
Introduction To OpenGL

Saturday, 27 November 2010

How OpenGL Works

•OpenGL uses a series of matrices to control the position and way
primitives are drawn

•OpenGL 1.x - 2.x allows these primitives to be drawn in two ways

• immediate mode

• retained mode

Saturday, 27 November 2010

Immediate Mode

• In immediate mode the vertices to be processed are sent to the GPU
(Graphics Card) one at a time.

• This means there is a bottleneck between CPU and GPU whilst data is
sent

• This method is easy to use but not very efficient

• Immediate mode has become depricated as part of OpenGL 3.x and is
not available in OpenGL ES

Saturday, 27 November 2010

Retained Mode

• In this mode the data to be drawn is sent to the GPU and retained in
graphics memory.

•A pointer to this object is returned to the user level program and this
object reference is called when drawing etc.

• This requires a little more setup but does improve the Frame Rate
considerably.

• For most of the examples we will use this mode.

• This is also the way DirectX works

Saturday, 27 November 2010

GLSL

•OpenGL Shading Language is a high level shading language based on C

• It allows us to program directly on the GPU and can be used for Shading
calculations for vertex and fragment based processing.

•We will look at this in more detail later but to use the full OpenGL 3.x
functionality we need to also create a GLSL shader and process the
vertices on the GPU

•Using GLSL we can also manipulate the actual vertices of the system.

Saturday, 27 November 2010

• OpenGL provides tools for drawing many different primitives, including Points,
Lines Quads etc.

• Most of them are described by one or more vertices.

• In OpenGL we describe a list of vertices by using the glBegin() and glEnd
() functions.

• The argument to the glBegin() function determines how the vertices passed
will be drawn.

• We will not be using this mode and most examples on the web will use this

Immediate Mode

Saturday, 27 November 2010

OpenGL Profiles

•The current OpenGL version is 4.1, it has full compatibility
with OpenGL ES 2.0 for embedded devices

• There are two profiles associated with this version

•Core Profile

•Compatibility profile

Saturday, 27 November 2010

OpenGL 4.1 Core

•The Core profile is very new and many GPU’s do not fully
support this

• This profile doesn’t contain any of the immediate mode GL
elements and has no backward compatibility

•Will not be fully available in drivers / GPU cores for a while

Saturday, 27 November 2010

OpenGL 4 Compatibility
•The compatibility profile contains lots of OpenGL immediate mode

elements as well as earlier GLSL structures and components

• This means legacy code will still work with the drivers but may not be
optimal

•At present my code base is using about 5% of this profile and the aim is
to move all code away from this

•At present we are going to use a hybrid as the transition process
continues

• I will attempt to point out the rationale for each of these decisions as
we go

Saturday, 27 November 2010

Compatibility Profile

•The main problem with the compatibility profile is there are
no clear guidelines on the implementation

•Different vendors behave differently

•Usually the whole system will fall back to the “software
implementation” (not on the GPU)

Saturday, 27 November 2010

Programmers view of OpenGL

•To the programmer, OpenGL is a set of commands that allow the
specification of geometric objects in two or three dimensions, together
with commands that control how these objects are rendered into the
framebuffer.

• A typical program that uses OpenGL begins with calls to open a window
into the framebuffer. (in our case using Qt)

• Once a GL context is allocated, the programmer is free to issue
OpenGL commands.

Saturday, 27 November 2010

Programmers view of OpenGL

•Some calls are used to draw simple geometric objects (i.e. points, line
segments, and polygons)

•Others affect the rendering of these primitives including how they are lit
or coloured and how they are mapped from the user’s two- or three-
dimensional model space to the two-dimensional screen.

• There are also calls to effect direct control of the framebuffer, such as
reading and writing pixels.

Saturday, 27 November 2010

Client Server Model
•The model for interpretation of OpenGL commands is client-server.

• That is, a program (the client) issues commands, and these commands
are interpreted and processed by the OpenGL (the server).

• The server may or may not operate on the same computer as the client.

• In this sense, the GL is “network-transparent.”

• A server may maintain a number of OpenGL contexts, each of which is
an encapsulation of current GL state.

