5.0);
glVertex3f (2.0, 0.0, 5.0);

glEnd ();

7.8 Drawing quadrilaterals
We can use two values fonode in glBegin() to create quadrilaterals.

e GL QUADSeach set of four vertices is drawn as a separate quadrilaterals. tiuthber of
vertices is not an exact multiple of 4, the final one, two or three verticeigaoeed.

¢ GL QUADSTRIP: constructs a set of quadrilaterals with the vertices vO, v1, v3, v2 thevBy2
v5, v4 then v4, v5, v7, v6 and so on.

glBegin (GL_QUADS); / * or GL_QUAD_STRIP */
glVertex3f (0.0, 6.0, 4.0);
glVertex3f (0.0, 8.0, 0.0);
glvertex3f (8.0, 6.0, 0.0);
glVertex3f (8.0, 3.0, 0.0);
glVertex3f (6.0, 0.0, 5.0);
glVertex3f (2.0, 0.0, 5.0);
glEnd ();

7.9 Drawing polygons
We draw a polygon using the followingode in glBegin():
e GL POLYGONNhe vertices define the boundary of a single convex polygon.

The polygon specified must not intersect itself and must be convex.e-igd shows a polygon with
5 vertices, drawn with the following code:

glBegin (GL_POLYGON)
glVertex3f (0.0, 6.0, 0.0);
glVertex3f (0.0, 6.0, 6.0);
glVertex3f (6.0, 6.0, 6.0);
glVertex3f (9.0, 6.0, 2.0);
glVertex3f (9.0, 6.0, 0.0);
glEnd ();

7.9. DRAWING POLYGONS 41

10

10

10
V4

Figure 7.3: A simple polygon with 5 vertices.

For efficiency and simplicity, OpenGL only guarantees to draw a polygorectly if it's convex A
polygon is convex if, taking any pair of points inside the polygon and drgaistraight line between
them, all points along the line are also inside the polygon. Figure 7.4 showsex&mples of convex
polygons (on the left) and non-convex polygons (on the right).

Note: to draw a non-convex polgyon in OpenGL, it must first be broken inta afssmnvex polygons,
each of which is then drawn separately. This process is caksilation and non-convex polygons
can be broken down this way. GLU provides a set of functions for dthigy— see the Red Book,
Chapter 11.

Polygons must also b@danar (completely flat) if they are to be rendered correctly.

<

Figure 7.4: Convex polygons (left) and non-convex polygons (right).

7.9.1 Polygon attributes

void glPolygonMode (GLenum face,
GLenum mode);

glPolygonMode()sets the drawing mode for polygons.

42 CHAPTER 7. GRAPHICS PRIMITIVES

face canbeGLFRONTGLBACKor GLFRONTANDBACK modecan beGL FILL , orGLLINE.

7.10 GLUT's primitives

GLUT provides a number of functions for easily drawing more complicat¢elctdr Each comes in
two versionswire andsolid. The wire forms are drawn using lineSILLINE or GLLINE _LOOB;
the solid forms use polygons (with surface normals, suitable for creatindgditesi images). Note
that these objects do not use display lists (see Chapter 14).

7.10.1 Cube

void glutWireCube (GLdouble size);

glutWireCube() draws a cube, with edge lengtlize , centred on(0,0,0) in object coordinates.
Solid version:glutSolidCube().

7.10.2 Sphere

void glutWireSphere (GLdouble radius,
GLint slices,
GLint stacks);

glutWireSphere() draws a sphere, of radiuadius , centred on(0,0,0) in object coordinates.
slices is the number of subdivisions around theaxis (like lines of longitude)stacks is the
number of subdivisions along th¢ axis (like lines of latitude). Solid versiomglutSolidSphere()

7.10.3 Cone

void glutWireCone (GLdouble base,
GLdouble height,
GLint slices,
GLint stacks);

glutWireCone() draws a cone, with base raditedius , and heighteight . The cone is oriented
along theZ axis, with the base placed dt= 0, and the apex af = height.slices is the number
of subdivisions around th& axis; stacks is the number of subdivisions along tieaxis. Solid

7.10. GLUT'S PRIMITIVES 43

version:glutSolidCone()

void glutWireTorus (GLdouble innerRadius,
GLdouble outerRadius,
GLint nsides,
GLint rings);

glutWireTorus() draws a torus centred qf,0,0) in object coordinates. The axis of the torus is
aligned with theZ axis. innerRadius andouterRadius give the inner and outer radii of the
torus respectivelynsides is the number of sides in each radial section, engs is the number
of radial sections. Solid versiogiutSolidTorus().

7.10.4 Platonic solids

void glutWireTetrahedron (void);

glutWireTetrahedron() draws a tetrahedron (4-sided regular object) of ragi@sentred or(0, 0, 0)
in object coordinates. Solid versiogtutSolidTetrahedron().

void glutWireOctahedron (void);

glutWireOctahedron() draws an octahedron (8-sided regular object) of ratliaentred on(0, 0, 0)
in object coordinates. Solid versiogtutSolidOctahedron().

void glutWireDodecahedron (void);

glutWireDodecahedron() draws a dodecahedron (12-sided regular object) of ragitisentred on
(0,0,0) in object coordinates. Solid versiogtutSolidDodecahedron()

void glutWirelcosahedron (void);

glutWirelcosahedron() draws an icosahedron (20-sided regular object) of radagtred or{0, 0, 0)
in object coordinates. Solid versiogtutSolidicosahedron()

7.10.5 Teapot

void glutWireTeapot (GLdouble scale);

glutWireTeapot() draws a teapot, scaled bgale . Solid version:glutSolidTeapot().

44

CHAPTER 7. GRAPHICS PRIMITIVES

Chapter 8

Modelling using transformations

This chapter is about modelling: we explain how to use transformations tonbks@&D scenes.
Chapter 9 explains how to create a view of the scene using the camera model.

8.1 \ectors and matrices

We saw in Section 7.1 that a 3D vertex — a point in space — is representeg,as mathematically,
we write a 3D point as aolumn vector. If we have a poinp, we write it as:

_ N e 8

You'll notice the extra ‘1’ at the bottom of the vector —this is known &i®mogeneousepresentation.
To cut a long story short, the use of such vector representations is amadite trick which allows
all common transformation types to be expressed in a consistent manne# usiignatrices.

Warning: beware that some Computer Graphics textbooks represent coordisatas sectors.
Using row vectors doesn’t change the basic methods used for matrixamawasions, but the order
in which matrices appear, and their rows and columns, are reversadg Toythink in terms of both
column and row vectors is a recipe for disaster. Stick to column vectorysiwa

In OpenGL all coordinate transformations are specified u$irgt matrices. If we transform a point
p with a matrix M (for example, a scale by, sy, sz), we get a transformed poipt, as follows:

! st 0 0 O x
/
y, . 0 sy 0 O Y
z 0 0 sz O z
1 0O 0 0 1 1

or, more succinctly:
ple=M-p

45

46 CHAPTER 8. MODELLING USING TRANSFORMATIONS
If we subsequently transforpi by another matrixV, to givep”, we have:

pr—N-p
S0 expressing the entire transformation we have:

p//<—N'M'p

8.2 A note about matrix ordering

Notice that the order in which the matrices are written, reading from left td, righhereverse of
the order in which their transformations are applied. In the above exampldirghtransformation
applied top is M, and the transformed point is then subsequently transformed. by

In general, matrix multiplication inot commutative. So, with two matriced/ and .V,
M-N#N-M

In other words, th@rder in which transformation matrices are applied is crucial.

One of the most common problems in computer graphitamk screen syndrome (BSS)is often
due to incorrectly ordered matrix transformations. Your image has beerglg\iomputed, but it is
being displayed several miles to the West of your display screen; or tlyabltb in the left-hand
corner of your screen is your image, compressed into a few pixels.

8.3 Selecting the current matrix
OpenGL maintains two separatex 4 transformation matrices:

o themodelviewmatrix; this is used to accumulate modelling transformations, and also to specify
the position and orientation of the camera;

e theprojection matrix; this is used to specify how the 3D OpenGL world is transformed into a
2D camera image for subsequent display. The projection matrix perfornes aiterspective
or othographic (parallel) projection.

At any time, one or the other of these matrices is selected for use, and istbal@arent matrix ,
or sometimes”' for short. Most of the OpenGL functions for managing transformatiofecathe
contents ofC.

8.4 Setting the current matrix

If our first transformationV/ represents a scale gz, sy, sz), and the second transformation a
translation by(tx, ty, tz), we would code this in OpenGL as follows:

8.4. SETTING THE CURRENT MATRIX 47

Top of modelview matrix stack

4 X 4 matrix .
Ol] (the “current” matrix)

1 | [4x 4 matrix]

2 | [4 x 4 matrix]

3 | [4x 4 matrix]

N | [4 x 4 matrix] Bottom of modelview matrix stack

Figure 8.1: An OpenGL modelview matrix stack. The top element ofselectedstack is often
referred to as the “current matrix.

glMatrixMode (GL_MODELVIEW); / * Select the modelview matrix */
glLoadldentity (); / * Set the current matrix to identity */
glTranslatef (tx, ty, tz); / * Post-multiply by (tx,ty,tz) */
glScalef (sx, sy, sz); / * Post-multiply by (sx,sy,sz) */
glVertex3f(x, y, z); / * Define the vertex */

Note that all the OpenGL functions which affect the current matfio so bypost-multiplication.
This means that we write the sequence of OpenGL transformation functidihereverse orderto
the effect they actually have on vertices. This can take a bit of gettingtased

In fact, the modelview matrix isn’t a single matrix stored somewhere inside QperitG actually the

top matrix on astack of modelview matrices. This is shown in Figure 8.1. Similarly, the projection
matrix is the top matrix on atack of projection matrices. We’'ll see later why OpenGL uses stacks of
matrices.

