
Gtk2-Perl: An Introduction

Gtk2-Perl: An Introduction

Or How I Learned to Stop Worrying and Make Things Pretty

Scott Paul Robertson
http://spr.mahonri5.net

spr@mahonri5.net

May 9, 2007

Gtk2-Perl: An Introduction

Background

What is Gtk2-Perl?

Gtk2-Perl is the set of Perl bindings for Gtk2, and related libraries1.
These allow you to code Gtk2 and Gnome applications in Perl.
Gtk2-Perl is fairly easy to get started using, but has a few hang
ups that can be difficult to discover, or sometimes the
documentation is just not there. The developers are aware of the
issue, and encourage users to provide documentation, reference
guides, or tutorials.

1Glade, Glib, etc

http://gkt2-perl.sourceforge.net

Gtk2-Perl: An Introduction

Background

Online Documentation

There are a few major online sources for Gtk2-Perl documentation:

◮ Gtk2-Perl Tutorial - The offical tutorial.

◮ Gtk2-Perl Study Guide - Another excellent tutorial/reference

◮ Introduction to GUI Programming with Gtk2-Perl - As it says,
it’s a good introduction to gui programming in general.

◮ Gtk2-Perl Pod Documentation - You might have these as man
pages as well, very helpful.

http://gtk2-perl.sourceforge.net/doc/gtk2-perl-tut/
http://forgeftp.novell.com/gtk2-perl-study/homepage/
http://gtk2-perl.sourceforge.net/doc/intro/
http://gtk2-perl.sourceforge.net/doc/pod/

Gtk2-Perl: An Introduction

Basic Application

A Simple Window

We’ll start with an example of a simple single button application.
First we have to initalize Gtk2:

#!/usr/bin/perl -w

use strict;

use Gtk2 ’-init’;

use readonly TRUE => 1;

use readonly FALSE => 0;

◮ The ’-init’ prepares the Gtk2 environment, otherwise we
would have to do it ourselves later.

◮ Defining the constants is very helpful for code readability later.

Gtk2-Perl: An Introduction

Basic Application

A Simple Window

Now we set up the window object and a button.
my $window = Gtk2::Window->new;

$window->set_title (’Testing a Button’);

$window->signal_connect (delete_event => sub { Gtk2->main_quit; TRUE});

my $button = Gtk2::Button->new (’_Press Me’);

$button->signal_connect(clicked => sub {print "Pressed!\n"; });

$window->add ($button);

$window->show_all;

Gtk2->main;

Gtk2-Perl: An Introduction

Basic Application

Explination

In this code we make two objects, a Window and Button. Both are
created in a similar method, with ->new. Every object has a set of
unique methods, and methods it has inherited. For example,
button’s ancestry is: GLib::Object → Gtk2::Object →
Gtk2::Widget → Gtk2::Container → Gtk2::Bin. So we use any
function found in these classes as well. signal_connect is from
the GLib::Object class, so everything should have it. Buttons also
have the signals: activate, pressed, released, enter, and leave. We
can connect signals to these events as well.

Gtk2-Perl: An Introduction

Signals and Events

Signals and Events

Gui programming is event driven. In other words, code is run based
on events caused by the user. Once you call Gtk2->main, your
code will only respond on events, which are connected with
signal_connect.

◮ signal_connect(signal_name => &function_to_call)

Connecting the signals can be tedious, but it is the only way. We
could have a button that implements all of the events from its
class:

my $button2 = Gtk2::Button->new (’Try Me’);

$button2->signal_connect(clicked => sub { print "clicked\n"; });

$button2->signal_connect(activate => sub { print "activated\n"; });

$button2->signal_connect(pressed => sub { print "presed\n"; });

$button2->signal_connect(released => sub { print "released\n"; });

$button2->signal_connect(enter => sub { print "entered\n"; });

$button2->signal_connect(leave => sub { print "left\n"; });