Saturday, 27 November 2010

GL Command Syntax
•GL commands are functions or procedures.

• Various groups of commands perform the same operation but differ in
how arguments are supplied to them.

• To specify the type of parameter GL uses a specific syntax

•GL commands are formed from a name which may be followed,
depending on the particular command, by a sequence of characters
describing a parameter to the command.

• If present, a digit indicates the required length (number of values) of the
indicated type.

•Next, a string of characters making up one of the type descriptors

Saturday, 27 November 2010

GL Command Syntax

• A final v character, if present, indicates that the command
takes a pointer to an array (a vector) of values rather than a
series of individual arguments.

Saturday, 27 November 2010

GL Command Syntax

1 void glUniform4f(int location, float v0, float v1, float v2, float v3);
2
3
4
5 void glGetFloatv(enum value, float *data);

gl Library
command

name
4f

4 floats

v array
pointer

Saturday, 27 November 2010

Block Diagram of OpenGL

•To aid learning we will
concentrate on each of
the elements in turn

• Ignoring the others and
assuming they just work
out of the box without
setup

• Finally we shall put the
whole system together

Vertex
Shading and
Per-Vertex
Operations

Transform
Feedback

Primitive
Assembly

and
Rasterization

Texture
Memory

Pixel
Pack / Unpack

Fragment
Shading and
Per-Fragment

Operations
Framebuffer

Vertex
Data

Pixel
Data

Saturday, 27 November 2010

Block Diagram of OpenGL

•Commands enter the GL on the left. Some commands specify
geometric objects to be drawn while others control how the
objects are handled by the various stages. Commands are effectively
sent through a processing pipeline.

• The first stage operates on geometric primitives described by
vertices: points, line segments, and polygons.

• In this stage vertices may be transformed and lit, followed by
assembly into geometric primitives, which may optionally be used by
the next stage, geometry shading, to generate new primitives.

Vertex
Shading and
Per-Vertex
Operations

Transform
Feedback

Primitive
Assembly

and
Rasterization

Texture
Memory

Pixel
Pack / Unpack

Fragment
Shading and
Per-Fragment

Operations
Framebuffer

Vertex
Data

Pixel
Data

Saturday, 27 November 2010

Block Diagram of OpenGL

•The final resulting primitives are clipped to a viewing volume in
preparation for the next stage, rasterization.

• The rasterizer produces a series of framebuffer addresses and values
using a two-dimensional description of a point, line segment, or polygon.

• Each fragment produced is fed to the next stage that performs
operations on individual fragments before they finally alter the
framebuffer.

• Finally, values may also be read back from the framebuffer or copied
from one portion of the framebuffer to another.

Vertex
Shading and
Per-Vertex
Operations

Transform
Feedback

Primitive
Assembly

and
Rasterization

Texture
Memory

Pixel
Pack / Unpack

Fragment
Shading and
Per-Fragment

Operations
Framebuffer

Vertex
Data

Pixel
Data

Saturday, 27 November 2010

Primitives and Vertices

• In the OpenGL, most geometric objects are drawn by
specifying a series of generic attribute sets using DrawArrays
or one of the other drawing commands.

• Points, lines, polygons, and a variety of related geometric
objects can be drawn in this way.

Vertex
Shader

Execution

Point,
Line Segment, or

Triangle
(Primitive)
Assembly

Point culling,
Line Segment

or Triangle
Clipping

Generic
Vertex

Attributes

Primitive type
(from DrawArrays or
DrawElements mode)

coordinates

varying
outputs

Shaded
Vertices Rasterization

Saturday, 27 November 2010

Primitives and Vertices

•Each vertex is specified with one or more generic vertex attributes.

• Each attribute is specified with one, two, three, or four scalar
values.!

•Generic vertex attributes can be accessed from within vertex
shaders and used to compute values for consumption by later
processing stages.

