
Qt 4.0 Whitepaper

Trolltech
www.trolltech.com

http://www.trolltech.com/

Abstract

This whitepaper describes the Qt C++ framework. Qt supports the development of cross-

platform GUI applications with its “write once, compile anywhere” approach. Using a

single source tree and a simple recompilation, applications can be written for Windows 98

to XP, Mac OS X, Linux, Solaris, HP-UX, and many other versions of Unix with X11. Qt

applications can also be compiled to run on embedded Linux platforms. Qt introduces a

unique inter-object communication mechanism called “signals and slots.” Qt has excellent

cross-platform support for 2D and 3D graphics, internationalization, SQL, XML, as well

as providing platform-specific extensions for specialized applications. Qt applications can

be built visually using Qt Designer, a flexible user interface builder with support for IDE

integration.

Contents

1. Introduction 3

1.1. Executive Summary . 3

2. Widgets 5

2.1. Built-in Widgets . 5

2.2. Custom Widgets . 7

3. Signals and Slots 10

3.1. A Signals and Slots Example . 11

3.2. Meta-Object Compiler . 12

4. GUI Applications 13

4.1. Main Window Classes . 14

4.1.1. The Main Window . 14

4.1.2. Menus . 14

4.1.3. Toolbars . 15

4.1.4. Actions . 15

4.1.5. Dock Windows . 15

4.1.6. Dialogs . 16

4.1.7. Interactive Help . 17

4.1.8. Multiple Document Interface . 18

4.2. Settings . 18

4.3. Multithreading . 19

5. Qt Designer 20

5.1. Working with Qt Designer . 20

5.2. Qt Assistant . 20

5.3. GUI Application Example . 22

5.4. Extending Qt Designer . 25

6. 2D and 3D Graphics 26

6.1. Painting . 26

6.2. Images . 27

6.3. Paint Devices . 27

6.4. 3D Graphics . 28

7. Item Views 29

7.1. Standard Item Views . 29

7.2. Qt’s Model/View Framework . 30

8. Text Handling 31

8.1. Rich Text Editing . 31

8.2. Rich Text Processing . 32

8.3. Custom Text Layouts . 32

9. Databases 33

9.1. Executing SQL Commands . 33

9.2. SQL Models . 34

10. Internationalization 36

10.1. Text Entry and Rendering . 36

10.2. Translating Applications . 37

10.3. Qt Linguist . 38

11. Layouts 39

11.1. Built-in Layout Managers . 39

11.2. Nested Layouts . 40

12. Styles and Themes 42

12.1. Built-in Styles . 42

12.2. Custom Styles . 43

13. Events 44

13.1. Event Creation . 44

13.2. Event Delivery . 44

14. Input/Output and Networking 45

14.1. Reading and Writing Files . 45

14.2. XML . 46

14.3. Inter-Process Communication . 46

14.4. Networking . 47

15. Collection Classes 49

15.1. Containers . 49

15.2. Implicit Sharing . 49

16. Plugins and Dynamic Libraries 51

16.1. Plugins . 51

16.2. Dynamic Libraries . 51

17. Building Qt Applications 52

17.1. Qt’s Build System . 52

17.2. Qt’s Resource System . 53

18. Qt’s Architecture 54

18.1. X11 . 54

18.2. Microsoft Windows . 55

18.3. Mac OS X . 55

19. Platform Specific Extensions and Qt Solutions 56

19.1. ActiveX Interoperability . 56

19.2. Qt Solutions . 57

20. The Qt Development Community 58

Qt 4.0 Whitepaper © 2005 Trolltech

1. Introduction

Qt is the de facto standard C++ framework for high performance cross-platform

software development. In addition to an extensive C++ class library, Qt includes

tools to make writing applications fast and straightforward. Qt’s cross-platform

capabilities and internationalization support ensure that Qt applications reach

the widest possible market.

The Qt C++ framework has been at the heart of commercial applications since 1995. Qt

is used by companies and organizations as diverse as Adobe®, Boeing®, IBM®, Motorola®,

NASA, Skype®, and by numerous smaller companies and organizations. Qt 4 is designed

to be easier to use than previous versions of Qt, while adding more powerful functionality.

Qt’s classes are fully featured and provide consistent interfaces to assist learning, reduce

developer workload, and increase programmer productivity. Qt is, and always has been,

fully object-oriented.

This whitepaper gives an overview of Qt’s tools and functionality. Each section begins

with a non-technical introduction before providing a more detailed description of relevant

features. Links to online resources are also given for each subject area.

To evaluate Qt for 30 days, visit http://www.trolltech.com/.

1.1. Executive Summary

Qt includes a rich set of widgets (“controls” in Windows terminology) that provide standard

GUI functionality (page 5). Qt introduces an innovative alternative for inter-object com-

munication, called “signals and slots” (page 10), that replaces the old and unsafe callback

technique used in many legacy frameworks. Qt also provides a conventional event model

(page 44) for handling mouse clicks, key presses, and other user input. Qt’s cross-platform

GUI applications (page 13) can support all the user interface functionality required by

modern applications, such as menus, context menus, drag and drop, and dockable toolbars.

Qt also includes Qt Designer (page 20), a tool for graphically designing user interfaces.

Qt Designer supports Qt’s powerful layout features (page 39) in addition to absolute po-

sitioning. Qt Designer can be used purely for GUI design, or to create entire applications

with its support for integration with popular integrated development environments (IDEs).

Qt has excellent support for 2D and 3D graphics (page 26). Qt is the de facto standard

GUI framework for platform-independent OpenGL® programming. Qt 4’s painting system

offers high quality rendering across all supported platforms.

Qt makes it possible to create platform-independent database applications using stan-

dard databases (page 33). Qt includes native drivers for Oracle®, Microsoft® SQL Server,

Sybase® Adaptive Server, IBM DB2®, PostgreSQL™, MySQL®, Borland® Interbase,

SQLite, and ODBC-compliant databases. Qt includes database-specific widgets, and any

built-in or custom widget can be made data-aware.

Qt programs have native look and feel on all supported platforms using Qt’s styles and

themes support (page 42). From a single source tree, recompilation is all that is required

to produce applications for Windows® 98 to XP®, Mac OS X®, Linux®, Solaris™, HP-UX™,

and many other versions of Unix® with X11™. Qt applications can also be compiled to run

3

http://www.trolltech.com/

Qt 4.0 Whitepaper © 2005 Trolltech

on Qtopia. Qt’s qmake

http://www.trolltech.com/company/customers
http://partners.trolltech.com/

Qt 4.0 Whitepaper © 2005 Trolltech

2. Widgets

Qt provides a rich set of standard widgets that can be used to create graphi-

cal user interfaces for applications. Qt’s widgets are flexible and can easily be

subclassed to suit specialized requirements.

Widgets are visual elements that are combined to create user interfaces. Buttons, menus,

scroll bars, message boxes, and application windows are all examples of widgets. Qt’s wid-

gets are not arbitrarily divided between “controls” and “containers”; all widgets can be used

both as controls and as containers. Custom widgets can easily be created by subclassing

existing Qt widgets, or created from scratch if necessary.

Standard widgets are provided by the QWidget class and its subclasses, and custom wid-

gets can be created by subclassing them and reimplementing virtual functions.

A widget may contain any number of child widgets. Child widgets are shown within the

parent widget’s area. A widget with no parent is a top-level widget (a “window”), and

usually has its own entry in the desktop environment’s task bar. Qt imposes no arbitrary

limitations on widgets. Any widget can be a top-level widget; any widget can be a child

of any other widget. The position of child widgets within the parent’s area can be set

automatically using layout managers (page 39), or manually if preferred. When a parent

widget is disabled, hidden, or deleted, the same action is recursively applied to all its child

widgets.

Labels, message boxes, tooltips, and other textual widgets are not confined to using a single

color, font, and language. Qt’s text-rendering widgets can display multi-language rich text

using a subset of HTML (see Text Entry and Rendering on page 36).

2.1. Built-in Widgets

The screenshots on the following page present a selection of Qt widgets used in various

user interface components. The widgets were arranged using Qt Designer and rendered

using the Plastique style, demonstrating Qt 4’s standard look and feel on Linux.

The widgets shown include standard input widgets like QLineEdit for one-line text en-

try, QCheckBox for enabling and disabling simple independent settings, QSpinBox and

QSlider for specifying quantities, QRadioButton for enabling and disabling exclusive

settings, and QComboBox, which opens to present a menu of choices when clicked. Click-

able buttons are provided by QPushButton.

Container widgets such as QTabWidget and QGroupBox are also shown. These widgets

are managed specially in Qt Designer to allow designers to rapidly create new user in-

terfaces while helping to keep them maintainable. More complex widgets such as QScrol-

lArea, as shown in the “Create Poster” dialog (Figure 1), are often used more by developers

than by user interface designers because they are often used to display specialized or dy-

namic content.

Qt provides many other widgets than those listed here. Many of the available widgets are

shown with links to their class documentation in Qt’s online Widget Gallery.

5

http://doc.trolltech.com/4.0/gallery.html

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 1: Dialogs created using a variety of different widgets.

Figure 2: Qt provides a wide variety of standard widgets.

