A CATALOG OF COMMON BUGSIN C++ PROGRAMMING

Venu Dasigi
Department of Computer Science
Souther n Polytechnic State University
1100 S. Marietta Parkway
Marietta, GA 30060-2896
(770) 528-5559
vdasigi @spsu.edu
http://lovelace.spsu.edu/vdasigi/

Abstract

In this paper, we briefly discuss the pedagogical issues surrounding
the teaching of techniques to diagnose and correct programming errors.
Then we catalog several common bugs students grapple with during the
course of their programming projects. We found it very valuable to
document them so students can help themselves, as well as be helped by the
instructor.

1. INTRODUCTION

This paper is an attempt to fill what the author has observed to be a frequently
overlooked void in introductory and advanced programming courses. Such course
include, for example, afirst undergraduate programming course or a graduate transition
course, or even any other course with a substantial programming component, before
which students have not mastered simple error diagnostic techniques. By including a
formal or informal treatment of material similar to what is contained in this paper in the
first few programming courses, it is hoped that much frustration will be avoided on the
part of both students and instructors at later stages in a computer science program.

In this paper, we use the term “debugging” to refer to detection and correction
techniques for various types of program errors (or “bugs’) by inspection or by reasoning
about the programs. We specifically exclude the “debugger tool” sense of the word; thus,
we are not talking here about teaching how to use a debugger. The author has often seen
faculty memberstell studentsto develop their own debugging skills. “Thereisno way |
am going to teach debugging in my classes; | have more important thingsto do,” isa
common refrain. This position is sometimes the result of areal or perceived obligation to
teach awide variety of concepts in programming courses, which does not seem to allow
the time for atreatment of debugging. However, it is the author's belief that debugging is
an important skill for students to master. It is hoped that this collection of common bugs
that can “creep” into C++ program development will be useful to students, as well as
faculty. If thereis not enough time to devote to such materia in the classroom, faculty

can make this or an augmented list available to students, and spend some time outside the
classroom helping students apply the techniques. Alternatively, it could be incorporated
into alab section if the course has an associated lab. A number of common C++ bugs are
covered in an excellent, yet relatively little-known, book [Spuler, 94]. The reader might
find some of the bugs we point out, as observed in code written by our students, to be
similar to the bugs listed in that book, but we believe our treatment is original and
represents classroom experience.

In the following section, we identify a classification of common bugs that show up
in programs written by students. Recognizing a bug as relevant to the compiler, the linker,
or the logic of the program can be very helpful in understanding it. In Section 3, we list
severa bugs, relating each of them to one of the classes identified in Section 2. We
explain each bug, and identify afix if appropriate. Section 4 concludes the paper.

2. CLASSESOF BUGS

We use the word "bug" in the broad sense of any programmer error that can result
in afailure during compilation, linking, execution, or any other phase that would prevent
the program from eventually running successfully. Thus debugging refersto
understanding "bugs' and either getting rid of them or simply avoiding them before they
are likely to show up. A broad understanding of the different stepsin getting the program
to run successfully and the roles of the different components used in the process is helpful
in debugging.

2.1. Compiler Errorsand the Role of the Compiler

As agenera philosophy, students should learn to appreciate that the compiler is
their "friend,” in spite of the fact that it frequently catches errorsin their programs. Some
of the compiler errors are the result of not having mastered some trivial syntactic details
(e.g., Should it be acomma or a semicolon?), but other compiler errors are indicators of
more serious conceptual or logic errors. A frequent compiler error message results from
confusion between different, perhaps closely related, types, e.g., a pointer to an object and
the object itself, or a node type and the type of the main / key field in the node. It should
be impressed on the students that such mix-ups are akin to "mixing apples and oranges,”
and compilers are fussy about them because such mix-ups are surface manifestations of
deeper problems. Extending this notion further, students should also be encouraged to
pay attention to compiler warning messages, which are generally indications of significant
oversights or other logic errors (e.g., uninitialized variables). 1f acompiler error isfatal, a
compiler warning isto be viewed as likely poison!