Gtk2-Perl: An Introduction

Boxing Widgets

Arranging Widgets: VBox and Hbox

A Window is a container that can hold only one item. Of course, if
you want multiple buttons or menubars and the like, you’ll need to
use a different container. There are three basic types of containers:
vboxes, hboxes, and tables.
Vboxes and Hboxes have the same interface, and provide packing

in either the vertical or horizontal direction, respectively. As an
example of hbox and vbox:

w w w
i i i
d d d
g g g
e e e
t t t

widget

widget

widget

widget

Gtk2-Perl: An Introduction

Boxing Widgets

Arranging Widgets: VBox and Hbox
There are a number of different methods for packing widgets.

◮ add - Adds the widget to the end of the box (right or bottom)

◮ pack_start - Adds the widget to the end of the box, with
options.

◮ pack_end - Adds the widget to the start of the box, with
options.

For example:
my $vbox1 = Gtk2::VBox->new;

$vbox1->add($button);

$vbox1->add($button2);

my $vbox2 = Gtk2::VBox->new;

$vbox2->pack_start_defaults($button3);

Widget, Expand to fill space, Fill all space it can, padding

$vbox2->pack_start($button4, FALSE, TRUE, 10);

my $hbox = Gtk2::HBox->new;

$hbox->pack_end_defaults($button5);

$hbox->pack_end($button6, TRUE, TRUE, 5);

Homogeneous, spacing

my $bighbox = Gtk2::HBox->new (FALSE, 20);

Gtk2-Perl: An Introduction

Boxing Widgets

Arranging Widgets: Tables

Tables are a very flexible and powerful way to do complex packing
easily. They layout with columns and rows, and widgets can
expand beyond one column and row. Tables are very useful for
Text Entry boxes, aligned check and radio buttons, and other
things without builtin labels.

Rows, Columns, homogeneous

my $table = Gtk2::Table->new (3, 4, TRUE);

$table->set_col_spacings(5);

Widget, left, right, top, bottom

$table->attach_defaults($label1, 0,1, 0,1);

$table->attach_defaults($entry1, 1,3, 0,1);

$table->attach_defaults($label2, 0,1, 1,2);

$table->attach_defaults($entry2, 1,2, 1,2);

$table->attach_defaults($button, 3,4, 0,3);

$table->attach_defaults($button2, 0,1, 2,3);

Gtk2-Perl: An Introduction

Dialogs

Dialog Boxes

Not many gui programs just have one window. You’ll see programs
pop up errors in a window, ask for additional information, among
other things. You’ll at some point want this functionality for
yourself. Gtk2-Perl offers two methods for doing this, Gtk2::Dialog,
and its simplier child Gtk2::MessageDialog.

Gtk2-Perl: An Introduction

Dialogs

Dialog Boxes: MessageDialog

MessageDialog provides an easy interface for making error
messages and other simple dialogs. More complex windows should
use Dialog instead, as the flexibility is usually needed there. A
Message Dialog is created by:

my $dialog = Gtk2::MessageDialog->new ($window, ’destroy-with-parent’,

’question’, ’yes-no’,

’Really Do It?’);

$response = $dialog->run;

print "$response\n";

$dialog->destroy;

MessageDialog needs to know who its parent window is, after that
are three values filled by Gtk2::DialogFlags, Gtk2::MessageType,
and Gtk2::ButtonsType enumerations. Now is a good time to
point out that Gtk2-Perl often uses enumerations for value passing.
The enumeration values are in the pod documentation, and you
always specify them as strings. For example, MessageDialog offers
a number of MessageType’s: info, warning, question, or error.