6

Qt 4.0 Whitepaper © 2005 Trolltech

User interfaces can easily be written by hand. The following code could be used to create

the options group box in the “Find Text” dialog (Figure 1):

QGroupBox *optionsGroupBox = new QGroupBox(tr("Options"));
QCheckBox *caseCheckBox = new QCheckBox(tr("C&ase sensitive"));
QCheckBox *directCheckBox = new QCheckBox(tr("Search fo&rwards"));
QCheckBox *wordsCheckBox = new QCheckBox(tr("Whole &words"));
QCheckBox *startCheckBox = new QCheckBox(tr("From &start of text"));

QGridLayout *optionsLayout = new QGridLayout;
optionsLayout->addWidget(caseCheckBox, 0, 0);
optionsLayout->addWidget(wordsCheckBox, 0, 1);
optionsLayout->addWidget(directCheckBox, 1, 0);
optionsLayout->addWidget(startCheckBox, 1, 1);
optionsGroupBox->setLayout(optionsLayout);

2.2. Custom Widgets

Developers can create their own widgets and dialogs by subclassing QWidget or one of

its subclasses. To illustrate subclassing, we present the complete code for an analog clock

widget from the Qt 4 examples directory that displays the current time and updates itself

automatically.

The AnalogClock widget is defined in the analogclock.h file:

#include <QWidget>

class AnalogClock : public QWidget
{

Q_OBJECT

public:
AnalogClock(QWidget *parent = 0);

protected:
void paintEvent(QPaintEvent *event);

};

The widget inherits the generic QWidget class and has a constructor typical of widget

classes, with an optional parent parameter. The paintEvent() function is inherited from

QWidget and is called whenever the widget needs to be updated.

The AnalogClock class is implemented in the analogclock.cpp file:

#include <QtGui>
#include "analogclock.h"

AnalogClock::AnalogClock(QWidget *parent)
: QWidget(parent)

{
QTimer *timer = new QTimer(this);
connect(timer, SIGNAL(timeout()), this, SLOT(update()));
timer->start(1000);
setWindowTitle(tr("Analog Clock"));
resize(200, 200);

}

The constructor sets up a timer, gives the window a title, and ensures that it has a reason-

able default size. The timer is configured to emit a signal every 1000 milliseconds. Before

it is started, it is connected to the widget’s update() function using Qt’s signals and slots

mechanism (page 10) to ensure that the clock is kept up to date.

7

Qt 4.0 Whitepaper © 2005 Trolltech

The paintEvent() function simply redraws the entire widget each time it is called. It uses

Qt’s painting system (page 26) to render a clock face with hour and minute hands:

void AnalogClock::paintEvent(QPaintEvent *)
{

static const QPoint hourHand[3] = {
QPoint(7, 8),
QPoint(-7, 8),
QPoint(0, -40)

};
static const QPoint minuteHand[3] = {

QPoint(7, 8),
QPoint(-7, 8),
QPoint(0, -70)

};

QColor hourColor(127, 0, 127);
QColor minuteColor(0, 127, 127);

int side = qMin(width(), height());
QTime time = QTime::currentTime();

The first part of the function sets up the information about some simple primitives and

their colors, using the shortest side of the widget as the size of the clock.

The rest of the function performs the task of painting the clock face in the center of the

widget and drawing the hands in the correct positions, using anti-aliasing if available:

QPainter painter(this);
painter.setRenderHint(QPainter::Antialiasing);
painter.translate(width() / 2, height() / 2);
painter.scale(side / 200.0, side / 200.0);

painter.setPen(Qt::NoPen);
painter.setBrush(hourColor);

painter.save();
painter.rotate(30.0 * ((time.hour() + time.minute() / 60.0)));
painter.drawConvexPolygon(hourHand, 3);
painter.restore();

painter.setPen(hourColor);

for (int i = 0; i < 12; ++i) {
painter.drawLine(88, 0, 96, 0);
painter.rotate(30.0);

}

painter.setPen(Qt::NoPen);
painter.setBrush(minuteColor);

painter.save();
painter.rotate(6.0 * (time.minute() + time.second() / 60.0));
painter.drawConvexPolygon(minuteHand, 3);
painter.restore();

painter.setPen(minuteColor);

for (int j = 0; j < 60; ++j) {
if ((j % 5) != 0)

painter.drawLine(92, 0, 96, 0);
painter.rotate(6.0);

}
}

8

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 3: The Qt 4 Analog Clock example shows how to make a simple custom widget.

The main() function for this example is minimal. It simply sets up an application object,

constructs the clock widget, and shows it. Finally, the application’s event loop is started so

that Qt can start processing events:

#include <QApplication>

#include "analogclock.h"

int main(int argc, char *argv[])
{

QApplication app(argc, argv);
AnalogClock clock;
clock.show();
return app.exec();

}

This example program contains a single top-level clock widget and no child widgets. Com-

plex widgets are built by combining widgets in layouts.

Online References

http://doc.trolltech.com/4.0/qwidget.html

http://doc.trolltech.com/4.0/examples.html#widget-examples

http://doc.trolltech.com/4.0/tutorial.html

http://doc.trolltech.com/4.0/gallery.html

9

http://doc.trolltech.com/4.0/qwidget.html
http://doc.trolltech.com/4.0/examples.html#widget-examples
http://doc.trolltech.com/4.0/tutorial.html
http://doc.trolltech.com/4.0/gallery.html

Qt 4.0 Whitepaper © 2005 Trolltech

3. Signals and Slots

Signals and slots provide inter-object communication. They are easy to under-

stand and use, and are fully supported by Qt Designer.

GUI applications respond to user actions. For example, when a user clicks a menu item or

a toolbar button, the application executes some code. More generally, we want objects of

any kind to be able to communicate with each other. The programmer must relate events

to the relevant code. Older toolkits use mechanisms that are not type-safe (i.e., they are

crash-prone), are inflexible, and are not object-oriented.

Trolltech has invented a solution called “signals and slots.” The signals and slots mecha-

nism is a powerful inter-object communication mechanism that can be used to completely

replace the crude callbacks and message maps used by legacy toolkits. Signals and slots

are flexible, fully object-oriented, and implemented in C++.

To associate some code with a button using the old callback mechanism, it is necessary

to pass a function pointer to the button. When the button is clicked, the function is then

called. Old toolkits do not ensure that arguments of the correct type are given to the

function when it is called, making crashes more likely. Another problem with the callback

approach is that it tightly binds the GUI element to the functionality, making it difficult to

develop classes independently.

Qt’s signals and slots mechanism is different. Qt widgets emit signals when events occur.

For example, a button will emit a “clicked” signal when it is clicked. The programmer

can choose to connect to a signal by creating a function (a “slot”) and calling the connect()

function to relate the signal to the slot. Qt’s signals and slots mechanism does not require

classes to have knowledge of each other, which makes it much easier to develop highly

reusable classes. Since signals and slots are type-safe, type errors are reported as warnings

and do not cause crashes to occur.

For example, if a Quit button’s clicked() signal is connected to the application’s quit() slot, a

user’s click on Quit makes the application terminate. In code, this is written as

connect(button, SIGNAL(clicked()), qApp, SLOT(quit()));

Connections can be added or removed at any time during the execution of a Qt application,

they can be set up so that they are executed when a signal is emitted or queued for later

execution, and they can be made between objects in different threads.

The signals and slots implementation smoothly extends C++’s syntax and takes full advan-

tage of C++’s object-oriented features. Signals and slots are type-safe, can be overloaded or

reimplemented, and may appear in the public, protected, or private sections of a class.

To benefit from signals and slots, a class must inherit from QObject or one of its sub-

classes and include the Q_OBJECT macro in the class’s definition. Signals are declared in

the signals section of the class, while slots are declared in the public slots, protected

slots, or private slots sections.

10

Qt 4.0 Whitepaper © 2005 Trolltech

3.1. A Signals and Slots Example

Here is an example QObject subclass:

class BankAccount : public QObject
{

Q_OBJECT

public:
BankAccount() { curBalance = 0; }
int balance() const { return curBalance; }

public slots:
void setBalance(int newBalance);

signals:
void balanceChanged(int newBalance);

private:
int currentBalance;

};

In the style of most C++ classes, the BankAccount class has a constructor, a balance()

“getter” function, and a setBalance() “setter” function. It also has a balanceChanged()

signal which is emitted when the balance in the account is changed. When a signal is

emitted, the slots it is connected to are executed.

The set function is declared in the public slots section, so it is a slot. Slots are member

functions that can be called like any other function and that can also be connected to

signals. Here’s the implementation of the setBalance() slot:

void BankAccount::setBalance(int newBalance)
{

if (newBalance != currentBalance) {
currentBalance = newBalance;
emit balanceChanged(currentBalance);

}
}

The statement

emit balanceChanged(currentBalance);

causes the balanceChanged() signal to be emitted with the new current balance as its ar-

gument. The keyword emit, like signals and slots, is provided by Qt and is transformed

into standard C++ by the C++ preprocessor.

Here’s an example of how to connect two BankAccount objects:

BankAccount x, y;
connect(&x, SIGNAL(balanceChanged(int)), &y, SLOT(setBalance(int)));
x.setBalance(2450);

When the balance in x is set to 2450, the balanceChanged() signal is emitted. The signal

is received by the setBalance() slot in y, which sets the balance in y to 2450.

One object’s signal can be connected to many different slots, and many signals can be

connected to one slot in a particular object. Connections are made between signals and

slots whose parameters have the same types. A slot can have fewer parameters than the

signal and ignore the extra parameters.

