
QT Presentation By Gabe Rudy

Fall 2005

Cross-platform C++
development using Qt®

QT Presentation

• About Trolltech®/QT

• Qt Features and Benefits

• Examples and Code

• Demos and more Code!

• Questions

Overview

QT Presentation By Gabe Rudy

About Trolltech/QT

QT Presentation

• Founded in 1994
• Offices:

– Oslo, Norway (HQ)
– Santa Clara, California
– Brisbane, Australia

• Ownership:
– Majority by employees
– 24% VC

• Main products: Qt and Qtopia®

Trolltech

Eirik Chambe-Eng Haavard Nord

QT Presentation

Products

• Qt: a complete C++ application development
framework

• Qtopia: a comprehensive application platform
and user interface for Linux-based consumer
electronics

• QSA: Qt Script for Applications
• Teambuilder: distributed compilation solution

Linux®/Unix

QT Presentation

Other Products First

• Any Linux based PDQ will
be running QTopia, which is
based on QT-embedded.

• If you know QT, you could
easily write for this
platform.

QT Presentation

Qt in a nutshell

• Qt is a complete C++ application
development framework, including
– A comprehensive C++ class library

– RAD GUI development tool (Qt Designer)

– Internationalization tool (Qt Linguist)

– Help browser (Qt Assistant)

– Source code and comprehensive documentation

QT Presentation

Qt is comprehensive
• Qt supplies 80-90% of commonly needed

functionality for rich client developers
– 400+ fully documented classes
– Core libs: GUI, Utility, Events, File, Print, Network,

Plugins, Threads, Date and Time, Image processing,
Styles, Standard dialogs

– Modules: Canvas, Iconview, Network, OpenGL®, SQL,
Table, Workspace, XML

– Tools: Designer, Assistant, Linguist
– Extensions: ActiveQt, Motif migration, MFC migration

• Qt Solutions for platform-specific customer requests
• Easy to add/extend/customize

QT Presentation

Qt is cross-platform

• The Qt API and tools are consistent across all
supported platforms
– Qt runs on mobile phones to Cray

supercomputers

• Consequence for users and customers
– Freedom of choice in terms of development and

deployment platform

– Protection against changing platform fashions

QT Presentation

A few platforms it runs on:

• Windows® 95 through Server 2003

• Mac OS® X

• Linux and embedded Linux

• AIX, BSD/OS, FreeBSD, HP-UX, IRIX,
NetBSD, OpenBSD, Solaris, Tru64 UNIX

• And more

QT Presentation

Qt is native

• Qt builds on the native graphics layer

• Qt applications run at compiled speed

QT Presentation

Native look on Windows

QT Presentation

Native look on Linux

QT Presentation

Native look on Mac OS X

QT Presentation

Qt is open source, but…

QT Presentation

QT is also Commercial

• QT requires a commercial license if you plan
to sell your product written in QT.

• Per developer licensing

• License cost based on edition and number of
platforms

• Windows does not have GPL version of QT

• NO runtime fees/roalties etc.

QT Presentation

Qt is rock solid

• Qt is used as the basis of the Linux KDE (K
Desktop Environment)
– Millions of lines of code, strong reliability requirements,

industry strength stability
• Widely used by Linux community

– thousands of developers
– millions of end-users

• Used commercially in a wide variety of demanding
applications
– Medical devices
– Air traffic guidance

QT Presentation

Qt customers

• Adobe, Agilent, ARM, Boeing, Bosch, Cadence, Canon,
CEA Technologies, ChevronTexaco, DaimlerChrysler,
Deutsche Telekom, Earth Decision Sciences, ESA,
Fraunhofer, HP, IBM, Intel, i-penta JD Edwards, Lockheed
Martin, LogicaCMG, Mentor Graphics, NASA, NEC, NTT,
PGS, Pioneer, Rohde & Schwarz, Scania, Schlumberger,
Sharp, Shell, Siemens, Sony, STN-Atlas, Stryker Leibinger,
Synopsys, Thales...

• Qt is used for a wide variety of applications: mass-market
and custom software, internal apps, research, modeling,
visualization, etc..

QT Presentation

Sample application: Abobe
Photoshop Album

QT Presentation By Gabe Rudy

Qt Features and Benefits

QT Presentation

Qt Features

• Unique features in Qt
– Cross-platform, consistent, compiled API

– Signals and slots

• Class library overview

• Qt tools overview

• Documentation

• Third-party integration

QT Presentation

Cross-platform, consistent API

• Use the standard native tools to build Qt apps (IDE,
debugger etc.)