• For example we may set vertex colour, vertex normals, texture co-
ordinates or generic vertex attributes used by the processing shader

Saturday, 27 November 2010

Primitive types
•OpenGL has a number of primitive types that can be specified to

DrawArrays and other primitive drawing commands

• These are

• Points, Line Strips, Line Loops, Separate Lines,Triangle Strips, Triangle
Fans, Separate Triangles, Lines with adjacency, Line Strips with
Adjacency, Triangles with Adjacency, Triangle Strips with Adjacency,
Separate Patches

•We will investigate these elements later for now we will
concentrate on drawing some points

Saturday, 27 November 2010

Vertex Arrays

•Vertex data is placed into arrays that are stored in the server’s
address space (GPU).

• Blocks of data in these arrays may then be used to specify multiple
geometric primitives through the execution of a single OpenGL
command.

• The client may specify up to the value of MAX_VERTEX_ATTRIBS
arrays to store one or more generic vertex attributes.

Saturday, 27 November 2010

Vertex Arrays
•Vertex arrays are a simple way of storing data for models so that

Vertices, normals and other information may be shared.

• This allows a more compact representation of data and reduces the
number of calls OpenGL needs to make and the reduction of data
stored.

•We can create the data in a series of arrays either procedurally or by
loading it from some model format

• The data may then be stored either by downloading it to the GPU or
storing it on the client side and telling the GPU to bind to it.

Saturday, 27 November 2010

Example Drawing Points
•The following example will draw a series of

points to the OpenGL context

• The data is stored on the client side (our
program)

•We need to create the data (3xGLfloat
values) in an array

• Then tell OpenGL where this data is and
draw it

Create data

x

y

z

x

y

z

.....

m_points = new GLfloat[3*s_numPoints];

Enable Vertex
Arrays

and Draw

Saturday, 27 November 2010

Create the Data

1 GLfloat *m_points;
2
3
4 const static int s_numPoints=10000;
5
6
7 // first we generate random point x,y,z

values
8 m_points = new GLfloat[3*s_numPoints];
9 ngl::Random *rand=ngl::Random::instance();

10 for(int i=0; i<3*s_numPoints; ++i)
11 {
12 m_points[i]=rand->randomNumber(1);
13 }

in GLWindow.h

in ctor we allocate
some random x,y,z

values

Saturday, 27 November 2010

Drawing the Data
tell GL we are using

Vertex Arrays

tell GL where the data
is on the clientNow Draw

1 void GLWindow::paintGL()
2 {
3 // clear the screen and depth buffer
4 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
5 glEnableClientState(GL_VERTEX_ARRAY);
6
7 glVertexPointer(3, GL_FLOAT, 0, m_points);
8 glDrawArraysInstancedARB(GL_POINTS, 0, s_numPoints,s_numPoints/3.0);
9 glDisableClientState(GL_VERTEX_ARRAY);

10 }

Saturday, 27 November 2010

glVertexPointer

• size :- the number of coordinates per vertex. Must be 2, 3, or 4. The initial
value is 4.

• type :- the data type of each coordinate in the array. Symbolic constants
GL_SHORT, GL_INT, GL_FLOAT, or GL_DOUBLE are accepted.
default : GL_FLOAT.

• stride :- the byte offset between consecutive vertices. If stride is 0, the
vertices are understood to be tightly packed in the array. default : 0

• pointer :- a pointer to the first coordinate of the first vertex in the array.
default : 0.

1 void glVertexPointer(GLint size,GLenum type,GLsizei stride,const GLvoid *pointer);

Saturday, 27 November 2010

glVertexPointer

•glVertexPointer has been marked for deprecation

•At present it works but the new method of drawing is a lot more
complex and requires different shaders to be developed.

•We usually do not use client side data anyway so this is just serving as an
example before we add to the overall GL construction required for GL
3.x functionality

•We will expand on the new functions later

Saturday, 27 November 2010

glDrawArraysInstancedARB

•mode :- what kind of primitives to render.

• Symbolic constants GL_POINTS, GL_LINE_STRIP, GL_LINE_LOOP,
GL_LINES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN,
GL_TRIANGLES, GL_QUAD_STRIP, GL_QUADS, and GL_POLYGON
are accepted.

• first :- the starting index in the enabled arrays.

• count :- the number of indices to be rendered.