11

Qt 4.0 Whitepaper © 2005 Trolltech

connect(fontSizeSpinBox, valueChanged(int),
textEdit, setFontPointSize(int))

connect(textEdit, modificationChanged(bool),
customStatusBar, modificationStatus(bool))

connect(fontFamilyComboBox, activated(const QString &),
textEdit, setFontFamily(const QString &))

Figure 4: An example of signals and slots connections.

3.2. Meta-Object Compiler

The signals and slots mechanism is implemented in standard C++. The implementation

uses the C++ preprocessor and moc, the Meta-Object Compiler, included with Qt.

The Meta-Object Compiler reads the application’s header files and generates the necessary

code to support the signals and slots mechanism. It is invoked automatically by makefiles

generated by qmake (see Qt’s Build System on page 52). Developers never have to edit or

even look at the generated code.

In addition to handling signals and slots, the Meta-Object Compiler supports Qt’s trans-

lation mechanism, its property system, and its extended run-time type information. It

also makes run-time introspection of C++ programs possible in a way that works on all

supported platforms.

Online References

http://doc.trolltech.com/4.0/object.html

http://doc.trolltech.com/4.0/signalsandslots.html

http://doc.trolltech.com/4.0/moc.html

12

http://doc.trolltech.com/4.0/object.html
http://doc.trolltech.com/4.0/signalsandslots.html
http://doc.trolltech.com/4.0/moc.html

Qt 4.0 Whitepaper © 2005 Trolltech

4. GUI Applications

Building modern GUI applications with Qt is fast and simple, and can be achieved

by hand coding or by using Qt Designer, Qt’s visual design tool.

Qt provides all the classes and functions necessary to create modern GUI applications. Qt

can be used to create both “main window” style applications with a menu bar, toolbars, and

status bar surrounding a central area, and “dialog” style applications that use buttons and

possibly tabs to present options and information. Qt supports both SDI (single document

interface) and MDI (multiple document interface). Qt also supports drag and drop and the

clipboard.

Figure 5: The Qt 4 Main Window demo shows an application main window with a main menu, a

toolbar, dock windows, and a central widget.

Toolbars can be moved around within the toolbar area, dragged to other areas, or floated

as tool palettes. This functionality is built in and requires no additional code, although

programmers can apply constraints to toolbar behavior if required.

Qt simplifies programming. For example, if a menu option, a toolbar button, and a key-

board accelerator all perform the same action, the action need only be coded once.

Qt also provides message boxes and a full set of standard dialogs to make it easy for ap-

plications to ask the user questions, and to get the user to choose files, folders, fonts, and

colors. In practice, a one-line statement using one of Qt’s static convenience functions is all

that is necessary to present a message box or a standard dialog.

Qt can store application settings in a platform-independent way, using the system registry

or text files, allowing items such as user preferences, most recently used files, window and

toolbar positions and sizes to be recorded for later use.

13

Qt 4.0 Whitepaper © 2005 Trolltech

4.1. Main Window Classes

4.1.1. The Main Window

The QMainWindow class provides a framework for typical application main windows. A

main window contains a set of standard widgets. The top of the main window is occupied

by a menu bar, beneath which toolbars are laid out in toolbar areas at the top, left, right,

and bottom of the window. The area of the main window below the bottom toolbar area

is occupied by a status bar. Tooltips and “What’s this?” help provide balloon help for the

user-interface elements.

For SDI applications, the central area of a QMainWindow can contain any widget. For

example, a text editor could use a QTextEdit as its central widget:

QTextEdit *editor = new QTextEdit(mainWindow);
mainWindow->setCentralWidget(editor);

For MDI applications, the central area will usually be occupied by a QWorkspace widget.

4.1.2. Menus

The QMenu widget presents menu items to the user in a vertical list. Menus can be

standalone (e.g., a context popup menu), can appear in a menu bar, or can be a sub-menu

of another popup menu. Menus can have tear-off handles.

Each menu item can have an icon, a checkbox, and an accelerator. Menu items usually

correspond to actions (e.g., “Save”). Separator items are displayed as a line and are used

to group related actions visually. Here’s an example that creates a File menu with New,

Open, and Exit menu items:

QMenu *fileMenu = new QMenu(this);
fileMenu->addAction(tr("&New"), this, SLOT(newFile()), tr("Ctrl+N");
fileMenu->addAction(tr("&Open..."), this, SLOT(open()), tr("Ctrl+O"));
fileMenu->addSeparator();
fileMenu->addAction(tr("E&xit"), qApp, SLOT(quit()), tr("Ctrl+Q"));

When a menu item is chosen, the corresponding slot is executed. Note that, in this case, the

tr() function is used to retrieve menu text in the user’s native language (see International-

ization on page 36).

The QMenuBar class implements a menu bar. It is automatically laid out at the top of

its parent widget (typically a QMainWindow), splitting its contents across multiple lines

if the parent window is not wide enough. Qt’s layout managers take any menu bar into

consideration. On the Macintosh, the menu bar appears at the top of the screen.

Here’s how to create a menu bar with File, Edit, and Help menus:

QMenuBar *menuBar = new QMenuBar(this);
menuBar->addMenu(tr("&File"), fileMenu);
menuBar->addMenu(tr("&Edit"), editMenu);
menuBar->addMenu(tr("&Help"), helpMenu);

Qt’s menus are very flexible and are part of an integrated action system (see Actions).

Actions can be enabled or disabled, dynamically added to menus, and removed again later.

14

Qt 4.0 Whitepaper © 2005 Trolltech

4.1.3. Toolbars

Toolbars contain collections of buttons and other widgets that the user can access to per-

form actions. They can be moved between the areas at the top, left, right, and bottom of

the central area of a main window. Any toolbar can be dragged out of its toolbar area, and

floated as an independent tool palette.

The QToolButton class implements a toolbar button with an icon, a styled frame, and

an optional label. Toggle toolbar buttons turn features on and off. Other toolbar buttons

execute commands. Different icons can be provided for the active, disabled, and enabled

modes, and for the on and off states. If only one icon is provided, Qt automatically dis-

tinguishes the state using visual cues, for example, graying out disabled buttons. Toolbar

buttons can also trigger popup menus.

Tool buttons usually appear side by side within a toolbar. An application can have any

number of toolbars, and the user is free to move them around. Toolbars can contain widgets

of almost any type; for example, QComboBox and QSpinBox widgets are often used.

4.1.4. Actions

Applications usually provide the user with several different ways to perform a particu-

lar action. For example, most applications have traditionally provided a “Save” action

available from the File menu, from the toolbar (a “floppy disk” toolbar button), and as an

accelerator (Ctrl+S). The QAction class encapsulates this concept. It allows programmers

to define an action in one place.

The following code implements a “Save” action with a menu item, a toolbar button, and

a keyboard accelerator, all with interactive help provided by a tooltip and “What’s This?”

information:

QAction *saveAct = new QAction(tr("Save"), saveIcon, tr("&Save"), tr("Ctrl+S"),
this);

connect(saveAct, SIGNAL(activated()), this, SLOT(save()));
saveAct->setWhatsThis(tr("Saves the current file."));
saveAct->addTo(fileMenu);
saveAct->addTo(toolbar);

As well as avoiding duplication of work, using a QAction ensures that the state of menu

items stay in sync with the state of related toolbar buttons, and that interactive help is dis-

played when necessary. Disabling an action will disable any corresponding menu items and

toolbar buttons. Similarly, if the user clicks a toggle button in a toolbar, the corresponding

menu item will also be toggled.

4.1.5. Dock Windows

Dock windows are windows that the user can move inside a toolbar area or from one toolbar

area to another. The user can undock a dock window and make it float on top of the

application, or minimize it. Dock windows are provided by the QDockWidget class.

A custom dock window can be created by instantiating QDockWidget and by adding wid-

gets to it. The widgets are laid out side by side if the dock window occupies a horizontal

15

Qt 4.0 Whitepaper © 2005 Trolltech

area (e.g., at the top of the main window) and above each other if the area is vertical (e.g., on

the left of the main window).

Some applications, including Qt Designer (page 20) and Qt Linguist (page 38), use dock

windows extensively. QMainWindow provides operators to save and restore the position

of dock windows and toolbars, so that applications can easily restore the user’s preferred

working environment.

Figure 6: A QMessageBox and a QProgressDialog shown in Plastique style.

4.1.6. Dialogs

Most GUI applications use dialog boxes to interact with the user for certain operations.

Qt includes ready-made dialog classes with convenience functions for the most common

tasks. Screenshots of some of Qt’s standard dialogs are presented below. Qt also provides

standard dialogs for color selection and printing options.

Dialogs operate in one of three ways:

1. A modal dialog blocks input to the other visible windows in the same application.

Users must close the dialog before they can access any other window in the applica-

tion.

2. A modeless dialog operates independently of other windows.

3. A semi-modal dialog returns control to the caller immediately. These dialogs behave

like modal dialogs from the user’s point of view, but allow the application to continue

processing. This is particularly useful for progress dialogs.

Modal dialogs are typically used like this:

OptionsDialog dialog(&optionsData);
if (dialog.exec()) {

do_something(optionsData);
}

QFileDialog is a sophisticated file selection dialog. It can be used to select single or mul-

tiple local or remote files (e.g., using FTP), and includes functionality such as file renaming

and directory creation. Like most Qt dialogs, QFileDialog is resizable, which makes it

easy to view long file names and large directories. Applications can be set to automatically

use the native file dialog on Windows and Macintosh.