Figure 8.2 shows how the modelview and projection matrices on the top of tispeative stacks
affect a vertex specified by the application.

void glMatrixMode (GLenum mode);

glMatrixMode() selects the matrix stack, and makes the top matrix on the stack the “current matrix”
(C). mode selects the matrix stack, as follows:

o GLMODELVIEWselects the modelview matrix stack;
¢ GLPROJECTION selects the projection matrix stack.

Once a current matrix has been selected ugiMatrixMode() , all subsequent matrix functions (such
asglRotatef(), etc.) affect the current matrix. For example, to load a translatiofxby, =) into the
modelview matrix, the code would be:

gIMatrixMode (GL_MODELVIEW);

48 CHAPTER 8. MODELLING USING TRANSFORMATIONS

Normalized Window
Object Eye Clip device (pixel)
coordinates coordinates coordinates coordinates coordinates
Vertex

X

y modelview projection perspective viewport

z matrix » matrix division transformation

w

Figure 8.2: The OpenGL viewing pipeline, showing the sequence of tranafions and operations
applied to a 3D vertex.

glLoadldentity ();
glTranslatef (x, y, z);

Subsequent matrix operations will continue to affect the current modelwiatkix, until giMatrix-
Mode() is called again to select a different matrix.

8.5 Operating on the current matrix

There are a number of utility functions for changing the current matrix.

8.5.1 Setting to identity

void glLoadldentity (void);

glLoadldentity() sets the current matrik' to be the identity matrix:

1 000
0100
1_0010
0 0 01

8.6. USING THE MATRIX STACKS 49

8.5.2 Translation

void glTranslatef (GLfloat x,
GLfloaty,
GLfloat z);

glTranslatef() creates a matri®/ which performs a translation by, y, z), and then post-multiplies
the current matrix byl/ as follows:

C—C-M

8.5.3 Scaling

void glScalef (GLfloat x,
GLfloaty,
GLfloat z);

glScalef()creates a matriX/ which performs a scale by, y, z), and then post-multiplies the current
matrix by M as follows:

C—C-M

8.5.4 Rotation

void glRotatef (GLfloat angle,
GLfloat x,
GLfloaty,
GLfloat z);

glRotatef creates a matrix/ which performs a counter-clockwise rotationasfgle degrees. The
axis about which the rotation occurs is the vector from the origif, 0) to the point(z, y, z), and
then post-multiplies the current matrix By as follows:

C—C-M

8.6 Using the matrix stacks

Because all the OpenGL transformation functions (GK&anslate()) always change the current ma-
trix by post-multiplying with the new transformation, sometimes it can be awkwareddityeget the
correct sequence of transformations. This is where the matrix stacksiocome

There are two separate matrix stacks: one for the modelview matrix andrahe farojection matrix.
Only one matrix stack is current at a particular time, and this is selected by cgliMeagrixMode() .

50 CHAPTER 8. MODELLING USING TRANSFORMATIONS

There are two functions which operate on the current matrix stgiekushMatrix() andglPopMa-
trix() . They behave as you might expect:

void glPushMatrix (void);

glPushMatrix() Pushes the current matrix stack down one level. The matrix on the top of tkeista
copied into the next-to-top position, as shown in Figure 8.3. The currenixstdck is determined by
the most recent call tgiMatrixMode() . C'is not changed. It is an errorgPushMatrix() is called
when the stack is full.

ol Matrix “M” ol Matrix “M” Top Sf matru’(’ stack
(the “current” matrix)

1 Matrix “A” 1| Matrix “M”

2 2 | Matrix “A”

3 3

N N+1 Bottom of matrix stack

Figure 8.3: The effect of callinglPushMatrix() on the current OpenGL matrix stack. The figure
shows the stack before (left) and after (righifPushMatrix() is called

Correspondingly, there’s a function to pop a matrix off the stack:

void glPopMatrix (void);

glPopMatrix() pops the current matrix stack, moving each matrix in the stack one positiond®war
the top of the stack, as shown in Figure 8.4. The current matrix stack isrdeszgt by the most recent
call to glMatrixMode() . C becomes the matrix previously at the second-to-top of the stack. Itis an
error if glPopMatrix() is called when the stack contains only one matrix.

8.7 Creating arbitrary matrices

You can usually create the matrices you need by using the simple matrix manipdlatictions
glLoadldentity(), glTranslate(), glScale()andglRotate(), but sometimes — and this is an advanced
topic — you need to provide arbitratyx 4 matrices of your own. See Appendix C for details of how
to do this.

8.7. CREATING ARBITRARY MATRICES 51

ol Matrix “M” ol Matrix “A” Top of matrix stack_
(the “current” matrix)

1 Matrix “A” 1 Matrix “B”

2 | Matrix “B” 2

3 3

N N-1 Bottom of matrix stack

Figure 8.4: The effect of callinglPopMatrix() on an OpenGL matrix stack. The figure shows the
stack before (left) and after (righg)PopMatrix() is called.

52

CHAPTER 8. MODELLING USING TRANSFORMATIONS

Chapter 9
Viewing

In this chapter we look at how to use the Open@dwing model The idea is simple: we create a 3D
scene using modelling transformations. We then “take a picture” of the ssémng acamera, and
display the camera’s picture on the display screen. For convenieneeGRpsplits the process into
three separate parts:

o First, we specify the position and orientation of the camera, ugingookAt() .

e Second, we decide what kind of picture we’d like the camera to creatallydor 2D graphics
we’ll use an orthographic (also known as “parallel”) view usgi@rtho()). For 3D viewing,
we’'ll usually want a perspective view, usigiuPerspective()

e Finally, we describe how to map the camera’s image onto the display scréeg,glidiew-
port().

9.1 Controlling the camera

Let’s look again at the OpenGL viewing pipeline, in Figure 9.1.

We set the position and orientation of the OpenGL camera, as shown in Fdgreisingglu-
LookAt() :

void gluLookAt (GLdouble eyex,
GLdouble eyey,
GLdouble eyez,
GLdouble centerx,
GLdouble centery,
GLdouble centerz,
GLdouble upx,
GLdouble upy,
GLdouble upz);

The position of the camera in space — sometimes also calledytygoint — is given by(eyex,
eyey, eyez) . (centerx, centery, centerz) specifies dook point for the camera to

53

54 CHAPTER 9. VIEWING

Normalized Window
Object Eye Clip device (pixel)
coordinates coordinates coordinates coordinates coordinates
Vertex

X

y modelview projection perspective viewport

z matrix » matrix division transformation

w

Figure 9.1: The OpenGL viewing pipeline, showing the sequence of tranafions and operations
applied to a 3D vertex.

“look at”, and a good choice for this would a point of interest in the scane, often the center
of the scene is used. Together, the po(etgex, eyey, eyez) and(centerx, centery,
centerz) define aview vector. The last set ofjluLookAt() 's arguments specify thep vector of
the camera. This defines the camera’s orientation at the eyepoint.

There is no need for the view vector and the up vector to be defined atamgies to each other
(although if they're parallel weird views may result). Often the up vectoetdsa fixed direction in

the scene, e.g. pointing up the wolldaxis. In the general case, OpenGL twists the camera around the
view vector axis until the top of the camera matches the specified up directoiosa$y as possible.

WhatgluLookAt() actually does is to create a transformation matrix which encapsulates all ttie spe
ified camera parameters. This is called the “viewing matrix'yogluLookAt() then post-multiplies
the current modelview matrix({) by V:

C—C-V
If you don’t call gluLookAt() , the OpenGL camera is given some default settings:
e it's located at the origin(0, 0, 0);
e it looks down the negativ& axis;
e its “up” direction is parallel to th&” axis.
This is the same as if you had callglliLookAt() as follows:

gluLookAt (0.0, 0.0, 0.0, / * camera position */
0.0, 0.0, -1.0, / * point of interest */
0.0, 1.0, 0.0); / * up direction */

Note that the value-1.0 could be any negative float, because this is just specifying the direction
“down the negativeZ axis”.

9.2. PROJECTIONS 55

Y
(upx, upy, upz)

//
-
-
-
-~
-

-7 eyex, eyey, eyez
. (eyex, eyey, eyez)

(centerx, centery, centerz)

Figure 9.2: The OpenGL camera.

9.2 Projections

Now that we've positioned and pointed the OpenGL camera, the next stejeédy what kind
of image we want. This is done using tpheojection matrix, P. OpenGL applies the projection
transformatiorafter it has applied the modelview transformation.

9.2.1 The view volume

Consider the real world camera analogy, in which we choose the lensiigeséngle, telephoto etc.).
The choice of lens affects the field of view, and selects what portion @@h&orld will appear within
the bounds of final image. The volume of space which eventually appehesimage is known as the
view volume (or view frustum). As well as discarding objects which lie outside the image “frame
OpenGL also imposes limits on how far away objects must be from the camerdentorappear in
the final picture.

The actual 3D shape of the view volume depends on what kind of projestied. For orthographic
(parallel) projections the view volume is box-shaped, whereas perspgxijections have a view
volume shaped like a truncated pyramid. The facets encasing the view voliatively define six
clipping planes which partition the frustum interior from the unseen outside world.