In C++, the role of the compiler isto make sure the programis syntactically
correct, and then generate the object code. Thus, every function call is matched against a
prototype, but for the purpose of the compiler, a complete definition of the function is

not required, although a definition is required for linking and successful execution. In this
context, we make an important distinction between object code and executable code. The
former is machine code, which may or may not be complete and executable. The latter is
complete machine code with all necessary definitions, including system and user libraries,
ready to be loaded and executed.

2.2. Linker Errorsand the Role of the Linker/L oader

Once the program files are compiled individually, the linker links them together
along with any system libraries so all externals are resolved, and loads the resulting
executable. Externals might refer to system libraries and in the case of a multi-file
program, externals might refer to symbols and functions defined in a different file. A file
or acollection of filesthat can generate an executable is generally referred to as a project
in many development environments. Sometimes errors can arise from functions that are
"promised” through prototype declarations (which satisfy the compiler), but are not
"delivered" through definitions in any of the files being linked together in the project.
Some of these errors can be particularly subtle in C++. For the purpose of this paper, we
assume that a multi-file project has at least one header file (e.g., cl ass. h that declaresa
class, containing mostly the prototypes of member functions, but not all definitions), one
classlibrary definition file (e.g., cl ass. cpp that defines all member functions), and one
driver / application file (e.g., cl assprj . cpp that makes use of the class); we use these
terms consistently and repeatedly in this paper. Generally speaking, linker errors arise
from failed attempts at reconciling cross-references.

2.3. Errorsrelated to L anguage Design Philosophy

This category of errorsrelates to a misunderstanding of the backward
compatibility of C++ with C, and various problems related to pointers and dynamic
memory management. Dynamic memory management issues fall into this category. Most
programming languages either leave the complete responsibility of avoiding memory leaks
and dangling references to the programmer (e.g., Pascal, C, and Ada) or perform some
variation of automatic garbage collection (e.g., LISP, Java, and Ada). C++, however,
while following the first method, attempts to lessen the burden on the programmer. It lets
the programmer define code for the destructor in a class once, and autometically invokes
the destructor when the lifetime of any object of that class ends. While, on the surface,
this philosophy appears to help the programmer, in reality, it puts additional burden on the
programmer when dynamically allocated structures are potentially shared between objects.
However, once the issues are understood, solutions can be easily implemented.

24. LogicErrors

The logic errors that can be found in code written by C++ students can be of a

wide variety, but we will try to focus on problems that are particularly frequent or those
that are specific to C++. Examplesinclude uninitialized pointers, certain types of memory
reference errors, etc. The category of logic errors, while an important one, receives
relatively little attention in this paper, because most good books do a good job of
identifying them, e.g., [Main and Savitch, 97]. Another recent paper by the author is also
relevant in this context [Dasigi, 96].

25. MetaErrors

These are the errors that can result from or during the process of fixing other
errors. Some of them remain dormant until other errors are fixed: They have always been
there, but just happen not to manifest themselves since they are somehow overshadowed.
Other meta errors get introduced innocuoudly during the process of detecting or fixing
some existing errors.

2.6. Other Errors

Some of these errors are related to the way multi-file projects need to be
organized. Some relate to more than one kind of the errors mentioned previously, e.g.,
different issues related to templates. Still othersrelate to the choice of the type of project
created in the different development environments.

3. KNOWING THE BUGS AND DEBUGGING THEM

In this section, we discuss several common bugs belonging to the above
categories. Each error isidentified by its category, indicated in parentheses by the
corresponding subsection number from the preceding section (e.g., 2.1, 2.2, etc.)

3.1. “Innocently Undeclared” Functions (2.1)

Depending on the exact chronological sequence of events during the development
of code, a“ member function” of a class sometimes gets defined in the class definition file,
without having been declared in the header file. At least two compiler errors arise out of
thisoversight. (i) A use of the function anywhere, especialy in the driver file, givesrise to
the “undeclared function” error; and (ii) the definition of the function in the class library
definition file causes an error message to the effect that the function is not a member of
the classin question. Introducing a prototype of the function into the class declaration in
the header file should fix both problems.