Other common dialogs are also provided: QMessageBox is used to provide the user with

information or to present the user with simple choices (e.g., “Yes” and “No”); QProgress-

Dialog displays a progress bar and a Cancel button.

16

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 7: A QFileDialog and a QFontDialog shown in the Plastique style. On Windows and

Mac OS X, native dialogs are used instead.

Programmers can create their own dialogs by subclassing QDialog, a subclass of QWid-

get, or use any of the standard dialogs provided. Qt Designer also includes dialog templates

to help developers get started with new designs.

4.1.7. Interactive Help

Modern applications use various forms of interactive help to explain the purpose of user

interface elements. Qt provides two mechanisms for giving brief help messages: tooltips

and “What’s this?” help.

Tooltips are small, usually yellow, rectangles that appear automatically when the mouse

pointer hovers over a widget. Tooltips are often used to explain the purpose of toolbar

buttons, since toolbar buttons are rarely displayed with text labels. Here’s how to set the

tooltip of a “Save” toolbar button:

QToolTip::add(saveButton, tr("Save"));

It is also possible to use longer pieces of text to be displayed in a main window’s status bar

when each tooltip is shown.

“What’s this?” help is similar to tooltips, except that the user must request it, for example

by pressing Shift+F1 and then clicking a widget or menu item. “What’s this?” help is

typically longer than a tooltip. Here’s how to set the “What’s this?” text for a “Save” toolbar

button:

QWhatsThis::add(saveButton, tr("Saves the current file."));

The QToolTip and QWhatsThis classes provide virtual functions that can be reimple-

mented for more specialized behavior, such as providing dynamic tooltips that display dif-

ferent text depending on the position of the mouse within a widget.

More detailed information about an application can be provided by an online help browser.

The QAssistantClient class allows applications to use Qt Assistant (see page 20) to show

relevant pages from their user manuals at the user’s request.

17

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 8: An application main window containing a QWorkspace widget to provide a Multiple

Document Interface.

4.1.8. Multiple Document Interface

Multiple Document Interface (MDI) features are provided by the QWorkspace class, which

is typically used as the central widget of a QMainWindow.

Child widgets of QWorkspace can be widgets of any type. They are rendered with a frame

similar to the frame around top-level widgets, and functions such as those to show, hide,

maximize, and set the window title work in the same way for child MDI widgets as for

ordinary top-level widgets.

QWorkspace provides positioning strategies such as cascade and tile. If a child widget

extends outside the MDI area, scroll bars can be set to appear automatically. If a child

widget is maximized, the frame buttons (e.g., Minimize) are shown in the menu bar.

4.2. Settings

User settings and other application settings can easily be stored on disk using the QSet-

tings class. On Windows, QSettings makes use of the system registry; on Mac OS X, it

uses the system’s CFPreferences mechanism; on other platforms, settings are stored in

text files.

A particular setting is stored using a key. For example, the key

/SoftwareInc/Zoomer/RecentFiles

might contain a list of recently used files. Boolean values, numbers, Unicode strings, and

lists of Unicode strings can be stored.

A variety of Qt data types can be used seamlessly with QSettings and will be serialized

for storage and later retrieval by applications. See Reading and Writing Files on page 45

for more information about serialization of Qt’s data types.

18

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 9: The Qt 4 Mandelbrot example shows how threading can be used to keep the user interface

responsive while performing time-consuming tasks.

4.3. Multithreading

GUI applications often use multiple threads: one thread to keep the user interface respon-

sive, and one or many other threads to perform time-consuming activities such as reading

large files and performing complex calculations. Qt can be configured to support multi-

threading, and provides classes to represent threads, mutexes, semaphores, thread-global

storage, and classes that support various locking mechanisms.

Qt 4’s meta-object system enables objects in different threads to communicate using signals

and slots, making it possible for developers to create single-threaded applications that can

later be adapted for multithreading without an extensive redesign. Additionally, compo-

nents can communicate across thread boundaries by posting events to one another. Certain

types of object can also be moved between threads.

Online References

http://doc.trolltech.com/4.0/qmainwindow.html

http://doc.trolltech.com/4.0/qt4-mainwindow.html

http://doc.trolltech.com/4.0/threads.html

19

http://doc.trolltech.com/4.0/qmainwindow.html
http://doc.trolltech.com/4.0/qt4-mainwindow.html
http://doc.trolltech.com/4.0/threads.html

Qt 4.0 Whitepaper © 2005 Trolltech

5. Qt Designer

Qt Designer is a graphical user interface design tool for Qt applications. Appli-

cations can be written entirely as source code, or using Qt Designer to speed up

development. A component-based architecture makes it possible for developers

to extend Qt Designer with custom widgets and extensions, and even integrate it

into integrated development environments.

Designing a form with Qt Designer is a simple process. Developers drag widgets from a

toolbox onto a form, and use standard editing tools to select, cut, paste, and resize them.

Each widget’s properties can then be changed using the property editor. The precise posi-

tions and sizes of the widgets do not matter. Developers select widgets and apply layouts

to them. For example, some button widgets could be selected and laid out side by side by

choosing the “lay out horizontally” option. This approach makes design very fast, and the

finished forms will scale properly to fit whatever window size the end-user prefers. See

Layouts on page 39 for information about Qt’s automatic layouts.

Qt Designer eliminates the time-consuming “compile, link, and run” cycle for user interface

design. This makes it easy to correct or change designs. Qt Designer’s preview options let

developers see their forms in other styles; for example, a Macintosh developer can preview

a form in the Windows style.

Commercial licensees on Windows can enjoy Qt Designer’s user interface design facilities

from within Microsoft Visual Studio®. On Mac OS X, developers can use Qt Designer from

within Apple’s Xcode® environment.

5.1. Working with Qt Designer

Developers can create both “dialog” style applications and “main window” style applica-

tions with menus, toolbars, balloon help, and other standard features. Several form tem-

plates are supplied, and developers can create their own templates to ensure consistency

across an application or family of applications. Programmers can create their own custom

widgets that can easily be integrated with Qt Designer.

Qt Designer supports a form-based approach to application development. A form is rep-

resented by a user interface (.ui) file, which can either be converted into C++ and com-

piled into an application, or processed at run-time by the QFormBuilder class to produce

dynamically-generated user interfaces. Qt’s build system (page 52) is able to automate the

compile-time construction of user interfaces to make the design process easier.

5.2. Qt Assistant

Qt Designer’s on-line help is provided by the Qt Assistant application. Qt Assistant displays

Qt’s entire documentation set, and works in a similar way to a web browser. But unlike

web browsers, Qt Assistant applies a sophisticated indexing algorithm to provide fast full

text searching of all the available documentation.

Qt’s reference documentation consists of around 2,200 HTML pages, documenting Qt’s

20

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 10: Qt Designer in “Docked Window” mode.

Figure 11: Qt Assistant displaying a page from the Qt 4 documentation.

21

Qt 4.0 Whitepaper © 2005 Trolltech

classes and tools, and includes overviews and introductions to various aspects of Qt pro-

gramming.

Developers can deploy Qt Assistant as the help browser for their own applications and doc-

umentation sets. Qt Assistant integration is achieved using the QAssistantClient class.

Qt Assistant renders Qt’s HTML reference documentation using QTextEdit; developers

can use this class directly to implement their own help browsers if preferred. QTextEdit

supports a subset of HTML 4.0, and can also be used to render other document formats

when used with the rich text classes provided by Qt (see Rich Text Processing on page 32).

5.3. GUI Application Example

The “Class Hierarchy” application is a classic dialog-style application where the user chooses

some options, in this case paths, and then carries out some processing based on those op-

tions.

The complete code for the application is presented below. The form was designed in Qt De-

signer and stored in a .ui file. The .ui file is converted into C++ by uic, leaving the

developer free to focus on the application’s functionality.

Although Qt Designer makes designing the user interface easy, additional application logic

is usually required. Developers usually provide additional features by subclassing the user

interface generated by uic and implementing new functionality.

The dialog’s constructor simply sets up the user interface provided by Qt Designer and

creates two labels for a tree widget:

ClassHierarchy::ClassHierarchy(QWidget *parent)
: QDialog(parent)

{
setupUi(this);
QStringList headings;
headings << tr("Class") << tr("Source file");
treeWidget->setHeaderLabels(headings);

}

The on_<name>_clicked() functions are all slots that are automatically connected to signals

from push buttons in the dialog when setupUi() is called. The following slots simply change

the items in the list widget:

void ClassHierarchy::on_addSearchPathButton_clicked()
{

QString path = QFileDialog::getExistingDirectory(
this, "Select a Directory", QDir::home().path());

if (!path.isEmpty() &&
searchPathBox->findItems(path, Qt::MatchExactly).count() == 0)
searchPathBox->addItem(path);

}

void ClassHierarchy::on_removeSearchPathButton_clicked()
{

delete searchPathBox->takeItem(searchPathBox->currentRow());
}

22

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 12: A simple class hierarchy application created using Qt Designer.