1 void glDrawArrays(GLenum mode,GLint first,GLsizei count);

Saturday, 27 November 2010

ARB and GLEW
•ARB stands for Architecture review board and are extensions

authorised by the OpenGL standards group

•Most of these extensions are part of the OpenGL driver for the GPU
installed and we need to make link between the driver binary library
and the OpenGL code we are writing

• This process is quite complex and to make it easier we can use GLEW
(not required on Mac OSX)

•The ngl::Init class contains the following code to do this

Saturday, 27 November 2010

Initialising GLEW

1 // we only need glew on linux mac ok (should add a windows ref as well)

2 #if defined(LINUX) || defined(WIN32)

3 {

4 GLenum err = glewInit();

5 if (GLEW_OK != err)

6 {

7 /* Problem: glewInit failed, something is seriously wrong. */

8 std::cerr<< "Error: "<<glewGetErrorString(err)<<std::endl;

9 exit(EXIT_FAILURE);

10 }

11 std::cerr<<"Status: Using GLEW "<<glewGetString(GLEW_VERSION)<<std::endl;

12 }

13 #endif

Saturday, 27 November 2010

Adding Extensions

•For every function we need to access we have to write some
code similar to the lines above

•This is quite tedious so GLEW does it for us

1 // make sure you've included glext.h
2 extern PFNGLISRENDERBUFFEREXTPROC glIsRenderbufferEXT;

3
4 and in one c/cpp file:

5 PFNGLISRENDERBUFFEREXTPROC glIsRenderbufferEXT;

6
7 // now bind the address from the driver to our function pointer
8
9 glIsRenderbufferEXT = glXGetProcAddressARB((const GLubyte*)"glIsRenderbufferEXT");

Saturday, 27 November 2010

Adding Colour
•The process of adding Colour is similar to that of setting the vertices

•We create a single array of per-vertex RGB values

•We then create a pointer to this and draw using the same draw
command

1 /// @brief an array of colours
2 GLfloat *m_colours;
3
4 // first we generate random point x,y,z values
5 m_colours = new GLfloat[3*s_numPoints];
6 for(int i=0; i<3*s_numPoints; ++i)
7 {
8 m_colours[i]=rand->randomPositiveNumber(0.6)+0.4;
9 }

Saturday, 27 November 2010

Adding Colour
1 void GLWindow::paintGL()
2 {
3 // clear the screen and depth buffer
4 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
5 glEnableClientState(GL_VERTEX_ARRAY);
6 glEnableClientState(GL_COLOR_ARRAY);
7
8 glVertexPointer(3, GL_FLOAT, 0, m_points);
9 glColorPointer(3,GL_FLOAT,0,m_colours);

10 glDrawArraysInstancedARB(GL_POINTS, 0, s_numPoints,s_numPoints/3.0);
11 glDisableClientState(GL_VERTEX_ARRAY);
12 glDisableClientState(GL_COLOR_ARRAY);
13
14 }

Saturday, 27 November 2010

Other Primitives

1 void GLWindow::paintGL()
2 {
3 // clear the screen and depth buffer
4 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
5 glEnableClientState(GL_VERTEX_ARRAY);
6 glEnableClientState(GL_COLOR_ARRAY);
7
8 glVertexPointer(3, GL_FLOAT, 0, m_points);
9 glColorPointer(3,GL_FLOAT,0,m_colours);

10 glDrawArraysInstancedARB(GL_TRIANGLES, 0, s_numPoints,s_numPoints/3.0);
11 glDisableClientState(GL_VERTEX_ARRAY);
12 glDisableClientState(GL_COLOR_ARRAY);
13
14 }

Saturday, 27 November 2010

Problems

•Although this method works, it is still slow.

• Each frame the client (our program) has to send the data to
the server (GPU)

• If we increase the s_numPoints constant to about 3000 the
program slows to a halt

•We really need to create a faster method of doing things

Saturday, 27 November 2010

Vertex Buffer Objects

• The idea behind VBOs is to provide regions of memory (buffers) accessible
through identifiers.

• A buffer is made active through binding, following the same pattern as other
OpenGL entities such as display lists or textures.

• Data is effectively stored on the GPU for execution and this greatly increases
the speed of drawing.