56 CHAPTER 9. VIEWING

9.2.2 Orthographic projection

glOrtho() creates a matrix for an orthographic projection, and post-multiplies thentumatrix
(which is normally the projection matrix) by it:

void glOrtho (GLdouble left,
GLdouble right,
GLdouble bottom,
GLdouble top,
GLdouble near,
GLdouble far);

Figure 9.3 illustrates how the arguments are interpreted. The values dbbresaaped view volume.
It is important to set the values such theft < right , bottom < top andnear < far . The
contents of the view volume are projected onto a rectangular region i ¥h@lane, with an aspect
ratio (right - left)/ (top - bottom).

(right, top, far)

(left, bottom, near)

Towards the
viewpoint

V4

Figure 9.3: The orthographic viewing voulme specifiedgt@rtho.

9.2.3 Perspective projection

gluPerspective()creates a matrix for a perspctive projection, and post-multiplies the currdrikma
(which will normally be the projection matrix) by it:

void gluPerspective (GLdouble fovy,
GLdouble aspect,
GLdoublea near,
GLdouble far);

Figure 9.4 illustrates how the arguments are interprdtag. is the angle (in degrees) of the image’s

9.3. SETTING THE VIEWPORT 57

vertical field of view;aspect is the aspect ratio of the frustum — its width divided by its height;
andnear andfar respectively specify the positions of the near and far clipping planesureshas
their distances from theentre of projection (eyepoint).near andfar must have positive values.

Centre of
projection

aspect=w/h
h fovy

W

Figure 9.4: The perspective viewing frustum specifiedjlmPerspective

9.3 Setting the viewport

glViewport() sets the position and size of thiwport — the rectangular area in the display window
in which the final image is drawn, as shown in Figure 9.5:

Display screen

OpenGL window
= 3 |
width

<
< >

height

Figure 9.5: How the viewport is defined.

58 CHAPTER 9. VIEWING

void glViewport (GLint X,
GLinty,
GLsizei width,
GLsizei height);

x andy specify the lower-left corner of the viewport, amidth andheight specify its width and
height. If a viewport is not set explicitly it defaults to fill the entire OpenGLadw. This means that
if the window’s aspect ratio does not match that defineglirPersepctive()or glOrtho() (e.g. after
a window resize) the displayed image will appear distortgitiewport() may also be used to draw
several separate images within a single OpenGL window.

9.4 Using multiple windows

Most OpenGL programs use a single drawing window. However GLUTS dagpport the use of
multiple windows simultaneously. During execution of an OpenGL programentering appears
on thecurrent window. By default, the current window is always the most recently created windo
(by glutCreateWindow()). If you want to use multiple windows, first create each window and note
the window identifier returned by each callglutCreateWindow(). Then, select a window to render
usingglutSetWindow():

void glutSetWindow (int window);

To find out which window is currently selected, cglutSetWindow():

int glutGetWindow (void);

You can also destroy windows, using:

void glutDestroyWindow (int window);

Obviously, you can't refer to the window identifier for a window which bagn destroyed.

9.5 Reversing the viewing pipeline

Sometimes you'll want to click a pixel point in the window and find out what poiryour original
object coordinates it corresponds to. This is easy to work out — all ywve to do is to invert the
viewport, projection and modelview transformations as follows:

Given an object coordinatg,, its corresponding pixel coordinatg, is given by:

Py = Mviewport' Mprojection' Mmodelview Fo

9.5. REVERSING THE VIEWING PIPELINE 59
So, if we knowP,, we can obtainP, by applying thenverseof each of the transformations:

P,=M_!

-1 —1
modelview Mprojection' M, By

viewport’

But there’s a problem with doing this. Because a screen pixel position,iaiDour original object
coordinates were 3D, every point along a vector in object coordinatiepimoject to the same 2D
screen position. This means it isn't possible to performuaambiguousreverse projection from
screen to world. So, the application must choosevalue for the pixel too, which lies between the
near and far clipping planes.

int gluUnProject (GLdouble winx,
GLdouble winy,
GLdouble winz,
const GLdouble modelMatrix [16],
const GLdouble projMatrix [16],
const GLint viewport [4],
GLdouble *objx,
GLdouble *objy,
GLdouble *objz);

gluUnProject() maps the window coordinatesginx , winy , winz into object coordinatesbjx ,
objy , objz .

The following code, taken from the example progranproject.c , shows howgluUnproject() is
typically used:

GLdouble projmatrix[16], mvmatrix[16];
GLint viewport[4];

glGetintegerv (GL_VIEWPORT, viewport);
glGetDoublev (GL_MODELVIEW_MATRIX, mvmatrix);
glGetDoublev (GL_PROJECTION_MATRIX, projmatrix);
/* note viewport[3] is height of window in pixels */
realy = viewport[3] - (GLint) y - 1;
printf ("Coordinates at cursor are (%4d, %4d)\n", x, realy) ;
gluUnProject ((GLdouble) x, (GLdouble) realy, 0.0,
mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
printf ("World coords at z=0.0 are (%f, %f, %f)\n",
WX, Wy, wz);
gluUnProject ((GLdouble) x, (GLdouble) realy, 1.0,
mvmatrix, projmatrix, viewport, &wx, &wy, &wz);
printf ("World coords at z=1.0 are (%f, %f, %f)\n",
WX, Wy, Wz);

See Section 15.1 for descriptions of the functigiGetintegerv() andglGetDoublev()

60

CHAPTER 9. VIEWING

Chapter 10

Drawing pixels and images

Sometimes, for image processing applications, you need access pixelly ddéen the most conve-
nient way to do this is to set up a view which gives a one-to-one mapping éetagect coordinates
and pixel coordinates.

10.1 Using object coordinates as pixel coordinates

To do this, you define an orthographic projection, where the width andhheighe viewing volume
exactly matchthe width and height of the viewport. Normally you will draw on the= 0 plane, so
we set the near and far clipping planes-tb.0 and1.0 respectively.

To begin with, let's assume your progranmgin has created an OpenGLwindow of an appropriate
size:

glutinitWindowSize (360, 335);
glutinitWindowPosition (100, 100);
glutCreateWindow ("Pixel world");

It's usual to place the projection specification in teshape function:

void reshape (int width, int height)
{
glViewport (0, 0, (GLsizei) width, (GLsizei) height);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
glOrtho (0.0, (GLfloat) width, 0.0, (GLfloat) height, -1.0 , 1.0);
glMatrixMode (GL_MODELVIEW);
glLoadldentity ();

then the object coordinate poif0.0, 40.0, 0.0) would map to the OpenGLwindow pixel &0, 40).

61

62 CHAPTER 10. DRAWING PIXELS AND IMAGES

360
= Fizel word]| Jjj
. 240 R A
A
S, 255 || 335
Y
o
60 Jiae \ 4
M40
\ 4

Figure 10.1: The pixel rectangle drawn g§DrawPixels at the current raster position.

10.2 Setting the pixel drawing position

The functionglRasterPos3f()sets thecurrent raster position — the pixel position at which the next
pixel rectangle specified usiggDrawPixels() will be drawn:

void glRasterPos3f (GLfloat x,
GLfloaty,
GLfloat z);

The position(z, y, z) is expressed in object coordinates, and is transformed in the normalynthg b
modelview and projection matrices.

10.3 Drawing pixels

glDrawPixels draws a rectangle of pixels, withidth pixels horizontally, andheight pixels verti-
cally.

void glDrawPixels (GLsizei width,
GLsizei height,
GLenum format,
GLenum type,
const GLvoid *pixels);

The bottom left-hand corner of the pixel rectangle is positioned atuhent raster position.

pixels is a pointer to an array containing the actual pixel data. Because pixetalatae encoded
in several different ways, the type pixels isa{oid +) pointer.format andtype specifythe

10.3. DRAWING PIXELS 63

pixel data encoding: normalliprmat will be GLRGB which states that each pixel is described by
three sequential values giving the red, green and blue compayges; specifies the data type used
for each of the R, G and B components, and will normallydieFLOAT, with each of the R, G and
B values in the range [0.0,1.0].

For example, used in conjunction with the viewing code in Section 10.1, the fotjogode defines
and draws a pixel rectangle of size 240 by 255, positioned at (60,48. rdsult is shown in Fig-
ure 10.1:

#define WIDTH 240
#define HEIGHT 255

GLfloat image[WIDTH][HEIGHT][3]; / * pixel data, R,G,B */
/ = code omitted to write pixel values into 'image’ */

void display (void)
{
glClear(GL_COLOR_BUFFER_BIT);
glRasterPos3f(60.0, 40.0, 0.0);
glDrawPixels(WIDTH, HEIGHT, GL_RGB, GL_FLOAT, image);

}

64

CHAPTER 10. DRAWING PIXELS AND IMAGES

Chapter 11
Displaying text

Unlike many graphics systems, OpenGL doesn'’t directly support thefisa¢ion and rendering of
text. It's left up to the application programmer to draw text using one of twocsgmhes:

¢ Define the shape of a character as collection of pixels in a bitmap. Herédaagpe of a character
is not geometric, and so it isn’'t affected at all by the modelview and projeatitrices.

e Draw the shape of each character using OpenGL primitives, most commoedy Nith this
approach, each character is a little geometrical object, and can be traedfasing the mod-
elview and projection matrices like ordinary OpenGL primitives.

Clearly, both of these methods mean that the application programmer woultbhdwejuite a lot of
work to draw text! Fortunately, however, the GLUT library comes to theuesc

GLUT provides a number of font definitions in both the bitmap and line (alsevknas “stroke”)
forms. Here, we only describe GLUT's bitmap text, which is most commonly.ubed details of
GLUT's stroke text, see the GLUT manual.