The on_updateButton_clicked() slot repopulates the tree widget with classes found in files

whose names match the relevant pattern:

void ClassHierarchy::on_updateButton_clicked()
{

QStringList fileNameFilter;
QRegExp classDef;

if (language->currentText() == "C++") {
fileNameFilter << "*.h";
classDef.setPattern("\\bclass\\s+([A-Z_a-z0-9]+)\\s*"

"(?:\\{|:\\s*public\\s+([A-Z_a-z0-9]+))");
} else if (language->currentText() == "Java") {

fileNameFilter << "*.java";
classDef.setPattern("\\bclass\\s+([A-Z_a-z0-9]+)\\s+extends\\s*"

"([A-Z_a-z0-9]+)");
}

classMap.clear();
treeWidget->clear();

for (int i = 0; i < searchPathBox->count(); i++) {
QDir dir = searchPathBox->item(i)->text();
QStringList names = dir.entryList(fileNameFilter);

for (int j = 0; j < names.count(); j++) {
QFile file(dir.filePath(names[j]));
if (file.open(QIODevice::ReadOnly)) {

QString content = file.readAll();
int k = 0;
while ((k = classDef.indexIn(content, k)) != -1) {

processClassDef(classDef.cap(1), classDef.cap(2), names[j]);
k++;

}
}

}
}

}

23

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 13: Editing the class hierarchy window in Qt Designer.

The Close button is connected to the dialog’s accept() slot in Qt Designer.

The private utility functions for processing class definitions and inserting them into the

tree widget are listed below for completeness:

void ClassHierarchy::processClassDef(const QString &derived,
const QString &base, const QString &sourceFile)

{
QTreeWidgetItem *derivedItem = insertClass(derived, sourceFile);

if (!base.isEmpty()) {
QTreeWidgetItem *baseItem = insertClass(base, "");
if (derivedItem->parent() == 0) {

treeWidget->takeTopLevelItem(
treeWidget->indexOfTopLevelItem(derivedItem));

baseItem->addChild(derivedItem);
derivedItem->setText(1, sourceFile);

}
}

}

QTreeWidgetItem *ClassHierarchy::insertClass(const QString &name,
const QString &sourceFile)

{
if (classMap[name] == 0) {

QTreeWidgetItem *item = new QTreeWidgetItem(treeWidget);
item->setText(0, name);
item->setText(1, sourceFile);
treeWidget->setItemExpanded(item, true);
classMap.insert(name, item);

}
return classMap[name];

}

The above example shows how user interfaces can be “compiled into” an application. User

interfaces can also be dynamically generated from .ui files at run-time with the QForm-

Builder class, making it possible for developers to create single-executable applications

that can be customized for different uses.

The tools used to create and edit the source code for applications created with Qt Designer

will depend on each developer’s personal preferences; some will want to take advantage

of the integration features provided with Qt Designer to develop from within Microsoft Vi-

sual Studio or Apple’s Xcode environment.

24

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 14: A World Time Clock custom widget is packaged as a plugin for Qt Designer and added to

a form. The widget provides a custom signal and a custom slot, and these are automatically made

available to other widgets on the form.

5.4. Extending Qt Designer

The component-based architecture used as a foundation for Qt Designer was specifically

designed to allow developers to extend its user interface and editing tools with custom

components. In addition, the modular nature of the application makes it possible to make

Qt Designer’s user interface design features available from within integrated development

environments such as Microsoft Visual Studio and KDevelop.

In total, the QtDesigner module provides 20 classes for working with .ui files and ex-

tending Qt Designer. Many of these allow third parties to customize the user interface of

the application itself.

Third party and custom widgets for in-house work are easily integrated into Qt Designer.

Adapting an existing widget for use within Qt Designer only requires a the widget to be

compiled as a plugin, using an interface class to supply default widget properties and con-

struct new instances of the widget. The plugin’s interface is exported to Qt Designer using

a macro similar to that described in Plugins on page 51.

Online References

http://doc.trolltech.com/4.0/designer-manual.html

http://www.trolltech.com/products/qt/vs-integration.html

http://doc.trolltech.com/4.0/qtdesigner.html

http://doc.trolltech.com/4.0/examples.html#qt-designer-examples

25

http://doc.trolltech.com/4.0/designer-manual.html
http://www.trolltech.com/products/qt/vs-integration.html
http://doc.trolltech.com/4.0/qtdesigner.html
http://doc.trolltech.com/4.0/examples.html#qt-designer-examples

Qt 4.0 Whitepaper © 2005 Trolltech

6. 2D and 3D Graphics

Qt provides excellent support for 2D and 3D graphics. Qt’s 2D graphics classes

support raster and vector graphics, and can load and save a wide and extensible

range of image formats. Qt can draw Unicode rich text, rotated and sheared as

required. Qt is the de facto standard GUI framework for platform-independent

OpenGL programming.

Graphics are drawn using device-independent painter objects that allow the developer to

reuse the same code to render graphics on different types of device, represented in Qt

by paint devices (see Painting on page 26). This approach ensures that a wide range of

powerful painting operations are available for each of the variety of devices supported by

Qt.

Support for device-independent colors is provided by the QColor class. Colors are specified

by ARGB, AHSV, or ACMYK values, or by common names (e.g., “skyblue”). QColor’s color

channels are 16 bits wide, and colors can be specified with an optional level of opacity; Qt

automatically allocates the requested color in the system’s palette, or uses a similar color

on color-limited displays.

6.1. Painting

The QPainter class provides a platform-independent API for painting onto widgets and

other paint devices. It provides primitives as well as advanced features such as transfor-

mations and clipping. All of Qt’s built-in widgets paint themselves using QPainter, and

programmers invariably use QPainter when implementing their own custom widgets.

QPainter provides standard functions to draw points, lines, ellipses, arcs, Bezier curves,

and other primitives. More complex painting operations include support for polygons and

vector paths, allowing detailed drawings to be prepared in advance and drawn using a

single function call. Text can also be painted directly with a painter or incorporated in a

path for later use.

Qt’s painting system also provides a number of advanced features to improve overall ren-

dering quality:

• Alpha blending and Porter-Duff composition modes enable the developer to use so-

phisticated graphical effects and provide a high level of control over the output on

screen.

• Anti-aliasing of graphics primitives and text can be used to mimic the appearance of

a higher resolution display than the one in use.

• Linear, radial, and conical gradient fills allow more detailed graphics to be created,

such as 3D bevel buttons, without much effort by the developer.

QPainter supports clipping using regions composed of rectangles, polygons, ellipses, and

vector paths. Complex regions may be created by combining simple regions using standard

set operations.

26

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 15: The Qt 4 Affine Transformations demonstration shows how transformations can be

used to achieve a desired effect.

6.2. Images

The QPixmap and QImage classes supports input, output, and manipulation of images

in several formats, including BMP, GIF∗, JPEG, MNG, PNG, PNM, XBM, and XPM. Both

classes can be used as paint devices and used in interactive graphical applications, or they

can be used to preprocess images for later use in standard user interface components.

Many of Qt’s built-in widgets, such as buttons, labels, and menu items, are able to display

images.

QPixmap is usually used when applications need to render images quickly. QImage is

more useful for pixel manipulation, and handles images in a variety of color depths and

pixel formats. Programmers can manipulate the pixel and palette data, apply transforma-

tions such as rotations and shears, and reduce the color depth with dithering if desired.

Support for “alpha channel” data along with the color data enables applications to use

transparency and alpha-blending for image composition and other purposes.

The range of graphics file formats that can be used with these classes can be extended

through the use of an extensible plugin mechanism.

6.3. Paint Devices

QPainter can operate on any paint device. The code required to paint on any supported

device is the same, regardless of the device.

∗If you are in a country that recognizes software patents and where Unisys holds a patent on LZW decom-

pression, Unisys may require you to license the technology to use GIF. We believe that this patent will have

expired world-wide by the end of 2004.

27

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 16: Qt applications can use OpenGL to render 3D graphics alongside conventional GUI

controls.

Qt supports the following paint devices:

• All QWidget subclasses are paint devices. Qt uses double buffering to reduce flicker-

ing during the painting process.

• A QPixmap is essentially a QImage with the same properties as a widget on the

screen, and is often a system device that can be accessed quickly and efficiently.

• A QImage is a device-independent image with a specified color depth and pixel for-

mat. Images can be created with support for varying levels of transparency and

painted onto custom widgets to achieve certain effects.

• A QPicture is a vector image that can be scaled, rotated, and sheared gracefully.

Pictures are stored as a list of paint commands rather than as pixel data.

• A QPrinter represents a physical printer. On Windows, the paint commands are

sent to the Windows print engine, which uses the installed printer drivers. On Unix,

PostScript is written out and sent to the print daemon.

6.4. 3D Graphics

OpenGL is a standard API for rendering 3D graphics. Qt developers can use OpenGL to

draw 3D graphics in their GUI applications. Qt’s OpenGL module is available on Windows,

X11, and Mac OS X, and uses the system’s OpenGL library.

To use OpenGL-enabled widgets in a Qt application, developers only need to subclass

QGLWidget and draw onto it with standard OpenGL functions. Qt provides functions

to convert QColor values to OpenGL’s color format to help developers provide a consistent

user interface for their applications.

Online References

http://doc.trolltech.com/4.0/qt4-arthur.html

http://doc.trolltech.com/4.0/qpainter.html

http://doc.trolltech.com/4.0/opengl.html

28

http://doc.trolltech.com/4.0/qt4-arthur.html
http://doc.trolltech.com/4.0/qpainter.html
http://doc.trolltech.com/4.0/opengl.html

Qt 4.0 Whitepaper © 2005 Trolltech

7. Item Views

Qt’s item view widgets provide standard GUI controls for displaying and mod-

ifying large quantities of data. The underlying model/view framework isolates

the way data is stored from the way it is presented to the user, enabling features

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 18: The component-oriented architecture of the model/view framework makes it easy to

customize item views.