Saturday, 27 November 2010

VBO Allocation and process

Vertex Data

Get a Buffer ID

Bind to Buffer

Stored on

GPU

Enable Arrays

Bind Buffer

set pointer

draw

disable Arrays

Data deleted
once bound

Create VBO (once)

Draw VBO (many times)

Saturday, 27 November 2010

Data Packing

• We can pack the data in a number of ways for passing to the VBO

• The two simplest schemes are

• All Vertex Data - All Normal Data - All Texture Data etc etc

• Alternatively we can pack the data by interleaving the data in a number
of pre-determined GL formats

• For the following examples we will use the 1st format.

Saturday, 27 November 2010

Grid

1 /// @brief a simple draw grid function

2 /// @param[in] _size the size of the grid (width and height)

3 /// @param[in] _step sxstep the spacing between grid points

4 /// @param[out] o_dataSize the size of the buffer allocated

5 /// @returns a pointer to the allocated VBO

6 GLuint MakeGrid(
7 GLfloat _size,
8 int _steps,
9 int &o_dataSize

10);
11 /// @brief a pointer to our VBO data

12 GLuint m_vboPointer;
13 /// @brief store the size of the vbo data

14 GLint m_vboSize;

in GLWindow.h

1 const static float gridSize=1.5;
2 const static int steps=24;

Saturday, 27 November 2010

Creating Data for
vertices

Vertex 0 x,y,z

V0 X

V0 Y

V0 Z

V1 X

V1 Y

V1 Z

.....

Vertex 1 x,y,z

vertexData[]

1 // allocate enough space for our verts
2 // as we are doing lines it will be 2 verts per line
3 // and we need to add 1 to each of them for the <= loop
4 // and finally muliply by 12 as we have 12 values per line pair
5 o_dataSize= (_steps+2)*12;
6 float *vertexData= new float[o_dataSize];
7 // k is the index into our data set
8 int k=-1;
9 // claculate the step size for each grid value

10 float step=_size/(float)_steps;
11 // pre-calc the offset for speed
12 float s2=_size/2.0f;
13 // assign v as our value to change each vertex pair
14 float v=-s2;
15 // loop for our grid values
16 for(int i=0; i<=_steps; ++i)
17 {
18 // vertex 1 x,y,z
19 vertexData[++k]=-s2; // x
20 vertexData[++k]=v; // y
21 vertexData[++k]=0.0; // z
22
23 // vertex 2 x,y,z
24 vertexData[++k]=s2; // x
25 vertexData[++k]=v; // y
26 vertexData[++k]=0.0; // z
27
28 // vertex 3 x,y,z
29 vertexData[++k]=v;
30 vertexData[++k]=s2;
31 vertexData[++k]=0.0;
32
33 // vertex 4 x,y,z
34 vertexData[++k]=v;
35 vertexData[++k]=-s2;
36 vertexData[++k]=0.0;
37 // now change our step value
38 v+=step;
39 }

Saturday, 27 November 2010

Binding the data

• Now we bind the data onto the GPU and once this is done we can
delete the client side data as it’s not needed

1 // now we will create our VBO first we need to ask GL for an Object ID

2 GLuint VBOBuffers;

3 // now create the VBO

4 glGenBuffers(1, &VBOBuffers);

5 // now we bind this ID to an Array buffer

6 glBindBuffer(GL_ARRAY_BUFFER, VBOBuffers);

7 // finally we stuff our data into the array object

8 // First we tell GL it's an array buffer

9 // then the number of bytes we are storing (need to tell it's a sizeof(FLOAT)

10 // then the pointer to the actual data

11 // Then how we are going to draw it (in this case Statically as the data will not change)

12 glBufferData(GL_ARRAY_BUFFER, o_dataSize*sizeof(GL_FLOAT) , vertexData, GL_STATIC_DRAW);

13
14 // now we can delete our client side data as we have stored it on the GPU

15 delete [] vertexData;

16 // now return the VBO Object pointer to our program so we can use it later for drawing

17 return VBOBuffers;

Saturday, 27 November 2010

Building the Grid

• We must have a valid GL context before we can call this function,
and if required we must initialise GLEW