3.2. Missing Default Constructor (2.1)

A missing default constructor by itself is not a major problem except that its
members could go uninitialized. A potential, and rather insidious, error awaits the
programmer who forgets (or smply does not define) the default constructor, but defines
at least one other constructor. If no constructor has been defined, a default constructor is
automatically generated. However, according to the C++ reference manual, “ A default
constructor will be generated for aclass X only if no constructor has been declared for
class X ” [Ellis and Stroustrup, 90]. Thiswould become areal problem, and resultsina
compiler error message if an array of objects of the class type in question were declared
anywhere, because array components are constructed by generating calls to the default
constructor. Since the default constructor is called for plain object declarations (that is,
object declarations with no arguments), such declarations result in a compiler error, as
well. The way to fix this error would be to define a default constructor; even one with an
empty body would do.

3.3. Incomplete Forward References (2.1)
Consider the following scenario:
cl ass Node {
friend class St ack;
}
cl ass Stack {
I.\'bde * top;
}

The St ack class usesthe Node class, but for efficiency, the Node class needsto
grant friendship to the St ack class. Forgetting the keyword cl ass inthefri end
declaration causes an “undeclared identifier” error, and is a common problem.

3.4. Mismatched Signatures between M ember Declaration and Definition (2.2)

Thisis a particularly common error pattern. The problem arises, for example,
when the header file contains a constant member function (also known as an observer
function), with the const quadlifier, and the definition in the library definition file
mistakenly omits the qualifier. The effect isthat when the linker triesto resolve a
reference in the application program to the constant member function, it does not find the
definition! Thisisarather subtle error to find, since the error message does not come
from the compiler. The compiler matches the declaration in the header to the call in the

application program, but at the time of linking, the linker cannot find a definition that
matches the original signature! This kind of situation calls for a very watchful eye, and
once the source of the error islocalized, it can be fixed by changing the definition or the
declaration appropriately. Other variations of this kind of error include many other types
of mismatched signatures that cannot be distinguished just by an inspection of the call.

3.5. Function Declared in the Header, but not Defined Later (2.2)

Thisis a dightly more serious version of the error just discussed. If the preceding
error isaresult of a promise unintentionally broken, this one is a case of a promise smply
not kept! All callsto the declared function pass the compiler, but with no compiled
definition to link the calls to, the linker gives an error message.

A particularly egregious version of this error occurs when a constructor or a
destructor that was declared in the header file is not defined in the library definition file.
The error messages resulting from this kind of situation are particularly hard to understand
because the constructor and the destructor are generally not explicitly called. Also, the
problem would not arise if, for instance, the destructor, the default constructor, or the
copy constructor is simply not declared in the header in the first place, since in these cases,
the compiler automatically supplies them!

3.6. MutatorsInvoked in an Observer Context (2.2)

Methods that do not modify the object to which they are passed as messages are
called observers (const member functionsin C++), whereas those that do modify the
target object are called mutators (non-const member functions). Since non-const
member functions are intended to modify the target object, it is an error to call them on an
object that is expected to remain constant (e.g., one that has been passed to afunction by
const reference). Itisaso anerror to cal anon-const member function without an
argument withinaconst member function, since that would indicate a conflict of
purpose. Fortunately, both kinds of errors are caught by most compilers. The errors can
be avoided by avoiding such calls, which is always possible with a good design.

3.7. Variations of the “ Shared Structure Problem” (2.3)

When a class contains at least one pointer data member (even if it isintended for a
dynamically created array), potential exists for structure sharing. An object pointed at by
the pointer data member can become shared when the object is copied into another
(through a copy constructor) or is assigned to another (through the assignment operator).
Structure sharing happens if a shallow copy (that is a bit-wise or member-wise copy) is
made, which is what the compiler-supplied default implementations do for both the copy
constructor and the assignment operator.

Structure sharing in itself is not a problem if managed well, e.g., by keeping track
of the number of references in the shared structure itself. However, if not managed well,
when the lifetime of one of the objects sharing a common structure ends, a destructor is
automatically called by the compiler, and the dynamically created shared structure ends up
getting deallocated. The result, of course, is adangling reference in the other objects that
had been sharing the deallocated structure! An attempt to access the deallocated structure
through the dangling reference could raise an exception, which could lead to a program
crash.