Gtk2-Perl: An Introduction

Dialogs

Preferences Dialog

Dialog Boxes: Dialog

Dialog boxes allow for much more flexibility, and becaue of this we
will use this to look into making a simple preferences dialog. We
want to be able to set variables that are various types through a
couple common methods. We’ll begin by going over the
constructor.

my $dialog = Gtk2::Dialog->new (’Title’, $window,

’destroy-with-parent’, ’gtk-cancel’ => ’cancel’,

’gtk-save’ => ’accept’);

Dialog lets you specify a title of the window, asks for the parent
window, and for Gtk2::DialogFlags. After that it accepts a list of
of ’button_text’ => ’response-id’ pairs. Response-ids are
found in the Gtk2::ResponseType enum. This allows you to have
many response options. You can combine DialogFlags by doing
[qw/modal destroy-with-parent/] for the argument.

Gtk2-Perl: An Introduction

Dialogs

Preferences Dialog

Dialog Boxes: Dialog

Dialog boxes come with a built in vbox that is already holding a
box with the buttons you’ve specified in the constructor. You’ll
want to configure other containers and have the outer-most added
to the default vbox.

$dialog->vbox->pack_start ($main_hbox,FALSE,FALSE,0);

We’ll be using a two column approach to a preferences dialog, so
We’ll have two vboxes held by a single hbox.

$main_hbox->pack_start ($left_vbox,TRUE,FALSE,0);

$main_hbox->pack_start (Gtk2::VSeperator->new,FALSE,FALSE,0);

$main_hbox->pack_start ($right_vbox,TRUE,FALSE,0);

Gtk2-Perl: An Introduction

Dialogs

Preferences Dialog

Entries
Entries are the standard text entry field. Best used when you want
a user to input a string, whatever that string may be. Entries
usually have a label widget, and we can connect the label’s
mnemonic with the entry. Some useful functions of Gtk2::Entry:

◮ set_text (’text here’) - Sets the text in the box

◮ get_text - Returns the string in the box

A few useful Gtk2::Label functions:

◮ new_with_mnemonic (’_string’)

◮ set_mnemonic_widget ($widget) - sets the mnemonic to
point to the widget

◮ set_alignment (double x, double y) - Changes how the
text is aligned, 1.0 being right or bottom, 0.5 being middle,
0.0 being left or top.

Gtk2-Perl: An Introduction

Dialogs

Preferences Dialog

Entries

For our use we’ll have just two entries, a directory and a name
entry. These will be packed in with a table.

my $dir_entry = Gtk2::Entry->new;

my $dir_entry_label = Gtk2::Label->new_with_mnemonic ("_Directory");

$dir_entry_label->set_alignment (1,0.5);

$dir_entry_label->set_mnemonic_widget ($dir_entry);

$dir_entry->set_text ("/");

my $name_entry = Gtk2::Entry->new;

my $name_entry_label = Gtk2::Label->new_with_mnemonic ("_Name");

$name_entry_label->set_alignment (1,0.5);

$name_entry_label->set_mnemonic_widget ($name_entry);

$name_entry->set_text ("Name Goes Here");

Gtk2-Perl: An Introduction

Dialogs

Preferences Dialog

Radio Buttons

Radio buttons can be useful in some situations, and they look cool.
We’ll take three and pack them into a table. Take note with the
signal handling for radio buttons, it can be a bit tricky. Also you
have to keep them grouped as you construct them.

my $radio1 = Gtk2::RadioButton->new (undef,’First’);

my @r_group = $radio1->get_group;

my $radio2 = Gtk2::RadioButton->new (@r_group,’Second’);

@r_group = $radio1->get_group;

my $radio3 = Gtk2::RadioButton->new (@r_group,’Third’);

@r_group = $radio1->get_group;

$radio1->signal_connect (clicked => sub {

($radio1->get_active) and ($radios = 1); });

$radio2->signal_connect (clicked => sub {

($radio2->get_active) and ($radios = 2); });

$radio3->signal_connect (clicked => sub {

($radio3->get_active) and ($radios = 3); });