1 void GLWindow::initializeGL()
2 {
3 ngl::NGLInit *Init = ngl::NGLInit::instance();
4 Init->initGlew();
5 glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
6 glColor3f(1,1,1);
7 m_vboPointer=MakeGrid(gridSize,steps,m_vboSize);
8 }

note glColor
is deprecated

Saturday, 27 November 2010

Drawing the buffer

1 void GLWindow::paintGL()
2 {
3 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
4 // enable vertex array drawing

5 glEnableClientState(GL_VERTEX_ARRAY);
6 // bind our VBO data to be the currently active one

7 glBindBuffer(GL_ARRAY_BUFFER, m_vboPointer);
8 // tell GL how this data is formated in this case 3
9 // floats tightly packed starting at the begining

10 // of the data (0 = stride, 0 = offset)

11 glVertexPointer(3,GL_FLOAT,0,0);
12 // draw the VBO as a series of GL_LINES starting at 0
13 // in the buffer and _vboSize/3 as we have x,y,z

14 glDrawArraysInstancedARB(GL_LINES, 0, m_vboSize/3,1);
15 // now turn off the VBO client state as we have finished with it

16 glDisableClientState(GL_VERTEX_ARRAY);
17 }

Saturday, 27 November 2010

Vertex arrays

• To enable the use of vertex arrays we need very few steps as shown below

1. Invoke the function glEnableClientState(GL_VERTEX_ARRAY); to
activate the vertex-array feature of OpenGL

2. Use the function glVertexPointer to specify the location and data
format for the vertex co-ordinates

3. Display the scene using a routine such as glDrawArraysInstancedARB

Saturday, 27 November 2010

A Cube
•This cube has vertex colours and vertex normals

Saturday, 27 November 2010

Cube Vertices

•The array above stores the
vertices for a unit cube in
face order of quads

V0

V1

V2

V3

V4

V5

V6

V7

1 // vertex coords array
2 GLfloat vertices[] = {
3 1, 1, 1, -1, 1, 1, -1,-1, 1, 1,-1, 1, // v0-v1-v2-v3
4 1, 1, 1, 1,-1, 1, 1,-1,-1, 1, 1,-1, // v0-v3-v4-v5
5 1, 1, 1, 1, 1,-1, -1, 1,-1, -1, 1, 1, // v0-v5-v6-v1
6 -1, 1, 1, -1, 1,-1, -1,-1,-1, -1,-1, 1, // v1-v6-v7-v2
7 -1,-1,-1, 1,-1,-1, 1,-1, 1, -1,-1, 1, // v7-v4-v3-v2
8 1,-1,-1, -1,-1,-1, -1, 1,-1, 1, 1,-1 // v4-v7-v6-v5
9 };

Saturday, 27 November 2010

Vertex Normals

•This array stores the normals for each vertex

1 // normal array
2 GLfloat normals[] = {
3 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, // v0-v1-v2-v3
4 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, // v0-v3-v4-v5
5 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, // v0-v5-v6-v1
6 -1, 0, 0, -1, 0, 0, -1, 0, 0, -1, 0, 0, // v1-v6-v7-v2
7 0,-1, 0, 0,-1, 0, 0,-1, 0, 0,-1, 0, // v7-v4-v3-v2
8 0, 0,-1, 0, 0, -1, 0, 0,-1, 0, 0,-1 // v4-v7-v6-v5
9 };

Saturday, 27 November 2010

Vertex Colour Array

•Array of colour values for each vertex these will be
interpolated across the faces

1 // color array
2 GLfloat colours[] =
3 {
4 1,1,1, 1,1,0, 1,0,0, 1,0,1, // v0-v1-v2-v3
5 1,1,1, 1,0,1, 0,0,1, 0,1,1, // v0-v3-v4-v5
6 1,1,1, 0,1,1, 0,1,0, 1,1,0, // v0-v5-v6-v1
7 1,1,0, 0,1,0, 0,0,0, 1,0,0, // v1-v6-v7-v2
8 0,0,0, 0,0,1, 1,0,1, 1,0,0, // v7-v4-v3-v2
9 0,0,1, 0,0,0, 0,1,0, 0,1,1 // v4-v7-v6-v5

10 };

Saturday, 27 November 2010

Assigning the data

• In this case we have 3 different arrays which we are going to
combine into one VBO buffer.