11.1 GLUT’s bitmap fonts

GLUT defines three groups of bitmap fonts, based on standard X-wimntows:

¢ A fixed-width font, where each character occupies a pixel rectandigesf size, eithed x 15
or8 x 13: GLUTBITMAP9 BY_15, GLUTBITMAP_8 BY_13;

e Aproportionally-spaced Times-Roman font, at 10 or 24 poiGisUT BITMAP_.TIMES_ ROMANLO,
GLUTBITMAP_TIMES_ROMAN4;

e A proportionally-spaced Helvetica font, at 10, 12 or 24 poi@kUTBITMAP_HELVETICA 10,
GLUTBITMAP_HELVETICA 12, GLUTBITMAP_.HELVETICA 18.

You can see these fonts (and a stroke font) demonstrated in the examgtampfont.c (You'll
need to copy an extra fitkmap.c from /opt/info/courses/OpenGL/examples/ into the same folder
you havefont.c). Use the arrow keys to rotate the fonts — you'll see that the stroke fpnoperly
transformed, but the only the start points of the bitmap fonts move.

65

66 CHAPTER 11. DISPLAYING TEXT

11.2 Drawing a single character

void glutBitmapCharacter (void *font,
int char);

glutBitmapCharacter() draws the single character whose ASCII codehsr , from fontfont .
The position at which the character’s bitmap is drawn isciiveent raster position, set byglRaster-
Pos3f()

11.3 Drawing a text string

An application will often wish to display text strings. Here’s a simple functiondaldt (taken from
thegears.c):

void drawString (void +font, float x, float y, char *str) {
/= Draws string 'str’ in font font’, at world (X,y,0) */
char =xch;
glRasterPos3f(x, y, 0.0);
for (ch= str; *ch; ch++)
glutBitmapCharacter(font, (int) * ch);
}

We might call this function as follows, to draw a string at waftd7.0, 0.0, 0.0):

glColor3f(1.0, 1.0, 1.0); / * Select white */
drawString (GLUT_BITMAP_HELVETICA_18, -7.0, 0.0, "Press Esc to quit");

Note: make sure the Z-coordinate of your bitmap text remains inside the rfrustiit doesn't,
OpenGL will clip the entire text out. (Note also that if you're doing lighting (Sdapter 16) — you'll
have to ensure lighting is disabled while you're drawing bitmap text.)

Chapter 12

Interaction

The basic OpenGL library has no facilities for interaction — it's only coneémwith rendering. This
was a design decision made in the interests of efficiency and portability.

The GLUT library provides some very rudimentary facilities for creatingpbiaal user interfaces
(GUIs). Specifically, theglutMainLoop() function traps events, and allows an application to deal
with them in three ways:

e Mouse eventsare triggered when a mouse button is pressed, and also when the mougescha
position;

e Keyboard eventsare triggered when the user hits an ASCII key or a cursor movement/fanctio
key;

e Menu eventsare triggered when the application has defined GLUT pop-up menus sigded
them to mouse buttons.

12.1 Keyboard events

For keyboard events, GLUT calls the application callback function regstby glutkeyboard-
Func() or glutSpecialFunc(}

void glutKeyboardFunc (void (*func)(unsigned char key, int x, inty));

glutkeyboardFunc() registers the application function to call when OpenGL detects a key press
generating an ASCII character. This can only occur when the mouses fednside the OpenGL
window.

void glutSpecialFunc (void (*func)(int key, int x, inty));

glutSpecialFunc() registers the application callback to call when OpenGL detects a that key pre
generating a non-ASCII character has occurred. This can only @duen the mouse focus is inside
the OpenGL window. Three values are passed to the callbesk:is an integer code for the key
pressedx andy give the pixel position of the mouse. Some useful codes are:

67

68 CHAPTER 12. INTERACTION

GLUT_KEY_LEFT Left arrow key
GLUT_KEY_RIGHT Right arrow key

GLUT_KEY_UP Up arrow key
GLUT_KEY_DOWN Down arrow key
GLUT_KEY_F1 F1 function key (and similarly F2-F12)

12.2 Mouse events

void glutMouseFunc (void (*func)(int button, int state, int x, inty));

glutMouseFunc() registers an application callback function which GLUT will call when the user
presses a mouse button within the window. The following values are pasesidallback function:

e button records which button was pressed, and can be

— GLUTLEFT_-BUTTON
— GLUTMIDDLEBUTTON
— GLUTRIGHT_-BUTTON

e state records whether the event was generated by pressing the bGit@RTDOWN or re-
leasing it GLUT.UP).

e X, Y give the current mouse position in pixels. Note: when using OpenGL witheXptbusey
position is measured from thiep of the window.

void glutMotionFunc (void (*func)(int x, inty));

glutMotionFunc() registers an application callback function which GLUT will call when the mouse
moves within the window while one of its buttons is pressed. The current numstonx, y is
passed to the callback function.

void glutPassiveMotionFunc (void (*func)(int x, inty));

glutPassiveMotionFunc()has the same job agutMotionFunc(), but no buttons need to be pressed
for an event to be generated.

12.3 Controlling the mouse cursor

You can set the position of the cursor usgigtWarpPointer() :

void glutWarpPointer (int x,
inty);

where (X,y) is in pixels relative to the window’s origin (top-left).

12.4. MENU EVENTS 69

To change the shape of the mouse cursorglistSetCursor():

void glutSetCursor (int cursor);

Wherecursor is one of the following:

GLUT_CURSOR_NONE * /Turns the cursor off */

GLUT_CURSOR_RIGHT_ARROW Basic arrows =/
GLUT_CURSOR_LEFT_ARROW

GLUT_CURSOR_INFO * Symbolic cursor shapes * [
GLUT_CURSOR_DESTROY

GLUT_CURSOR_HELP

GLUT_CURSOR_CYCLE

GLUT_CURSOR_SPRAY

GLUT_CURSOR_WAIT

GLUT_CURSOR_TEXT

GLUT_CURSOR_CROSSHAIR

GLUT_CURSOR_UP_DOWN * Directional cursors */
GLUT_CURSOR_LEFT_RIGHT

GLUT_CURSOR_TOP_SIDE */ Sizing cursors */
GLUT_CURSOR_BOTTOM_SIDE
GLUT_CURSOR_LEFT_SIDE
GLUT_CURSOR_RIGHT_SIDE
GLUT_CURSOR_TOP_LEFT_CORNER
GLUT_CURSOR_TOP_RIGHT_CORNER
GLUT_CURSOR_BOTTOM_RIGHT_CORNER
GLUT_CURSOR_BOTTOM_LEFT_CORNER

GLUT_CURSOR_INHERIT # Inherit from parent window */

GLUT_CURSOR_FULL_CROSSHAIR: /Fullscreen crosshair (if available) */

12.4 Menu events

GLUT menus are very straightforward to use. Once defined by the afipficand attached to a
specified mouse button, they pop up on the window at the position of the moesethéappropriate
button is pressed. The user then makes a selection from the items in the me@l, dil calls an
application callback function for the menu, passing as an argument the noirthe selected item.
GLUT menus can have items which invoke pop-up sub-menus.

The following example progranmenu.c shows how to create two menus, one attached to the right
mouse button, and one to the middle mouse button. Try running the program.

/* menu.c */
#include <GL/glut.h>
#include <stdio.h>

70 CHAPTER 12.

void display (void)
{ / = Callback called when OpenGL needs to update the display
glClear (GL_COLOR_BUFFER_BIT); / = Clear the window */

}

void keyboard (unsigned char key, int x, int y)
{1 = Callback called when a key is pressed */

if (key == 27) { exit (0); } / * 27 is the Escape key
}

void tobys_bistro (int item)
{ / = Callback called when the user clicks the right mouse button
printf ("Toby’s bistro: you clicked item %d\n", item);

}

void steves_chippy (int item)
{ !/ = Callback called when the user clicks the middle mouse button
printf ("Steve’s chippy: you clicked item %d\n", item);

INTERACTION
*/
*/
*/
*/

}

int main (int argc, char ** - argv)

{
glutinit (&argc, argv); / * Initialise OpenGL */
glutCreateWindow ("Menus"); / * Create the window =*/
glutDisplayFunc (display); / * Register the "display" function */
glutkeyboardFunc (keyboard); / * Register the "keyboard" function */
glutCreateMenu (tobys_bistro); / * Create the first menu & add items * [
glutAddMenuEntry ("Petto di Tacchino alla Napoletana", 1) ;
glutAddMenuEntry ("Bruschetta al Pomodoro e Olive", 2);
glutAddMenuEntry ("Chianti Classico”, 3);
glutAttachMenu (GLUT_RIGHT_BUTTON); / + Attach it to the right button */
glutCreateMenu (steves_chippy); / * Create the second menu & add items */
glutAddMenuEntry ("Rissoles", 1);
glutAddMenuEntry ("Curry sauce", 2);
glutAddMenuEntry ("Vimto", 3);
glutAttachMenu (GLUT_MIDDLE_BUTTON); / = Attach it to the middle button */
glutMainLoop (); / * Enter the OpenGL main loop */

return O;

}

/* end of menu.c */

12.4.1 Defining menus

int glutCreateMenu (void (*func) (int value));

glutCreateMenu() creates a new pop-up menu, which becomesthieent menu. The argument is

12.4. MENU EVENTS 71

the name of the application’s callback function which is called when an item in the meselected
by the user.glutCreateMenu() allocates the new menu a unigur¢ identifier number, which it
returns.

void glutAddMenuEntry (char *name,
int value);

glutAddMenuEntry() adds new item to the end of the current mename is the text to display in
the item.value is the value passed to the application’s callback if this item is selected by the user

void glutAddSubMenu (char *name,
int menu);

glutAddSubMenu() adds a new sub-menu to the end of the current meamne is the text to display
in the item in the current menu which, when pressed, will display the sub-memu is the identifer
of the sub-menu, which is created separately with a cglutCreateMenu().

void glutAttachMenu (int button);

glutAttachMenu() attaches the current menu to mouse butbatton . Whenever this button is
subsequently pressed, the menu will pop lgsiton must be one of:

e GLUTLEFT_-BUTTON
¢ GLUTMIDDLEBUTTON
e GLUTRIGHT_BUTTON

void glutSetMenu (int menu);

glutSetMenu() sets thecurrent menu to the menu whose identifier menu.