• Qt provides a platform-independent encapsulation of the
local window system and operating system

• The Qt API is identical on every platform, applications are
compiled to native executables

• Result: Write once, compile everywhere

MS Windows

Qt/Windows lib

Application

Unix or Linux

Qt/X11 lib

Application

MacOS

Qt/Mac lib

Application

QT Presentation

Signals & Slots

• Unique inter-object communication
mechanism, provides
– Type-safe callback between objects

– Facilitates loose coupling / encapsulation
• Sender and receiver does not ”know about” each other

– 1-to-many, many-to-1 communication between
objects

• Fully Object-oriented

QT Presentation

Class Library Overview

• Full set of GUI classes
– Widget set and GUI toolkit

• Operating system encapsulation classes
– OO, C++ class interface to C system calls

• SQL database access classes
– Data storing and retrieval

• Utility classes
– Commonly useful classes

• Integration & Migration classes
– Using Qt with other libraries and legacy code

QT Presentation

OS encapsulation classes

• File & directory handling

• Date & time

• Registry / preferences

• Networking
– URL, socket, TCP, DNS, FTP, HTTP

• Process handling
– exec, terminate, kill, stdin/stdout/stderr I/O

• Threading
– start, terminate, semaphore, mutex, wait

• Dynamic library loading

QT Presentation

• Store, retrieve, query, traverse & modify DB data
• Database-independent API

– Oracle, Sybase/MS SQL Server, MySQL, PostgreSQL, DB/2,
Interbase, ODBC

• DB-aware widgets
– Editable forms and tableviews

Qt library

SQL Database classes

DB-vendor’s
driver library

Application

SQL
Database

OS

QT Presentation

Utility classes

• String and regular expressions
– Unicode

• Text and binary I/O
– codecs

• Collections
– Optional alternatives to STL collections

• XML I/O
– Parser with SAX2 interface
– DOM level 2 implementation

QT Presentation

Integration & Migration classes

• OpenGL
– 3D graphics rendering in a Qt widget

• ActiveX
– Host ActiveX controls in a Qt app

– Use Qt to create ActiveX controls

• Motif
– co-exist with legacy Motif code; stepwise migration

• Netscape Plugins
– Create Netscape/Mozilla/Opera LiveConnect plugins with Qt

QT Presentation

Development Tools Overview

• Qt Designer
– Visual GUI builder

• Qt Linguist
– Language translators’ tool

• Qt Assistant
– Help browser

• qmake
– Makefile generator, eases cross-platform builds

QT Presentation

Qt Designer

• WYSIWYG, drag & drop GUI builder

• Supports the Qt auto-layout system

• Designs stored in open, documented XML format

• Does not interfere with user’s source code

MyDialog.xml

MyDialog.cpp

MyDialogBase.cpp

QT Presentation

Documentation

• Reference Manual
– HTML
– generated from the source code
– Fully cross-referenced
– Browsable from Qt Assistant
– or normal web browser: doc.trolltech.com

• Tutorials
• Examples
• Qt programming books

QT Presentation By Gabe Rudy

Examples and Code
The fun stuff.

QT Presentation

Hello World(ish)

#include <qapplication.h>
#include <qlabel.h>

int main(int argc, char* argv[]) {
QApplication myapp(argc, argv);

QLabel* mylabel = new QLabel("Hello MSU“,0);
mylabel->resize(80,30);

myapp.setMainWidget(mylabel);
mylabel->show();
return myapp.exec();

}

QT Presentation

Signals and Slots (in-depth)

QT Presentation

Signals and Slots – example

QT Presentation

Defining Signals and Slots

• New C++ Syntax for defining Signals/Slots
class myClass : public QObject {
Q_OBJECT //required macro, no semicolon
…
signals:

void somethingHappened();
…
public slots:

void slotDoSomething();
…
private slots:

void slotDoSomethingInternal();
…
};

QT Presentation

Gory Details

• Signals: emit events
– declare as signals, otherwise normal member functions
– You don't implement them. Rather, you send them with the keyword

emit
– E.g. emit sliderChanged(5)

• Slots: receive and handle events
– Normal member functions declared as slots

• Connect: must connect signals to slots
– QObject::connect(mymenu, SIGNAL(activated(int)), myobject,

SLOT(slotDoMenuFunction(int)));

• moc: meta object compiler (preprocessor) converts these new
keywords to real C++

QT Presentation

Hello World Proper

int main(int argc, char* argv[]) {
QApplication myApp(argc, argv);
QWidget* myWidget = new QWidget();
myWidget->setGeometry(400, 300, 120, 90);

QLabel *myLabel = new QLabel("Hello MSU!",myWidget);
myLabel->setGeometry(10, 10, 80, 30);

QPushButton* myQuitButton = new QPushButton("Quit", myWidget);
myQuitButton->setGeometry(10, 50, 100, 30);
QObject::connect(myQuitButton, SIGNAL(clicked()), & myApp,

SLOT(quit());

myapp.setMainWidget(myWidget);
myWidget->show();
return myApp.exec();

}

QT Presentation

Hello with QT Designer

• Create a widget/dialog/wizard etc in Designer
• Use the code generated at compile time in the

program.
#include "helloui.h" //Generated at compile time

int main(int argc, char* argv[]) {

QApplication myApp(argc, argv);

HelloUI* hello = new HelloUI(0);

myApp.setMainWidget(hello);

hello->show();

return myApp.exec();

}

QT Presentation

Look at Designer .ui and Demo

• Designer generates clean xml code

• Demo shows off QT well.

QT Presentation

Thank you!

Additional information resources:

• http://www.trolltech.com/
• http://kde.org
• Gabe

Questions?