• The data will be packed in the format

• Vertices -> Normal -> Colour

• First we have to allocate enough space for all 3 arrays

Saturday, 27 November 2010

1 void GLWindow::createCube(

2 GLfloat _scale,

3 GLuint &o_vboPointer

4)

5 {

6
7
8 // first we scale our vertices to _scale

9 for(int i=0; i<24*3; ++i)

10 {

11 vertices[i]*=_scale;

12 }

13 // now create the VBO

14 glGenBuffers(1, &o_vboPointer);

15 // now we bind this ID to an Array buffer

16 glBindBuffer(GL_ARRAY_BUFFER, o_vboPointer);

17
18 // this time our buffer is going to contain verts followed by normals

19 // so allocate enough space for all of them

20 glBufferData(GL_ARRAY_BUFFER, 72*3*sizeof(GL_FLOAT) , 0, GL_STATIC_DRAW);

21 // now we copy the data for the verts into our buffer first

22 glBufferSubData(GL_ARRAY_BUFFER,0,24*3*sizeof(GL_FLOAT),vertices);

23 // now we need to tag the normals onto the end of the verts

24 glBufferSubData(GL_ARRAY_BUFFER,24*3*sizeof(GL_FLOAT),24*3*sizeof(GL_FLOAT),normals);

25
26 // now we need to tag the colours onto the end of the normals

27 glBufferSubData(GL_ARRAY_BUFFER,48*3*sizeof(GL_FLOAT),24*3*sizeof(GL_FLOAT),colours);

28
29 }

Saturday, 27 November 2010

1 void GLWindow::paintGL()
2 {
3
4 GLubyte indices[] = {0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23};
5 // this macro is used to define the offset into the VBO data for our normals etc

6 // it needs to be a void pointer offset from 0
7 #define BUFFER_OFFSET(i) ((float *)NULL + (i))
8
9 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

10 glPushMatrix();
11 glRotatef(m_spinXFace,1,0,0);
12 glRotatef(m_spinYFace,0,1,0);
13 // enable vertex array drawing

14 glEnableClientState(GL_VERTEX_ARRAY);
15 // enable Normal array

16 glEnableClientState(GL_NORMAL_ARRAY);
17 // enable the colour array

18 glEnableClientState(GL_COLOR_ARRAY);
19
20 // bind our VBO data to be the currently active one

21 glBindBuffer(GL_ARRAY_BUFFER, m_vboPointer);
22 // we need to tell GL where the verts start

23 glVertexPointer(3,GL_FLOAT,0,0);
24 // now we tell it where the nornals are (thes are basically at the end of the verts

25 glNormalPointer(GL_FLOAT, 0,BUFFER_OFFSET(24*3));
26 // now we tell it where the colours are (thes are basically at the end of the normals

27 glColorPointer(3,GL_FLOAT, 0,BUFFER_OFFSET(48*3));
28 glDrawElementsInstancedARB(GL_QUADS,24,GL_UNSIGNED_BYTE,indices,1);
29 // now turn off the VBO client state as we have finished with it

30 glDisableClientState(GL_VERTEX_ARRAY);
31 glDisableClientState(GL_NORMAL_ARRAY);
32 glDisableClientState(GL_COLOR_ARRAY);
33 glPopMatrix();
34
35 }

Saturday, 27 November 2010

What Next

•We have used several deprecated features in this lecture but
they serve to easily demonstrate the OpenGL process

•Next time we will investigate the OpenGL shading language
and begin to learn some other elements of the pipeline

•We can then combine them to produce a full Core profile
OpenGL application

Saturday, 27 November 2010

References

• Segal M, Akeley K The OpenGL! Graphics System: A Specification (Version 4.0
(Core Profile) - March 11, 2010)

• F S. Hill Computer Graphics Using Open GL (3rd Edition)

• Shreiner Et Al OpenGL Programming Guide: The Official Guide to Learning
OpenGL

• Foley & van Dam Computer Graphics: Principles and Practice in C (2nd
Edition)

• (Redbook online) http://fly.cc.fer.hr/~unreal/theredbook/

Saturday, 27 November 2010