7.2. Qt’s Model/View Framework

The model/view framework provided by Qt is a variation of the well-known Model-View-

Controller pattern, adapted specially for Qt’s item views. In this approach, models are used

to supply data to other components, views display items of data to the user, and delegates

handle aspects of the rendering and editing processes.

Models are wrappers around sources of data that are written to conform to a standard

interface provided by QAbstractItemModel. This interface enables widgets derived from

QAbstractItemView to access data supplied via the model, irrespective of the nature of

the original data source.

The separation between data and its presentation which this approach enables provides a

number of improvements over classic item views:

• Since models provide a standard interface for accessing data, they can be designed

and written separately from other components, and replaced if necessary.

• Data obtained from models can be shared between views. This enables applications

to provide multiple views onto the same data set, and potentially show different rep-

resentations of data.

• Selections can be shared between views, or kept separate, depending on the user’s

requirements and expectations.

• For standard list, tree, and table views, most of the rendering is performed by del-

egates. This makes it easy to customize views for most purposes without having to

write a lot of new code.

The model/view system is also used by Qt’s SQL models (page 34) to make database inte-

gration simpler for non-database developers.

Online References

http://doc.trolltech.com/4.0/model-view-programming.html

http://doc.trolltech.com/4.0/examples.html#item-view-examples

30

http://doc.trolltech.com/4.0/model-view-programming.html
http://doc.trolltech.com/4.0/examples.html#item-view-examples

Qt 4.0 Whitepaper © 2005 Trolltech

8. Text Handling

Qt provides a powerful text editor widget that allows the user to create and edit

rich text documents, supports HTML import and export, and can be used to pre-

pare documents for printing. The underlying document structure used by the

editor is fully accessible to developers, allowing both the structure and content of

documents to be manipulated from within applications.

Rich text documents typically contain text in a variety of fonts, colors, and sizes arranged

in a series of paragraphs. Text can also be organized using lists and tables, and may be

visually separated from the main body of a document by using frames. The appearance of

each document element can be precisely adjusted using the many properties made avail-

able to developers through the rich text API.

Qt’s rich text display features can be seen at work in Qt Assistant, in the Qt 4 Text Edit

demonstration, and in Qt Designer’s text editing dialogs.

8.1. Rich Text Editing

Interactive rich text display and editing is handled in Qt by the QTextBrowser and

QTextEdit widgets. These widgets fully support Unicode and are built on a structured

document representation provided by QTextDocument that removes the need to use in-

termediate mark up languages to create rich text. QTextDocument also provides support

for HTML import and export, full undo/redo capabilities (including grouping of operations),

and resource handling.

The layout system used to display rich text in QTextEdit widgets is also able to format

documents according to information obtained from a QPrintDialog into a series of pages

suitable for printing with a QPrinter.

Figure 19: Qt’s advanced rich text document features allow complex documents to be created and

edited in QTextEdit.

31

Qt 4.0 Whitepaper © 2005 Trolltech

8.2. Rich Text Processing

Rich text documents can be programatically explored using a combination of two approaches:

a high-level object-based approach, and a cursor-based approach that is analogous to using

a text editor. The object-based approach makes it easy to get a high-level overview of a

document’s structure and navigate tables, frames, and other elements. The cursor-based

approach allows the document’s contents to be modified and transformed, and even allows

large-scale structural changes to be made.

The following code inserts a table with two rows and two columns into a document, before

inserting text into the cells in the first column:

QTextTable *offersTable = cursor.insertTable(2, 2);

cursor = offersTable->cellAt(0, 1).firstCursorPosition();
cursor.insertText(tr("I want to receive more information about your "

"company’s products and special offers."), textFormat);

cursor = offersTable->cellAt(1, 1).firstCursorPosition();
cursor.insertText(tr("I do not want to receive any promotional information "

"from your company."), textFormat);

In addition to the classes corresponding to structure and content, there are a number of

classes which control the appearance of text and document elements. These allow the text

styles used in documents to be specified precisely:

QTextCharFormat plainFormat(cursor.charFormat());
QTextCharFormat italicFormat = plainFormat;
italicFormat.setFontItalic(true);
QTextCharFormat boldFormat = plainFormat;
boldFormat.setFontWeight(QFont::Bold);

cursor.insertText(tr("Note: "), boldFormat);
cursor.insertText(tr("We can emphasize text by making it "), plainFormat);
cursor.insertText(tr("italic"), italicFormat);
cursor.insertText(tr("."), plainFormat);

Styles for tables, lists, frames, and ordinary paragraphs can also be customized to give

documents the desired appearance. Documents created programatically in this way remain

editable in QTextEdit widgets and maintain a full undo/redo history. Developers can

augment the standard editing features available to let users add custom structures and

content.

8.3. Custom Text Layouts

Qt 4’s text handling features can also be used to provide specialized text formatting for

custom widgets and rich text documents. These can be written using low-level classes such

as QTextLayout to lay out the text line by line and integrated into the extensible text

layout system provided by QTextDocument for use with QTextEdit.

Online References

http://doc.trolltech.com/4.0/qt4-scribe.html

http://doc.trolltech.com/4.0/richtext.html

32

http://doc.trolltech.com/4.0/qt4-scribe.html
http://doc.trolltech.com/4.0/richtext.html

Qt 4.0 Whitepaper © 2005 Trolltech

9. Databases

The Qt SQL module simplifies the creation of multiplatform GUI database appli-

cations. Programmers can easily execute SQL statements, use database-specific

widgets, and make any widget data-aware. Several database models are also

provided that can be plugged into item views for convenient visualization of

stored information.

The Qt SQL module provides a multiplatform interface for accessing SQL databases. Qt

includes native drivers for Oracle, Microsoft SQL Server, Sybase Adaptive Server, IBM

DB2, PostgreSQL, MySQL, Borland Interbase, SQLite, and ODBC. The drivers work on

all platforms supported by Qt for which client libraries are available. Programs can access

multiple databases using multiple drivers simultaneously.

Developers can easily execute any SQL statements. Qt also provides a high-level C++

interface that can be used to generate the appropriate SQL statements automatically.

Qt provides a set of SQL models for use with the other model/view components (page 30).

These enable view widgets to be automatically populated with the results of database

queries, and simplify the process of editing for both users and non-database developers.

Using the facilities that the Qt SQL module provides, it is straightforward to create database

applications that use foreign key lookups and present master-detail relationships.

9.1. Executing SQL Commands

The QSqlQuery class is used to directly execute any SQL statement. It is also used to

navigate the result sets produced by SELECT statements. In the example below, a query is

executed, and the result set navigated using QSqlQuery::next():

while (query.next())
cout << query.value(0);

Field values are indexed in the order they appear in the SELECT statement. QSqlQuery

also provides the first(), prev(), last(), and seek() navigation functions.

The INSERT, UPDATE, and DELETE statements are equally simple. Here is an UPDATE exam-

ple:

QSqlQuery query("UPDATE staff SET salary = salary * 1.10"
" WHERE id > 1155 AND id < 8155");

if (query.isActive()) {
cout << "Pay rise given to " << query.numRowsAffected()

<< " staff" << endl;
}

Qt’s SQL module also supports value binding and prepared queries; for example:

QSqlQuery query;
query.prepare("INSERT INTO staff (id, surname, salary)"

" VALUES (:id, :surname, :salary)");
query.bindValue(":id", 8120);
query.bindValue(":surname", "Bean");
query.bindValue(":salary", 29960.5);
query.exec();

33

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 20: The Qt 4 Books demonstration shows the integration between Qt’s SQL classes and the

model/view framework.

Value binding can be achieved using named binding and named placeholders (as above), or

using positional binding with named or positional placeholders; for example:

QSqlQuery query;
query.prepare("INSERT INTO staff (id, surname, salary)"

" VALUES (?, ?, ?)");
EmployeeMap::iterator it;
for (it = employeeMap.begin(); it != employeeMap.end(); ++it) {

query.addBindValue(it.data().id());
query.addBindValue(it.key());
query.addBindValue(it.data().salary());
query.exec();

}

Qt’s binding syntax works with all supported databases, either using the underlying database

support or by emulation.

9.2. SQL Models

Qt also provides a number of model classes for use with other components in the model/view

framework (page 30). These allow the developer to set up SQL queries to automatically

provide table views with items of data from a database. Using these database models with

other components in the model/view framework requires a minimum of intervention on the

part of the developer.

Setting up a query model is simply a matter of specifying a query and choosing which

headers to examine:

QSqlQueryModel model;
model->setQuery("select * from person");
model->setHeaderData(0, Qt::Horizontal, QObject::tr("ID"));
model->setHeaderData(1, Qt::Horizontal, QObject::tr("First name"));
model->setHeaderData(2, Qt::Horizontal, QObject::tr("Last name"));

34

Qt 4.0 Whitepaper © 2005 Trolltech

Setting up a table view to display the results of the query is similarly straightforward:

QTableView *view = new QTableView;
view->setModel(model);
view->show();

Models are provided for accessing SQL tables in different ways:

• QSqlQueryModel provides a read-only data model for SQL result sets.

• QSqlTableModel provides an editable data model for a single database table.