12.4.2 Changing menus dynamically

It's also possible to change the items in a menu as the program runs.

void glutChangeToMenuEntry (int entry,
char * name,
int value);

glutChangeToMenuEntry() changes an entry in the current menu.

72

CHAPTER 12. INTERACTION

Chapter 13

Colour

We express colour using @lour model, which gives us a way of assigning numerical values to
colours. A common simple model is the Red-Green-Blue (RGB) model, wherewards represented
by a mixture of the three primary colours red, green and blue. This is illudtiraféigure 13.1.

G

Green
(0.0, 1.0, 0.0)

Yellow
(1.0, 1.0, 0.0)
Cyan
(0.0, 1.0, 1.0)
¥ (1.0, 1.0, 1.0)
Shades of grey Black @< Red
on main diagonal —__| (0.0, 0.0, 0.0) (1.0, 0.0, 0.0)
R
Blue
(0.0, 0.0, 1.0)
Magenta
B (1.0, 0.0, 1.0)

Figure 13.1: The RGB colour model.

13.1 RGB colour in OpenGL

OpenGL supports the RGB colour model, in a slightly extended form. Openl@$ @ fourth compo-
nent to the colour, calledlpha, and the revised model is called tR&BA model. Alpha represents
the opacity (or, equivalently the transparency) of a colour, and iswked blending colours together.

73

74 CHAPTER 13. COLOUR

We don’t discuss the use of alpha further in this manual.

void glClearColor (GLclampf red,
GLclampf green,
GLclampf blue,
GLclampf alpha);

glClearColor() sets the current clearing colour to be used when clearing a buffer gEdibear().
red , green andblue are the RGB components of the colour. T&eclampf datatype limits
these values to floats in the rane), 1.0]. Setalpha to 0.0.

void glColor3f (GLclampf red,
GLclampf green,
GLclampf blue);

glColor3f() sets the current drawing colour, using a triple of RGB values in the rgnge .0].

Chapter 14

Retained data

Graphics systems typically act in two ways:

¢ Immediate mode whenever an applicatiotefinesa primitive, it isdrawn immediately.

¢ Retained mode the actions oflefining a primitive anddrawing a primitive are treated quite
separately. When an application defines a primitive, the graphics systgm &aecord of the
definition as alisplay list, but the primitive isn’t drawn. Subsequently, the application requests
that the stored primitive be drawn.

OpenGL provides both ways of working.

14.1 Immediate mode vs retained mode

By default, OpenGL works itmmediate mode whenever a primitive is defined, OpenGL draws it
immediately. Once it has been drawn and rendered as pixels, Open@isfaiyabout the original
primitive.

For example, if we execute the code:

glBegin(GL_TRIANGLES)
glVertex(1.0, 3.0, 0.0);
glvertex(5.0, 3.0, 0.0);
glVertex(3.0, 4.0, 0.0);
glEnd();

OpenGL will draw the triangle defined by the three vertices, once theylieme transformed by the
graphics pipeline, as pixels in the display buffer. But OpenGL does e lany internal record of
the original definition of the vertices in object coordinates.

The use of immediate mode has a very important consequence for the applmatgygammer: to
ensure that the contents of display are up-to-date, the application mostead the code that defines
primitives (including setting transformations and rendering parameters).

There’s another way to use OpenGL, caltethined mode which is quite different fromimmediate
mode.

75

76 CHAPTER 14. RETAINED DATA
14.2 Retained mode

Here, the graphical shapes which are to be drawn are specified withaplaydlist. The OpenGL
display list mechanism is best thought of asaghefor graphics. Itisn't a full-fledged data structure
which the application can manipulate. Once created, a display list:

e cannot be edited — its data is execute-only.

e cannot be queried — an application cannot “read back” the data stoaedisplay list.

If display lists sound very restricted in their functionality, that’s exactly thenitiv@. The OpenGL
display list is designed for efficiency, not versatility.

14.3 Using display lists

gINewList() creates and opens a new display list nahstd :

void gINewList (GLuint list,
GLenum mode);

All subsequent OpenGL commands will be stored in the display listlifhe argument is a positive
integer which identifies the display list being created. It is up to the prograroralocate unique
list values for each display listtmode determines what happens while the list is being created.
There are two options:

¢ GL_ COMPILE the commands are not executed as they are stored in the display list. This mean
the contents of the display list will not be drawn until the display list is calledggi@allList() .

¢ GLCOMPILEANDEXECUTEthe commands are executed as soon as they are stored in the
display list.

Only one display list can be open for writing at a time: OpenGL will reportraoréf another display
list is already open. If a display list with the nariit already exists whergINewList() is called,
OpenGL automatically empties the existing display list, and overwrites it with the eénitbn.

void glEndList (void);

glEndList() closes the currently open display list, marking the end of its definition.
The following example creates a simple display list which draws a green triangle

GLuint TRI= 1;

gINewList (TRI, GL_COMPILE);
glBegin (GL_TRIANGLES);
glColor3f (0.0, 1.0, 0.0); / * Green =*/
glvertex3f (1.0, 3.0, 0.0);

14.4. MIXING IMMEDIATE MODE WITH RETAINED MODE 77

glVertex3f (5.0, 3.0, 0.0);
glVertex3f (3.0, 4.0, 0.0);
glEnd ();

glEndList ();

Note that here we've used a symbolic consf@Rtl for the name of the display list, rather than the
raw numberl. This helps readability.

Once a display list has been created, it can be instanced repeatediygiGatiList() :

void glCallList (GLuint list);

The effect of callingglCallList() on a display list nametist is to execute again all the OpenGL
commands stored in the list. Any drawing specified by the commands will haggeril] any changes
to the OpenGL context — such as matrices and attributes.

Here’s how we could instance tA&R1 display list:

for (i= 0; i < 5; i++) { / * Instance a display list */
glTranslatef (0.1, 0.0, 0.0);
glCallList (TRI);

This code will display five instances @RI, each instance shifted inby 0.1 units.

14.4 Mixing immediate mode with retained mode

It's perfectly acceptable to use immediate mode and retained mode at the same tinsgdeCthe
following code fragment:

glColor3f (1.0, 0.0, 0.0); / * Red */

glBegin (GL_LINES); / * Draw a line (immediate mode) */
glvertex3f (0.0, 0.0, 0.0);
glvertex3f (0.2, 0.5, 0.0);

glEnd ();

for (i= 0; i < 5; i++) { / * |Instance a display list */
glTranslatef (0.1, 0.0, 0.0);
glCallList (TRI);

}

glBegin (GL_LINES); / * Draw another line (immediate mode) */
glVertex3f (0.0, 0.0, 0.0);
glVertex3f (0.5, 0.5, 0.0);

glEnd ();

Here, we first set the current colour to red, then draw a line in immediate .mddgt, as in the
previous example, we draw five instances of the green triangle — and awtéhk glColor3f() call

78 CHAPTER 14. RETAINED DATA

(green) stored in th&RI display list overwrites the effect of the colour currently in effect when th
display list is called (red). Finally, we draw another line in immediate m@eestion: what colour

will the second line beRAnswer: green, because green was the most recent colour selected (when the
TRI display list was called).

Chapter 15

State

OpenGL is astate machine calling OpenGL functions change the state of the machine. This is
a fancy way of saying that inside the OpenGL system are a bunch oflglaliables which the
application can set and query. The current values of these variabigsithe way OpenGL behaves.

For example, callingylColor3f() sets thecurrent drawing colour, which will be used for drawing
primitives.
15.1 State enquiries

An application can query the values of state variables using a simple “kdyavat value” model.
There’s a separate enquiry function for e&gbe of state variable. For example, for integers:

int glGetintegerv (GLenum pname,
GLint *params);

glGetintegerv() enquires the integer state variable specifieghbbgme. For example:

GLint col[1];

glGetintegerv(GL_CURRENT_COLOR, col);

The value of the current drawing colour will be returned¢@t . Note that this is a@array variable.
Similarly, the functionglGetDoublev() enquires the current value ofzLdouble state variable:

int glGetDoublev (GLenum pname,
GLdouble *params);

There are similar functions for enquiring other types of state variable.tBhexd are a huge number
of state variables — see Appendix B of the Red Book for a complete list.

79

80 CHAPTER 15. STATE

15.2 Enquiring the viewing state

Sometimes it's necessary to enquire the current values of the viewing sthig.cdn be done as
follows:

GLdouble projection[16], modelview[16];
GLint viewport[4];

glGetintegerv (GL_VIEWPORT, viewport);
glGetDoublev (GL_MODELVIEW_MATRIX, modelview);
glGetDoublev (GL_PROJECTION_MATRIX, projection);

Chapter 16
Lighting

This chapter describes the facilities OpenGL provides for lighting andsip& scenes, so that the
objects in them look solid and (somewhat) realistic. Our intention here is to gr@ridugh back-
ground and details to get you going, creating lit and shaded scenebva\safor further information
refer to the Red Book, in particular Chapter 5.