Initial Values:

if ($radios == 1) { $radio1->set_active (TRUE); }

elsif ($radios == 2) { $radio2->set_active (TRUE); }

else { $radio3->set_active (TRUE); }

Gtk2-Perl: An Introduction

Dialogs

Preferences Dialog

Check Boxes
Check boxes are very simple, with this we’ll show off a cool
feature, the sensitivity. If a widget is sensitive, you can interact
with it (ie: send events to it). This check box will enable/disable
the radio buttons.

my $checkbox = Gtk2::CheckButton->new ("_Radio Buttons");

$checkbox->signal_connect (clicked => sub {

if ($checkbox->get_active) {

$checked = 1;

$radio1->set_sensitive (TRUE);

$radio2->set_sensitive (TRUE);

$radio3->set_sensitive (TRUE);

} else {

$checked = 0;

$radio1->set_sensitive (FALSE);

$radio2->set_sensitive (FALSE);

$radio3->set_sensitive (FALSE);

} });

if ($checked) { $checkbox->set_active (TRUE); }

else { $checkbox->set_active (FALSE); }

Sensitivity on the Radios

if (!$checked) {

$radio1->set_sensitive (FALSE);

$radio2->set_sensitive (FALSE);

$radio3->set_sensitive (FALSE);

}

Gtk2-Perl: An Introduction

Dialogs

Preferences Dialog

Running It

After filling the various containers with our widgets, we call the
command $dialog->show_all to ensure all the widgets will
appear. We can then run the dialog in a modal fashion (blocking)
by $dialog->run, or we can let it run and capture the ’response’
signal from the dialog and discover the response via $_[1];

$dialog->signal_connect (response => sub {$_[0]->destroy});

$dialog->show_all;

Gtk2-Perl: An Introduction

File Dialog

File Dialogs

There are two standard file dialogs in Gtk2, Gtk2::FileSelection
(this is what xmms uses), and Gtk2::FileChooser. FileChooser is
the now standard gnome dialog that looks a lot nicer than the old
FileSelection. The Gtk2-Perl Study Guide has a good example of
it, and I’ve implemented in in the example preferences dialog, in
the choose folder mode.
Avoid using FileSelection at all costs, it is ugly.

Gtk2-Perl: An Introduction

Progress Bar

Progress Bars

If you’re writting a gui that has to execute and number of jobs in
the background, and you care about your users2, you might want
to let them know how things are going. The Gtk2::ProgressBar
class provides this functionality. It is fairly easy to use, but
ensuring a good user experience3 can be a bit tricky.

2I know, you don’t, but lets pretend for now
3I know, I know

Gtk2-Perl: An Introduction

Progress Bar

Progress Bars

After creating the progress bar widget, we’ll have to set the
orientation, and then work on a way to increment the bar in a
proper fashion. Also note that the function set_text can update
the text shown across the progress bar.

my $progressbar = Gtk2::ProgressBar->new;

$progressbar->set_orientation (’left-to-right’);

We then start the dialog in a non-modal fashion (as in the previous
example), and begin the loop that will go through the jobs to be
done.

my $total_ops = 10;

my $increment = 1 / $total_ops;

my $fraction = $progressbar->get_fraction;

for (my $x=0; $x < $total_ops; $x++) {

Gtk2-Perl: An Introduction

Progress Bar

Progress Bars

Now for the for loop:
if (!$run) {

$run_dialog->destroy;

return;

}

if ($fraction <= 1.0) {

$progressbar->set_fraction($fraction);

$fraction += $increment;

}

while (Gtk2->events_pending) {

Gtk2->main_iteration;

}

Gtk2::Gdk->flush;

Gtk2-Perl: An Introduction

Progress Bar

Progress Bars

That last while loop is very important. It tells the gui to update
and refresh. Without this your progress bar will not work correctly.
Any time you have a part of your gui that doesn’t draw properly,
throw one of these in.

while (Gtk2->events_pending) {

Gtk2->main_iteration;

}

Gtk2::Gdk->flush;