• QSqlRelationalTableModel acts like QSqlTableModel, but allows columns to be

set as foreign keys into other database tables. The Qt 4 Books demonstration shown

in Figure 20 uses a relational database model to find information about each of the

books in a table.

The model/view framework contains a number of features that accommodate the require-

ments of database applications. These include support for transactions and the option to

allow the contents of table to be edited on a per-row basis to avoid unnecessary round trips

to a database.

Online References

http://doc.trolltech.com/4.0/sql.html

http://doc.trolltech.com/4.0/qt4-sql.html

http://doc.trolltech.com/4.0/examples.html#sql-examples

35

http://doc.trolltech.com/4.0/sql.html
http://doc.trolltech.com/4.0/qt4-sql.html
http://doc.trolltech.com/4.0/examples.html#sql-examples

Qt 4.0 Whitepaper © 2005 Trolltech

10. Internationalization

Qt fully supports Unicode, the international standard character set. Program-

mers can freely mix Arabic, English, Hebrew, Japanese, Russian, and other lan-

guages supported by Unicode in their applications. Qt also includes tools to

support application translation to help companies reach international markets.

Qt includes tools to facilitate the translation process. Programmers can easily mark user-

visible text that needs translation, and a tool extracts this text from the source code.

Qt Linguist (page 38) is an easy-to-use GUI application that reads the extracted source

texts, and provides the texts with context information ready for translation. When the

translation is complete, Qt Linguist outputs a translation file for applications to use.

Qt uses the QString class to store Unicode strings, and uses it both throughout the API

and internally. QString replaces const char * pointers and std::string, and the 16-

bit QChar class replaces char. Constructors and operators are provided to automatically

convert to and from 8-bit strings. Programmers can copy QString objects by value, since

they are implicitly shared (copy on write; see page 49), which makes them fast and memory

efficient.

QString is more than a 16-bit character string. Functions such as QChar::lower() and

QChar::isPunct() replace tolower() and ispunct() and work over the whole Unicode range.

Qt’s regular expression engine, provided by the QRegExp class, uses Unicode strings both

for the regular expression pattern and the target string.

Qt’s locale support enables number-to-string and string-to-number conversions to be adapted

to suit the user’s geographical location and language preferences. For example:

QLocale iranian(QLocale::Persian, QLocale::Iran);
QString s1 = iranian.toString(195); // s1 == " "
int n = iranian.toInt(s1); // n == 195

QLocale norwegian(QLocale::Norwegian, QLocale::Norway);
QString s2 = norwegian.toString(3.14); // s2 == "3,14" (comma)
double d = norwegian.toDouble(s2); // d == 3.14

Conversion to and from different encodings and charsets is handled by QTextCodec sub-

classes. Qt uses QTextCodec for fonts, I/O, and input methods; developers can use it for

their own purposes as well.

QTextCodec supports a wide variety of different encodings, including Big5 and GBK for

Chinese, EUC-JP, JIS, and Shift-JIS for Japanese, KOI8-R for Russian, and the ISO-8859

series of standard encodings†. Developers can add their own encodings by providing a

character map or by subclassing QTextCodec.

10.1. Text Entry and Rendering

Far-Eastern writing systems require many more characters than are available on a key-

board. The conversion from a sequence of key presses to actual characters is performed at

the window-system level by software called input methods. Qt automatically supports the

installed input methods.

†ISO is a registered trademark of the International Organization for Standardization.

36

Qt 4.0 Whitepaper © 2005 Trolltech

Qt provides a powerful text-rendering engine for all text that is displayed on screen, from

the simplest label to the most sophisticated rich text editor. The engine supports ad-

vanced features such as special line breaking behavior, bidirectional writing, and diacrit-

ical marks. It renders most of the world’s writing systems, including Arabic, Chinese,

Cyrillic, English, Greek, Hebrew, Japanese, Korean, Latin, and Vietnamese. Qt will auto-

matically combine the installed fonts to render multi-language text.

10.2. Translating Applications

Qt provides tools and functions to help developers provide applications in their users’ na-

tive languages. Qt itself contains about 400 user-visible strings, for which Trolltech pro-

vides French and German translations.

To make an ASCII string translatable, simply wrap it in a call to the tr() translation func-

tion; for example:

saveButton->setText(tr("Save"));

tr() attempts to replace a string literal (e.g., "Save") with a translation if one is available;

otherwise it uses the original text. English can be used as the source language and Chinese

as the translated language, for example. The argument to tr() is converted to Unicode from

the application’s default encoding. Alternatively, text encoded as UTF-8 can be supplied to

the translation system with the trUtf8() function.

The general syntax of tr() is

Context::tr("source text", "comment")

The “context” is the name of a QObject subclass. It is usually omitted, in which case the

class containing the tr() call is used as the context. The “source text” is the text to translate.

The “comment” is optional; along with the context, it provides additional information to

human translators.

Translations are stored in QTranslator objects, which use disk-based .qm files (Qt Mes-

sage files). Each .qm file contains the translations for a particular language. The language

can be chosen at run-time, in accordance with the locale or user preferences.

Qt provides three tools for preparing .qm files: lupdate, Qt Linguist, and lrelease.

1. lupdate extracts a series of items, each containing a context, some source text, and a

comment from the source code (including Qt Designer .ui files), then generates a .ts

file (Translation Source file). These files are in human-readable XML format.

2. Translators use Qt Linguist to provide translations for the source texts in the .ts

files.

3. Highly compressed .qm files are generated by running lrelease on the .ts files.

These steps are repeated as often as necessary during the lifetime of an application. It

is perfectly safe to run lupdate frequently, as it reuses existing translations and marks

translations for obsolete source texts without eliminating them. lupdate also detects slight

changes in source texts and automatically suggests appropriate translations. These trans-

lations are marked as unfinished so that a translator can easily check them.

37

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 21: Working on a Norwegian translation with Qt Linguist.

10.3. Qt Linguist

Qt Linguist is a Qt application that helps translators translate Qt applications.

Translators can edit .ts files conveniently using Qt Linguist. The .ts file’s contexts are

listed in the left-hand side of the application’s window. The list of source texts for the

current context is displayed in the top-right area, along with translations. By selecting a

source text, the translator can enter a translation, mark it done or unfinished, and proceed

to the next unfinished translation. Keyboard shortcuts are provided for all the common

navigation options, such as Done & Next and Next Unfinished. The user interface’s dockable

windows can be reorganized to suit the translators’ preferences.

Applications often use the same phrases many times in different source texts. Qt Linguist

automatically displays intelligent guesses based on previously translated strings and pre-

defined translations at the bottom of the window. Guesses often serve as a good starting

point that helps translators translate similar texts consistently. Common translations can

also be stored in phrasebooks to make the translation of future applications more efficient.

Qt Linguist can optionally validate translations to ensure that accelerators and ending

punctuation are translated correctly.

Qt Linguist’s comprehensive manual provides relevant information about the translation

process for release managers, translators, and programmers.

Online References

http://doc.trolltech.com/4.0/i18n.html

http://doc.trolltech.com/4.0/unicode.html

http://doc.trolltech.com/4.0/qtextcodec.html

http://doc.trolltech.com/4.0/linguist-manual.html

38

http://doc.trolltech.com/4.0/i18n.html
http://doc.trolltech.com/4.0/unicode.html
http://doc.trolltech.com/4.0/qtextcodec.html
http://doc.trolltech.com/4.0/linguist-manual.html

Qt 4.0 Whitepaper © 2005 Trolltech

11. Layouts

Layouts provide a powerful and flexible alternative to using fixed sizes and po-

sitions. Layouts free programmers from having to perform size and position cal-

culations, and provide automatic scaling to suit the user’s screen, language, and

fonts.

Qt provides layout managers for organizing child widgets within their parent widget’s area.

They feature automatic positioning and resizing of child widgets, sensible minimum and

default sizes for top-level widgets, and automatic repositioning when the contents or text

font changes. Qt Designer (page 20) is fully able to use layout managers to position widgets.

Figure 22: The same dialog shown at different sizes.

Layouts are also useful for internationalization. With fixed sizes and positions, the trans-

lation text is often truncated (Figure 24); with layouts, the child widgets are automatically

resized. Additionally, widget placement can be reversed to provide a more natural appear-

ance for users who work with right-to-left writing systems.

11.1. Built-in Layout Managers

Qt provides layout managers to arrange widgets and other layouts horizontally, vertically,

and in grids of items:

• QHBoxLayout organizes the managed widgets in a single horizontal row from left

to right.

• QVBoxLayout organizes the managed widgets in a single vertical column from top

to bottom.

• QGridLayout organizes the managed widgets in an expanding grid of cells, with the

facility to let widgets span multiple cells where necessary.

Each of the built-in layout managers allow widgets to be horizontally and vertically aligned

within the space allocated to them, making it possible to customize the appearance of a user

interface using only simple layouts and alignment properties.

39

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 23: Widgets arranged with QHBoxLayout, QVBoxLayout, and QGridLayout layout

managers.

In most cases, Qt’s layout managers pick optimal sizes for managed widgets so that win-

dows resize smoothly. If the defaults are insufficient, developers can refine the layout using

the following mechanisms:

1. Setting a minimum size, a maximum size, or a fixed size for some child widgets.

2. Adding stretch or spacer items. These fill empty space in a layout.

3. Changing the size policies of child widgets. By calling QWidget::setSizePolicy(), pro-

grammers can fine-tune the resize behavior of a child widget. They can be set to

expand, contract, or keep the same size, depending on other widgets in the layout.