16.1 The OpenGL lighting model

OpenGL provides a “local” lighting model, which computes the illumination of a sipglggon with
respect to one or more light sources. It needs the following informatiordier do do this:

e The position of each light source

The colour of each light source

How the intensity of each light source decreases with distance

The type of each light source: ambient, diffuse or specular

The geometry of the polygon

The colour of the polygon

In the real world, the interaction between light and matter is incredibly complicatieich research
has been undertaken into techniques for simulating these interactions usireggmatics and computer
graphics, and there are several sophisticated techniques whiclreca® wery realistic images. Two of
the best known are ray tracing and radiosity. These are called “globaléimdecause they consider
not only the interactions of one light and one object, but also the interadiietmseen all lights and
all objects in the scene. Such interactions are responsible, for examplefléctions and shadows.

The basic OpenGL lighting model cannot compute reflections and shatiewayuse it considers
each polygon in isolation from all others. This may come as a surprise, siang OpenGL-based
games clearly display sophisticated illumination. In many cases they do this byutiogheir own
illumination, and rendering it using OpenGL textures.

Nevertheless, OpenGL'’s lighting model is useful, robust, and fast.

81

82 CHAPTER 16. LIGHTING
16.2 Hidden surface removal

If 3D scenes are to look plausible, we need to worry about “hidderaseinfemoval”. If we have
a scene containing several objects, and we view the scene from a qas#ion, one object might
obscure another. In order to display such a situation realistically, we mssteethat obscured parts
of objects do not get drawn. By default, OpenGL simply draws objects iortier specified by the
programmer, taking no account of whether one object would obscotberfor a given viewpoint.

OpenGL implements hidden-surface removal using a simple technique capddtaéfering (also
known as Z-buffering). This takes place during rasterization, usirgepth buffer” — an array which
records a depth value corresponding to each pixel in the window. Initedlfh depth value is set to
be a very large number. Whenever a new pixel is generated, for exauptegy the scan-conversion
of a polygonP, the pixel's Z value is compared with the corresponding value in the deftérbli
the pixel's depth is less than that in the buffer, the pixel is drawn and its deptinded in the depth
buffer, over-writing the previous value. Otherwise, the pixel is notwrand the depth buffer is not
updated.

Now, suppose subsequently that during the scan-conversion ofqrolg the same pixel is gener-
ated, becausB, and P, overlap in the scene. If the depth valuefafs pixel is greater than that stored
in the depth buffer, thei®, is further away from the eye thah, and so is obscured b, .

To tell OpenGL to perform hidden-surface removal using a depth hyibe need to do three things.

First, in the call taylutinitDisplayMode() , instruct GLUT to create a depth buffer, specify@gUTDEPTH
in addition to any other flags you're using:

glutinitDisplayMode (GLUT_DOUBLE | GLUT_DEPTH);

Second, enable the depth test, which is switched off by default, gHvgable():

glEnable (GL_DEPTH_TEST);

Finally, you need to explictly clear the depth buffer (in other words, re-lbaith large depth values)
each time around the rendering loop:

void display () {
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
/ = all your display code * [

}

Here'sex8.c , which draws a tumbling green cube orbiting a stationary red cube.

#include <GL/glut.h>

float r= 0.0;
int hidden= 0;

void init(void) {
glClearColor (0.0, 0.0, 0.0, 0.0);
}

16.2. HIDDEN SURFACE REMOVAL 83

void spin (void) {
r+= 1.0;
glutPostRedisplay();
}

void display(void) {
glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

if (hidden) glEnable(GL_DEPTH_TEST);
else glDisable(GL_DEPTH_TEST);

glLoadldentity ();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glColor3f (1.0, 0.0, 0.0):
glutSolidCube(1.0); /

*

Red cube =*/

*

glRotatef(r *2.0, 0, 1, 0); /
glTranslatef(0.0, 0.0, 1.0); /
glRotatef(r, 1, 0, 0); /
glRotatef(r, 0, 1, 0);

glRotatef(r, 0, 0, 1);

glColor3f (0.0, 1.0, 0.0);
glutSolidCube(0.5); /

Orbit angle */
Orbit radius */
Tumble in x,y,z */

*

*

*

Green cube =*/

glutSwapBuffers();
}

void reshape (int w, int h) {
glvViewport (0, 0, (GLsizei) w, (GLsizei) h);
gIMatrixMode (GL_PROJECTION);
glLoadldentity ();
gluPerspective (60, (GLfloat) w / (GLfloat) h, 1.0, 100.0);
gIMatrixMode (GL_MODELVIEW);

}
void keyboard(unsigned char key, int x, int y) {
if (key == 27) { exit (0); } / * escape key */
if (key == 'h)
hidden='hidden;
}
int main(int argc, char ** argv) {

glutinit(&argc, argv);

glutinitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT _DEPTH);
glutinitWindowSize (500, 500);

glutlnitWindowPosition (100, 100);

glutCreateWindow ("ex8: Press 'h’ to toggle hidden surface removal.");
init ();

glutDisplayFunc (display);

glutReshapeFunc (reshape);

glutkeyboardFunc (keyboard);

84 CHAPTER 16. LIGHTING

glutidleFunc (spin);
glutMainLoop ();
return O;

}

/* end of ex8.c * [

By default, hidden-surface removal is off, so the cubes are drawnerottler they're coded in
display() — that's the stationary red cube first, then the rotating green cube. Whesretbr-
lap, the green cube’s pixels will always over-write the red cube’s pixels

Press ‘h’ to switch on hidden-surface removal, and you can now see thik green cube orbivehind
the red cube, and is therefore obscured by it.

Notice that the green cube is drawn in a single colour — and doesn't ladk“ablid”. We'll see how
to address that in subsequent sections.

16.3 Defining lights

By default, lighting is off. It's enabled as follows:

glEnable (GL_LIGHTING);

OpenGL provides at least eight lights, nam@H LIGHTO throughGL LIGHT7. By default, each
light is switched off, so a light must be enabled if it is to have any effectekample, to use light O:

glEnable (GL_LIGHTO);

As well as enabling a light, you need to set its position, colour and other agtsibout if you don't,
the light has handy default values. In particular, its colour is white, and detdol at the position
(0,0,1). We can use these defaults to add a light to the previous example, which vesl allightly
so that the orbiting object is now a sphere. Heex8.c :

[+ ex9.c x/
#include <GL/glut.h>

float r= 0.0;
int hidden= 1, flat= 1;

void init(void) {
glClearColor (0.0, 0.0, 0.0, 0.0);
glEnable (GL_LIGHTING);
glEnable (GL_LIGHTO);

}

void spin (void) {
r+= 1.0;
glutPostRedisplay();

16.3. DEFINING LIGHTS

void display(void) {

}

glClear (GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

if (hidden) glEnable(GL_DEPTH_TEST);
else glDisable(GL_DEPTH_TEST);

if (flat) glShadeModel (GL_FLAT);
else glShadeModel (GL_SMOOTH);

glLoadldentity ();
gluLookAt (0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

glColor3f (1.0, 0.0, 0.0);
glutSolidCube(1.0); /

*

Red cube =/

glRotatef(r *2.0, 0, 1, 0); / * Orbit angle */
glTranslatef(0.0, 0.0, 1.0); / Orbit radius */
glRotatef(r, 1, 0, 0); / Tumble in x)y,z */
glRotatef(r, 0, 1, 0);

glRotatef(r, 0, 0, 1);

glColor3f (0.0, 1.0, 0.0);

glutSolidSphere(0.5, 20, 15); / * Green sphere */

*

*

glutSwapBuffers();

void reshape (int w, int h) {

}

glViewport (0, 0, (GLsizei) w, (GLsizei) h);

gIMatrixMode (GL_PROJECTION);

glLoadldentity ();

gluPerspective (60, (GLfloat) w / (GLfloat) h, 1.0, 100.0);
gIMatrixMode (GL_MODELVIEW);

void keyboard(unsigned char key, int x, int y) {

}

if (key == 27) { exit (0); } / * escape key */
if (key == ’h’) hidden= 'hidden;
if (key == 's") flat= Iflat;

int main(int argc, char ** argv) {

glutinit(&argc, argv);
glutinitDisplayMode (GLUT_DOUBLE | GLUT_RGB | GLUT_DEPTH
glutlnitWindowSize (500, 500);
glutinitWindowPosition (100, 100);
glutCreateWindow ("ex9");

init ();

glutDisplayFunc (display);
glutReshapeFunc (reshape);
glutkeyboardFunc (keyboard);
glutldleFunc (spin);

glutMainLoop ();

return O;

85

86 CHAPTER 16. LIGHTING

}

/* end of ex9.c * [

Runningex9, you'll see the orbiting sphere lit byIGHTO, and now its different faces are shaded
according to how they're oriented with respect to the light source.

Note that you can still use ‘h’ to toggle hidden surface removal. Try togdtirrond observe the
incorrect results when it's switched off. For lighting to work correctly, thepth buffer must be
enabled

16.4 Defining the shading model

In ex9 we make use of a new functioglShadeModel()

void glShadeModel (GLenum mode);

glShadeModel()specifies how OpenGL renders primitives. For example, when rendapogygon,

if mode is GLFLAT, OpenGL chooses one vertex of the polygon, computes its colour, aighas

this colour to all pixels in the polygon. thode is GL.SMOOTHDOpenGL computes a colour for each
vertex, and the interior pixels of the polygon are coloured by interpolatigden the vertex colours.