There is generally a friction between approaches that attempt to minimize
generation of garbage and those that attempt to avoid dangling references. Since dangling
references are fatal (while garbage generation may be thought of as “sow poison’), a
smple solution to the above problem is to deliberately not define' the destructor, thereby
allowing memory to “leak”. From a pedagogical perspective, this approach has the merit
of deferring discussion of dynamic storage management to a later point inthe course. A
better solution isto include at least some rudimentary elements of dynamic storage
management. The solutions of deep copy semantics for or reference counting in the copy
constructor and assignment operator may be introduced as deemed appropriate [Pohl, 97].

This problem can take on a dightly different flavor in the context of inheritance.
At issue are the C++ conventions that the copy constructors and assignment operators of
derived classes do not automatically call their base class versions, although the base class
versions are automatically called for default constructors and destructors! Thus, all
derived classes of a class with a non-default copy constructor / assignment operator pair
should define their own versions of copy constructor and assignment operator. If the
derived class has no additional pointer data members, al that the implementations of the
derived class versions need to do is to invoke the base class versions of the functions. If
the derived class has additional pointer data members, the derived class implementations
should, in addition, also perform deep copying or reference counting.

3.8. Declaring a Pointer Does NOT Create an Object! (2.4)
Thisis arather commonly misunderstood idea about pointers when a student is
first exposed to pointers. While the misunderstanding is easy to correct, being aware of

how common it is helps an instructor watch out for this common error pattern. The
problem manifests when a student declares a pointer and soon starts dereferencing it!

3.9. Laziness can sometimes be good! (2.4)

L of coursg, if this “solution” is chosen, care must be also taken to not declare the
destructor (See Sections 3.4 and 3.5).

Lazy evauation of Boolean expressions, which is a standard feature in C++, can be
very helpful in avoiding certain kinds of memory reference errors. Walking off the end of
an array or alinked list can be avoided by exploiting lazy evaluation. Consider,

while ((i < ARRAYSIZE) && (A[i] !'= target)) i ++;
or, in the context of alinked list,
while ((p '= NULL) && (p->data != target)) p=p->link;

In both cases, memory reference problems can be avoided, but students need
understand the role of short-circuit evaluation in avoiding the problems. Without an
adequate understanding, the student might switch the order of the conjuncts as the
author’ s students sometimes did, which could cause runtime errors.

3.10. Error inthe Use of “ Debug Print Statements’ (2.5)

It isthe author’ s belief that as a “debugging aid,” reasoning about program logic is
much superior to symbolic debuggers. The author has used symbolic debuggers as a
teaching tool (e.g., to show the program stack during recursive calls, or even to watch
how values of different variables change as one steps through a program). However, it is
the author’ s (admittedly arguable) belief that debuggers distract students from a deeper
understanding of the program. It has been observed that if students are encouraged to
reason about their program (e.g., by directly smulating debugger tools, e.g., trace, watch,
step, etc.), they eventually detect the bug(s), and in the process, come away with a deeper
appreciation of the program logic.

Occasionally, they resort to using the so-called “debug print statements.” While
use of these print statements amounts to setting up watches, students need to plan their
placement carefully. For this purpose, the author frequently teaches studentsto use a
compile time DEBUG flag that can be used to turn the debug print statements on or off.

The most common error the author observed in this context, also documented in
[Spuler, 94], is forgetting to flush the print buffer? in the debug print statements. Insuch a
case, if the program were to crash, it may well go past the debug print statement without
actually sending the debug output into the output display (only because the buffer had not
been flushed)! In such a situation, the student would erroneously believe that the crash
happened before the debug print statement was reached!

3.11. The Need for Frequent Recompilation (2.5)

2This can be done using the endl manipulator, but some implementations of C++ flush
the output buffer on the use of an end of line character \ n.