Now we finish the for loop, using a sleep command to simulate the
job occurring.

sleep 2;

}

Gtk2-Perl: An Introduction

Progress Bar

Progress Bars

You’ll notice that if you have a task that blocks, that until your
code reaches the refreshing while loop, the gui is completely
unresponsive. This is pretty crappy. My solution to this problem is
to use the default perl threading method, ithreads. ithreads are
very well documented. To apply it to this situation, you simply
send a message to the other thread and put the thread with the
gui into a loop with the refreshing while loop, waiting to get a
message back that it’s done with the task. You can think of it as
having a thread for the gui, and a worker thread that will do one
task at a time.
Be aware that Gtk2-Perl is not thread safe, so you need to start
your threads before the use Gtk2 statement.

Gtk2-Perl: An Introduction

Other Tips

Pod Documentation

The provided documentation for Gtk2-Perl is a treasure trove of
information, spend a while with a few of the well documented
items (Gtk2::Dialog, Gtk2::SimpleList) to get a feel for the format
and layout, and then with a bit of trial and error you should be able
to take advantage of the classes that only have listings of methods.

Gtk2-Perl: An Introduction

Other Tips

Working With Lists

TreeView is famous for producing good results, but being a pain to
code for. Gtk2-Perl has a special class, Gtk2::SimpleList, that
allows you to create a TreeView without all the pain and sufferring.
It’s well documented, and once you’ve created the widget, you can
use TreeView functions to have a fine tuned TreeView, without all
the pain.

Gtk2-Perl: An Introduction

Other Tips

GLib Classes

If you happen to use GLib in your code, there is a hang up. The
GLib classes expect special values for TRUE and FALSE. These
still work as expected, but if you don’t use the GLib provided
definitions, things will break. So simply instead of defining the
readonly’s do this:

use Glib qw/TRUE FALSE/;

Gtk2-Perl: An Introduction

Resources

Online Resources

◮ Gtk2-Perl Tutorial -
http://gkt2-perl.sf.net/doc/gtk2-perl-tut/

◮ Gtk2-Perl Study Guide -
http://forgeftp.novell.com/gtk2-perl-study/homepage/

◮ Gtk2-Perl Pod Documentation -
http://gtk2-perl.sourceforge.net/doc/pod/

◮ My Tutorial for Gtk2-Perl -
http://spr.mahonri5.net/wordpress/gtk2-perl-tutorial

This covers a few things not mentioned tonight: menubars,
toolbars, statusbars, and greater detail on ithreads.

http://gtk2-perl.sourceforge.net/doc/gtk2-perl-tut/
http://forgeftp.novell.com/gtk2-perl-study/homepage/
http://gtk2-perl.sourceforge.net/doc/pod/
http://spr.mahonri5.net/wordpress/gtk2-perl-tutorial

Gtk2-Perl: An Introduction

Resources

Online Resources

Perl ithreads references

◮ man (3perl) threads -
http://perldoc.perl.org/threads.html

◮ Perl Thread Tutorial (man perlthrtut) -
http://perldoc.perl.org/perlthrtut.html

◮

Things you need to know before programming Perl ithreads (perl monks)
- http://www.perlmonks.org/?node=288022

http://perldoc.perl.org/threads.html
http://perldoc.perl.org/perlthrtut.html
http://www.perlmonks.org/?node=288022

Gtk2-Perl: An Introduction

Resources

Where to find this

This document can be found online at
http://spr.mahonri5.net/wordpress/2006/03/08/gtk2-perl-nupm-presentation/

along with the example code.
If you’d like to see a fully working Gtk2-Perl application that takes
advantage of all the things we’ve mentioned in this presentation,
please have a look at goggify.pl, found at
http://mahonri5.net/svn/public/oggify/goggify.pl.
Goggify is a program designed to take a directory tree of flac audio
files and encode them into a matching directory tree of files that
are more space friendly.