If gilShadeModel()is not called, the default behaviour@._SMOOTH

In ex9, we initially selectGL_FLAT, and the ‘s’ key toggles between this a8 SMOOTH

16.5 Defining materials

There’s another difference between the visual appearances8ofandex9. In ex8, we usegl-
Color3f() to set the colour of the two objects, so they’re drawn red and greeexd9n these colour
settings are still there, but now they don't have any effect; instead,bjeets take their colour only
from the light source. When lighting is enabled, we need to specify the iittiiogours of objects in
a more sophisticated way.

OpenGL uses the conceptwiaterial properties. An object is considered to have a surface made of
a material with several properties, which determine how it interacts with lightsélaee:

ambient colour: how well the material reflects ambient light

diffuse colour: how well the material reflects diffuse light

specular colour: how well the material reflects specular light

emissiveness: whether the material emits light itself

shininess: how glossy the material is

16.6. DEFINING LIGHTS 87

There’s a single function for setting material properties:

void glMaterialfv (GLenum face,
GLenum paramName,
TYPE *param);

face specifies which face of a primitive the material property should effectnzandbeGL FRONT
GL BACKor GLFRONTANDBACK

paramName selects which material property to change, as follows:

e GL AMBIENTSsets the ambient colour (default is (0.2, 0.2, 0.2, 1.0));
¢ GL DIFFUSE sets diffuse colour (default is (0.8, 0.8, 0.8, 1.0));

e GL SPECULARets the specular colour (default is (0.0, 0.0, 0.0, 1.0));
e GL EMISSION sets the emissive colour (default (0.0, 0.0, 0.0, 1.0));

e GL_SHININESS sets the specular exponent (default 0.0);

param is the value to set. FGBL_SHININESS, the type of this argument SLfloat ; for all other
values ofmode, it's GLfloat *.

Example progranex10.c illustrates the use gjlMaterialfv() , to set the diffuse colours of the cube
and sphere. The following extract shows the relevant code:

GLfloat redDiffuseMaterial]] = {1.0, 0.0, 0.0, 0.0};
GLfloat greenDiffuseMaterial[] = {0.0, 1.0, 0.0, 0.0}

/| = code omitted * [

glMaterialfv(GL_FRONT, GL_DIFFUSE, redDiffuseMaterial);
glutSolidCube(1.0); / * Red cube =/

/| = code omitted * [

glMaterialfv(GL_FRONT, GL_DIFFUSE, greenDiffuseMateri al);
glutSolidSphere(0.5, 20, 15); / * Green sphere =/

16.6 Defining lights

The properties of a light are defined in a similar way to those of materials, ghirghtfv() :

void glLightfv (GLenum light,
GLenum paramName,
TYPE *param);

paramName selects which light property to change, as follows:

88

CHAPTER 16. LIGHTING

GL AMBIENTSsets the ambient light colour (default (0.0, 0.0, 0.0, 1.0))
GL DIFFUSE sets the diffuse light colour (default (1.0, 1.0, 1.0, 1.0))
GL SPECULARsets the specular light colour (default (1.0, 1.0, 1.0, 1.0))

GL_POSITION sets the position of the light (default (0.0, 0.0, 1.0, 0.0)). If theoordinate
of the position i90.0, the light is considered to be atco, and the(z, y, z) components of its
position give the direction the light shines in.

GL.SPOTDIRECTION sets the direction of a spotlight (default (0.0, 0.0, -1.0))
GL SPOTEXPONENTets the exponent of a spotlight (default 0.0)

GL SPOTCUTOFFsets the spotlight cutoff angle. The default value is 180.0, which indicates
the light is not a spotlight. Any other value indicates the light is a spotlight.

GL CONSTANIATTENUATIONsets the constant attenuation factor (default 1.0)

GLLINEAR_ATTENUATIONsets the linear attenuation factor (default 0.0)

16.7 The lighting equation

OpenGL uses the following lighting equation to compute the coloof a vertex:

n—1
V =M.+ (Igx My) + > A; x S; + (amh + diff; + speg)
=0

where:

M, is the material's emission

I, is the scaled global ambient light
M, is the material’s ambient reflectivity
A; is the attentuation factor for light m
wherek,, is the value oflGLCONSTANJATTENUATION
ki, is GLLINEAR_ATTENUATION

k4, is GLQUADRATICATTENUATION

d; is the distance from light sourddo the vertex.

S; is the spotlight effect of light. If the lightisn’t a spotlight,S; = 1.0; if the light is a spotlight,
but V' is outside the light’s cone of illuminatior; = 0.0; otherwise,S; = max(v; - d;, 0)™s,
wheret is the normalised vector from the position of lightio vertexV’, d; is the direction of
light 7, andn, is GL. SPOTEXPONENT.

16.7. THE LIGHTING EQUATION 89

e amb is the ambient reflection componedy; * M,

o diff; is the diffuse reflection componentiax(L; - N,0) * I, * My

e speg is the specular reflection componentax(S; - N, 0)" x I, « M)
e M, is the material’s diffuse reflectivity

e M, is the material’'s specular reflectivity

e [,, is the ambient component of light

e [, is the diffuse component of light

e [, is the specular component of light

e L; is the normalised vector frofif to the position of light source

e N is the unit normal vector fov’

e S, is the normalised vector sum @f and the normalised vector pointing froffto the view-
point.

90

CHAPTER 16. LIGHTING

Appendix A

The cogl script

cogl is handy for compling a single OpenGL program, which is normally sufficiensimple ap-

plications.
#!/usr/bin/perl

This is for compiling and linking C
programs with Mesa, on Linux.

usage: cogl [-g] file.c

changed by TLJH 05/10/04 for new GLUT dist
changed by TLJH 30/01/02 to remove -lforms

Toby Howard, 5 November 1998, version 2

HHHHHHHHHHH

$CC= "gcc';

$CFLAGS= "-0O3 -fomit-frame-pointer -march=i486 -Wall -pi
#

$LIB_PATHS= "-L/usr/X11/lib -L/usr/X11R6/lib ";
$LIB_PATHS= $LIB_PATHS . "-L/opt/common/lib/glut-3.7/I
$HDR_PATHS= "-l/usr/X11R6/include ";

$HDR_PATHS= $HDR_PATHS . "-l/opt/common/lib/glut-3.7/i
$OGL_LIBS= "-lglut -IGL -IGLU -IGL *;

$X_LIBS= "-IX11 -IXext -IXmu -IXt -IXi ";

#

$LIBS= $OGL_LIBS . $X_LIBS . "-Im *;

local $fin, $fout;

@dirs = split(/V/,$0); $O = "$dirs[$#dirs]"; # get the prog

pe -DFX -DXMESA *";

ib/glut

nclude "

if ($#ARGV < 0) || ($#ARGV > 1)) { &usage; } # only one or two arg

if ($#ARGV == 0) { # one arg
$fin= SARGV[O0];
}

elsif ($#ARGV == 1) { # two args

91

ram name into $O.

S

92 APPENDIX A. THE COGL SCRIPT

if (PARGVI[O] ne "-g") { &usage; }
else {
$CFLAGS .= "-g";
$fin= $ARGV[1];
}
}

if ($fin =~ mA.c$/) { # only accept file.c
$fout= $fin; $fout =~ s/\.c$//; # Duffl Must be a nicer way.

}
else { &usage; }
print "$O v4, 01/10/04: compiling $fin; output program will

local ($ret)= system("$CC $CFLAGS $HDR_PATHS $fin $LIB_PA
if ($ret) {die ("$O: gcc failed.\n");}

sub usage {
print "usage: cogl [-g] file.c\n";
exit (1);

} # usage

that's it.

You can find cogl on-line at:

/opt/common/bin/cogl

be: $fout\n";

THS $LIBS -0 $fout”) >> 8§;

Appendix B

Using a makefile

cogl is handy for compling a single OpenGL program, which is normally sufficiensimple ap-
plications. For more complex projects, however, which split functionssacseveral files, it's better

to use a makefile.

We won't discuss here the general principles of makefiles — that’s a vityoie in itself — but here’s
a sample makefile for accessing the Mesa libraries on the Linux teachingisyste

INCDIR = /ust/include

LIBDIR = /usr/lib

XLIBS = -L/usr/X11/lib -L/ust/X11R6/lib -IX11 -IXext -IXm u -IXt -IXi
GL_LIBS = -L$(LIBDIR) -lglut -IMesaGLU -IMesaGL -Im $(XLIB S)

CC = gcc

CFLAGS = -I${INCDIR} -O3 -fomit-frame-pointer -m486 -Wall -pipe

gears: gears.o
${CC} ${CFLAGS} gears.0 -0 gears ${GL_LIBS}

You can find this makefile on-line at:

/opt/info/courses/OpenGL/Makefile

93

94

APPENDIX B. USING A MAKEFILE

Appendix C

Advanced matrix operations

You can usually create the matrices you want by using the simple matrix manipulatiotions
glLoadldentity() , glTranslate(), glScale()andglRotate(), but sometimes you need to provide arbi-
trary 4 x 4 matrices of your own. The functions described in this section enable yauttusl Refer
to Section C.1 for details of how OpenGL interprets the sequence of elememtsibitrary matrix.

void glLoadMatrixf (const GLfloat *m);

glLoadMatrixf() takes a matrixn(a pointer to a sequence of 16 floats) and sets the current matrix
to this matrix:

C—m

glMultMatrixf() takes a matrixn(a pointer to a sequence of 16 floats) and post-multiplies it with the
current matrixC, as follows:

C—C-m

void glMultMatrixf (const GLfloat *m);

C.1 How an OpenGL matrix is stored

By using the utility functions such agRotatef(), giIMultMatrixf() , and so on, it's simple to create
and manipulate matrices. Some applications, however, may wish to create themawces, and
pass them to OpenGL.