The students would be best advised to recompile their programs frequently during
the process of fixing compiler errors, especialy after fixing important errors. Thisis
because oftentimes multiple error messages are generated by different interpretations by
the compiler of the same basic error. Therefore, fixing an error can suddenly get rid of
severa other error messages, saving time that would have been spent understanding all of
them. Thistechnique is particularly valuable if an error message turns out to be hard to
understand, since it could go away after one of the related, more obvious, errorsis fixed.
Occasionally, however, fixing an error message that might have caused the compiler to
abort further processing could result in several new error messages on recompilation. It
should be explained to the student that the new error messages are not caused by
recompilation, but by problems that are in the original code itself.

3.12. Problemswith the “ #include” Directive (2.6)

C++ supports nested inclusion through the “#i ncl ude” directive. However,
there are times when unintentionally the same file gets included multiple times. This can
happen, for instance, whenf i | el. hisincluded inf i | e2. h, and both of them are
includedinf i | e3. Inthisstuation, the contentsof fi | el. h are processed twicein
sequence, and could lead to duplicate definition errors! The standard “#i f ndef
technique” involves surrounding the normal contents of each header file with compiler
directives and addresses this issue as follows:

Infil el. h:

#i fndef FILE1_H
#define FILE1_H

#endi f

Here FI LE1_Hisaunique compiler constant used to keep track of whether the
contentsof fi | e1. h have yet been processed in the compiler environment. The first
time the inclusion is processed, the compiler constant FI LE1_H would not have been
known so far, so the contents do get processed. In doing so, the compiler defines
FI LE1_Hand thus, prevents any further inclusions of the same file.

3.13. Defining and Using Function Templates (2.6)

In its most common form, a function template specifies a generic type parameter
name that is used to define objects in its parameter list and / or body. It is aconceptual
error to instantiate the function template in the context of an object of atype for which
some of the operations used in the body of the template are undefined. Thiskind of error
is generally caught by the compiler.

Another error that can arise with templates relates to the organization of a project

into different files. A header file generally contains only function declarations, not
complete function definitions. In this context, we might think of a function declaration as
not resulting in machine code, whereas a function definition does. In thissense, a
templated function “definition” is really only a declaration, since actual machine code
cannot be generated until the template is actualy instantiated! Thus, avariety of errors
can result from not placing templates into header files and incorrectly placing them into
library definition files.

Finaly, students occasionally template the mai n function! Since there is no place
to instantiate such a template, when the files in the project are about to be linked and
loaded, an error results, indicating that the mai n function ismissing! The fix, of course,
is not to template the mai n function.

3.14. Creating the Right Kind of Project (2.6)

In most introductory courses, as long as GUIs or windows applications are not
being created, a console application is a smple and adequate choice for the type of project
to be created. Thisis achoice most C++ environments offer, and choosing any other kind
of project results in a more complex environment than the student isready for. This point
needs to be emphasized early on, or else the students would not be able to continue the
development of the project without understanding the creation of different resources and
many built-in class libraries.

4. CONCLUSION

We believe we have outlined some of the most frequent errors that plague students
in their early programming courses. Many good books discuss common syntax and logic
errors, but a systematic treatment of common errors and how to understand and prevent
them would be very valuable to students, and is likely to reduce the length of the lines at
the instructor’ s office.
ACKNOWLEDGEMENTS

The author appreciates the comments and suggestions from one of the anonymous
reviewers, and his colleagues Briana Morrison and Saun Shewanown.

REFERENCES

[Dasigi, 96] Dasigi, Venu: “C++ > C + OOP (A Personal View of Teaching Introductory
Programming using C/C++),” Journal of Small College Computing, pp. 42-150, 1996.

[Ellisand Stroustrup, 90] Ellis, Margaret, and Stroustrup, Bjarne, The Annotated C++
Reference Manual, Addison-Wesley, 1990.

[Main and Savitch, 97] Main, Michael, and Savitch, Walter: Data Structures and Other
Objects using C++, Addison-Wedley, 1997.

[Pohl, 97] Pohl, Ira, Object-Oriented Programming using C++, Addison-Wesley, 1997.

[Spuler, 99] Spuler, David: C++ and C Debugging, Testing, and Reliability - The
prevention, detection, and correction of program errors, Prentice-Hall, Sydney, 1994.