In order to do this correctly, it's necessary to know how OpenGL storesatsices internally.
Suppose you wanted to create your own matrix and pass it to OpenGL.ts#lthe simple example

95

96 APPENDIX C. ADVANCED MATRIX OPERATIONS

of a matrix to perform a translation Wy, y, z), which has the mathematical form:

SO O =
O O = O
O = O O
— N e 8

We would normally declare such a matrix in C as follows:

/* assume X, y and z are already declared */
float M[4][4]= { 1, O, O, X,

01 11 01 yy

0, 0, 1, z,

01 01 01 l }1

C stores multi-dimensional arrays iaw-major format, soMis actually this sequence of 16 floats
(decimal points omitted for clarity):

{1,0,0,x 0,1, 0,y,0, 0,1, 2 0,0, 0, 1}

OpenGL, however expects matrices to becglumn-major format, where an ordered sequence of
elements:; throughe;g defines the following matrix:

€1 €5 €9 €13
€2 €6 €10 €14
€3 €7 €11 €15
€4 €8 €12 €16

This is the transpose of row-major format. So, if we pass the mittixOpenGL, as the argument to
glLoadMatrixf() or gIMultMatrixf() , we won'’t get the result we expect. OpenGL would access the
16 elements oM“column-wise” and create the following OpenGL matrix:

8 O O~
< O = O
N = O O
= o O O

This is a matrix for three-point perspective — not translation! The resultde spectacular, but
spectacularly wrong.

The safest thing to do is to stick to OpenGL's functions for manipulating matridegn you need
never worry about the way they're stored. But if you do need to comgxméic matrices and pass
them to OpenGL, be very careful with the row/column ordering.

Index

The names of OpenGL functions are printedbiold, and a bold page number indicates the main

description of the function.

alpha, 73

animation, 27-31

arrow keys, 67

ASCII character code, 18
attributes, 38

blank screen syndrome, 46
books about OpenGL, 8

callback function, 15
display, 16, 17, 25
idle, 17, 28
keyboard, 17, 67
mouse, 17, 68
reshape, 17, 24, 61
camera
analogy with real camera, 22
defaults, 54
position and orientation, 25, 53
up direction, 54
cogl, 11, 91
colour, 73-74
cone, 42
convex polygon, 41
coordinate system, 35
cube, 42
current raster position, 62, 66
cursor, setting position and shape, 68

display lists, 75—-78
display(), 17, 25
dodecahedron, 43
double buffering, 29

event, 13, 67
event loop, 17, 28, 67
exl.c ,14

97

ex10.c , 87
ex2.c ,17
ex3.c ,19
exd.c ,21
ex5.c ,25
ex6.c , 27
ex7.c ,31
ex8.c , 82
ex9.c ,84
eyepoint, 53

face, 42

factor, 39
frame-buffer, 14, 29
frustum, 55
function keys, 67
function names, 36

GL, 5

GL_AMBIENT, 87, 88
GL_BACK, 42, 87
GL_COLORBUFFERBIT, 16
GL_CONSTANTATTENUATION, 88
GL_DEPTHTEST, 39
GL_DIFFUSE, 87, 88
GL_EMISSION, 87

GL_FILL, 42

GL_FOG, 39

GL_FRONT, 42, 87
GL_FRONTAND_BACK, 42, 87
GL_LIGHTING, 39

GL_LINE, 42

GL_LINE_LOORP, 37, 42
GL_LINE_STIPPLE, 39
GL_LINE_STRIP, 37
GL_LINEAR_ATTENUATION, 88

98

GL_LINES, 37
GL_MODELVIEW, 47
GL_POINTS, 36, 37
GL_POLYGON, 37, 40
GL_POSITION, 88
GL_PROJECTION, 47
GL_QUAD_STRIP, 37, 40

GL_QUADRATIC_ATTENUATION, 88

GL_QUADS, 37, 40
GL_SHININESS, 87
GL_SPECULAR, 87, 88
GL_SPOTCUTOFF, 88
GL_SPOTDIRECTION, 88
GL_SPOTEXPONENT, 88
GL_TRIANGLE _FAN, 37, 40

GL_TRIANGLE_STRIP, 37, 39

GL_TRIANGLES, 37, 39
glBegin(), 36, 37, 39, 40
glCallList(), 76,77
glClear(), 16
glClearColor(), 16,74
glColor3f(), 74, 86
glDisable(), 39
glDrawPixels(), 62
glEnable(), 39, 82
glEnd(), 37

glEndList(), 76
glFlush(), 16, 17, 30
glGetDoublev(), 59,79
glGetintegerv(), 59,79
glLightfv() , 87
glLineStipple(), 38
glLineWidth() , 38
glLoadldentity() , 24, 25,48
glLoadMatrixf() , 95, 96
glMaterialfv() , 87
glMatrixMode() , 24,47, 50
glMultMatrixf() , 95, 96
glNewlList(), 76
glOrtho(), 23, 24, 5356
glPolygonMode() 41
glPopMatrix() , 50, 51
glPushMatrix(), 50
glRasterPos3f() 62, 66
glRotatef(), 49, 95
glScalef() 49
glShadeModel() 86

INDEX

glTranslatef(), 49

GLU library, 6

gluLookAt(), 23, 25,53
gluPerspective() 23, 26, 5356
GLUT library, 7
GLUT_BITMAP_8.BY_13, 65
GLUT_BITMAP_9_BY _15, 65
GLUT_BITMAP _HELVETICA_10, 65
GLUT_BITMAP_HELVETICA_12, 65
GLUT_BITMAP _HELVETICA_18, 65
GLUT_BITMAP_TIMES_ROMAN_10, 65
GLUT_BITMAP _TIMES_ROMAN _24, 65
GLUT_DOUBLE, 30

GLUT_DOWN, 68
GLUT_KEY_DOWN, 68
GLUT_KEY _F1, 68
GLUT_KEY_LEFT, 68

GLUT_KEY _RIGHT, 68
GLUT_KEY_UP, 68
GLUT_LEFT_BUTTON, 68, 71
GLUT_MIDDLE BUTTON, 68, 71
GLUT_RIGHT_BUTTON, 68, 71
GLUT_SINGLE, 30

GLUT_UP, 68

glutAddMenuEntry() , 71
glutAddSubMenu(), 71
glutAttachMenu(), 71
glutBitmapCharacter(), 66
glutChangeToMenuEntry(), 71
glutCreateMenu(), 70
glutCreateWindow(), 15
glutDestroyWindow(), 58
glutDisplayFunc(), 15,16
glutGetWindow(), 58

glutldleFunc(), 28

glutinit() , 15, 30
glutinitDisplayMode() , 30, 82
glutinitWindowPaosition() , 15,20
glutinitWindowsSize(), 15,19
glutkeyboardFunc(), 18, 67
glutMainLoop(), 17, 67
glutMotionFunc(), 68
glutMouseFunc(), 68
glutPassiveMotionFunc() 31,68
glutPostRedisplay() 28
glutReshapeFunc() 24
glutSetCursor(), 69

INDEX

glutSetMenu(), 71
glutSetwWindow(), 58
glutSolidCone(), 43
glutSolidCube(), 42
glutSolidDodecahedron() 43
glutSolidicosahedron() 43
glutSolidOctahedron(), 43
glutSolidSphere() 10, 42
glutSolidTeapot(), 43
glutSolidTetrahedron(), 43
glutSolidTorus(), 43
glutSpecialFunc() 67
glutSwapBuffers(), 30
glutWarpPointer() , 68
glutWireCone(), 42
glutWireCube(), 30,42
glutwWireDodecahedron(), 43
glutWirelcosahedron(), 43
glutWireOctahedron(), 43
glutWireSphere(), 9, 42
glutWireTeapot(), 43
glutWireTetrahedron(), 43
glutWireTorus(), 43
gluUnProject(), 31,59
glVertex2f(), 36
glVertex3f(), 36
glViewport(), 23, 24, 5358
graphics primitives, 35—-43

hidden surface removal, 82

icosahedron, 43
immediate mode, 75
include files, 15
interaction, 67

lighting, 81-89
line attributes, 38
lines, 37

makefile, 11, 93

matrix
creating arbitrary 4x4, 50, 95-96
ordering of elements, 95
ordering of operations, 46
stacks, 49-50

menus, 70-71

Mesa, 5, 7

mode, 42
modelview matrix, 23, 46

object coordinates, 35
octahedron, 43

pattern, 38, 39
pixels, 61-63
platonic solids, 43
points, 37
polygon attributes, 41
polygons, 40
convex vs. non-convex, 41
primitives, 35-43
projection
orthographic, 24, 56
perspective, 25, 26, 56
projection matrix, 23, 46

guadrilaterals, 40

reshape, 61
retained mode, 75
RGB colour model, 73

sphere, 42

state, 79-80

state machine, 79
swapping buffers, 30

teapot, 7, 43
tesselation, 41
tetrahedron, 43

text, 65—66

torus, 43
transformations, 45-50
triangles, 39

vector, 45

vertex, 36

view volume, 55
viewing, 53-59

viewing pipeline, 47, 53
viewport, 24, 57

Web resources, 8

window, 13
default size and position, 15
display mode, 30

99

100 INDEX

reshape callback function, 24
setting size and position, 19
viewport, 24

Windows XP (etc), 8