4. Changing the child widgets’ size hints. QWidget::sizeHint() and QWidget::minimum-

SizeHint() return a widget’s preferred size and preferred minimum size based on its

contents. Built-in widgets provide appropriate reimplementations of these functions.

5. Setting stretch factors. Stretch factors allow relative growth of child widgets; for

example, allocating two thirds of any extra available space to widget A and one third

to widget B.

The “spacing” between managed widgets and the “margin” around the whole layout can

also be set by the programmer. By default, Qt Designer uses industry-standard values

appropriate to the context.

Layouts can also run right-to-left and bottom-to-top. Right-to-left layouts are convenient

for internationalized applications supporting right-to-left writing systems (e.g., Arabic and

Hebrew). The built-in layout managers are fully integrated with Qt’s style system (page

42) to provide a consistent look and feel on reversed displays.

11.2. Nested Layouts

Layouts can be nested to arbitrary levels. Figure 22 shows an example of a dialog box

at two different sizes. The dialog uses three layouts: a QVBoxLayout groups the push

buttons together, a QHBoxLayout groups the country list view with the push buttons,

and a QVBoxLayout groups the “Select a country” label with the rest of the widget. A

stretch item maintains the gap between the Cancel and Help buttons.

40

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 24: The effects of using layouts. In the first two pictures, the same dialog is shown contain-

ing the original English text and French text without layouts; the French text is truncated. In the

right-hand picture, the labels are placed in layouts, and the French text is displayed correctly.

The dialog’s widgets and layouts are created with the following code:

QVBoxLayout *buttonBox = new QVBoxLayout;
buttonBox->setSpacing(6);
buttonBox->addWidget(new QPushButton(tr("&OK")));
buttonBox->addWidget(new QPushButton(tr("&Cancel")));
buttonBox->addStretch(1);
buttonBox->addWidget(new QPushButton(tr("Help")));

QListWidget *countryList = new QListWidget(this);
countryList->addItem(tr("Canada"));
/* ... */
countryList->addItem(tr("United States of America"));

QHBoxLayout *middleBox = new QHBoxLayout;
middleBox->setSpacing(11);
middleBox->addWidget(countryList);
middleBox->addLayout(buttonBox);

QVBoxLayout *topLevelBox = new QVBoxLayout;
topLevelBox->setSpacing(11);
topLevelBox->setMargin(6);
topLevelBox->addWidget(new QLabel(tr("Select a country")));
topLevelBox->addLayout(middleBox);

setLayout(topLevelBox);

Qt makes laying out widgets so easy that programmers rarely use fixed positioning.

Developers can define custom layout managers by subclassing QLayout. The layout exam-

ples provided with Qt present two custom layout managers: a border layout which arranges

child widgets at the points of the compass, and a flow layout which arranges widgets like

words on a page. Programmers can use and modify these layouts to create new layout

strategies for widgets.

Qt also includes QSplitter, a splitter bar that end users can manipulate. In some design

situations, QSplitter may be preferable to a layout manager.

For complete control, it is also possible to perform layout manually in a widget by reim-

plementing QWidget::resizeEvent() and by calling QWidget::setGeometry() on each child

widget.

Online References

http://doc.trolltech.com/4.0/layout.html

41

http://doc.trolltech.com/4.0/layout.html

Qt 4.0 Whitepaper © 2005 Trolltech

12. Styles and Themes

Qt automatically uses the native desktop style for an application’s look and feel.

Qt applications respect user preferences for colors, fonts, sounds, and other desk-

top settings. Qt programmers are free to use any of the supplied styles and can

override any preferences. Programmers can modify existing styles or implement

their own styles using Qt’s powerful style engine.

A style implements the “look and feel” of the user interface on a particular platform. A style

is a QStyle subclass that implements basic drawing functions such as drawing frames,

buttons, and images. Qt performs all the widget drawing itself for maximum speed and

flexibility.

12.1. Built-in Styles

Qt provides the following built-in styles: CDE, Motif, Mac OS X, Plastique, Windows, and

Windows XP. By default, Qt uses the appropriate style for the user’s platform and desktop

environment. The style can also be chosen programmatically by the application developer,

or by the user with the -style command-line option.

Figure 25: Comboboxes in the different native styles with the Windows XP style combobox selected.

A style is complemented by the user’s desktop settings, which include the user’s preferences

for colors, fonts, sounds, etc. Qt automatically adapts to the computer’s active theme. For

example, Qt supports scroll and fade transition effects for menus and tooltips.

The Windows XP and Mac OS X styles are built on top of native style managers, and are

available only on their respective platforms. The other styles are emulated by Qt and are

available everywhere.

The default style on most modern X11 platforms is Plastique, a style inspired by the Plastik

widget style for KDE that is designed to fit in on most Linux and Unix desktops.

Qt’s built-in widgets are style-aware. Custom widgets and dialogs are almost always com-

binations of built-in widgets and layouts, and automatically adapt to the style in use. On

the rare occasions when it is necessary to write a custom widget from scratch, developers

can use QStyle to draw basic user-interface elements rather than drawing raw graphics

primitives directly.

QStyle supports right-to-left languages. Based on the translation file loaded, Qt auto-

matically uses right-to-left widget layouts rather than the default left-to-right scheme nor-

mally used. Users can run individual applications in this mode by specifying the -reverse

command-line option. Additionally, when used in reversed mode, well-behaved styles ren-

der widgets with areas of light and shadow that are appropriate for the user’s desktop

environment.

42

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 26: The Qt 4 Styles example shows the built-in styles, and includes a custom style for

comparison.

12.2. Custom Styles

Custom styles are used to provide a distinct look to an application or family of applications.

Custom styles can be defined by subclassing QStyle, QCommonStyle, or any of its sub-

classes. It is easy to make small modifications to existing styles by reimplementing one or

two virtual functions from the appropriate base class.

The QStyle API provides information about each of the constituent components used to

draw widgets, making it possible for highly customized styles to be created and fine-tuned.

Qt’s platform-native styles are appropriate for most applications. However, in some cases

it is necessary to override the default style in favor of a particular look and feel. Setting

the application’s style is as simple as this:

QApplication::setStyle(new MyCustomStyle);

A style can also be compiled as a plugin (page 51). Plugins make it possible to preview

a form using a custom style in Qt Designer without recompiling either Qt or Qt Designer

itself. The style of an existing Qt application can be changed using a style plugin without

recompiling the application. This enables applications like the Qt 4 Styles example and

the qtconfig tool to switch styles on-the-fly to provide previews for each of the available

styles.

Online References

http://doc.trolltech.com/4.0/qt4-styles.html

http://doc.trolltech.com/4.0/widgets-styles.html

http://doc.trolltech.com/qq/qq13-styles.html

43

http://doc.trolltech.com/4.0/qt4-styles.html
http://doc.trolltech.com/4.0/widgets-styles.html
http://doc.trolltech.com/qq/qq13-styles.html

Qt 4.0 Whitepaper © 2005 Trolltech

13. Events

Application objects receive system messages as Qt events. Applications can mon-

itor, filter, and respond to events at different levels of granularity.

In Qt, an event is an object that inherits QEvent. Events are delivered to each QOb-

ject so that they can respond to them. Programmers can monitor and filter events at the

application level and at the object level.

13.1. Event Creation

Most events are generated by the window system and inform an application about relevant

user actions, such as key presses, mouse clicks, or when windows are resized. These events

can also be simulated programmatically. There are over fifty types of event, the most com-

mon of which report mouse activity, key presses, redraw requests, and window handling

operations. Developers can add their own event types that behave like the built-in events.

It is usually insufficient merely to know that a key was pressed, or that a mouse button

was released. The receiver also needs to know, for example, which key was pressed, which

button was released, and where the mouse was located. Each subclass of QEvent provides

additional information relevant to the type of event, and each event handler can use this

information to act accordingly.

13.2. Event Delivery

Qt delivers events by calling the virtual function QObject::event(). For convenience, QWid-

get::event() forwards the most common types of event to dedicated handlers, such as QWid-

get::mouseReleaseEvent() and QWidget::keyPressEvent(). Developers can easily reimple-

ment these handlers when writing their own widgets, or when specializing existing wid-

gets.

Some events are sent immediately, while others are queued, ready to be dispatched when

control returns to the Qt event loop. Qt uses queueing to optimize certain types of event.

For example, multiple paint events are compressed into a single event to maximize speed.

Often an object needs to look at another object’s events; e.g., to respond to them or to block

them. This is achieved by having a monitoring object call QObject::installEventFilter() on

the object that it will monitor. The monitor’s QObject::eventFilter() virtual function will be

called with each event that is destined for the monitored object before the monitored object

receives the event.

It’s also possible to filter all the application’s events by installing a filter on the unique

QApplication instance for the application. Such filters are called before any widget-

specific filters. It is even possible to reimplement QApplication::notify(), the event dis-

patcher, for complete control over the event delivery process.

Online References

http://doc.trolltech.com/4.0/eventsandfilters.html

44

http://doc.trolltech.com/4.0/eventsandfilters.html

Qt 4.0 Whitepaper © 2005 Trolltech

14. Input/Output and Networking

Qt can load and save data in plain text, XML, and binary formats. Qt handles

local files using its own classes, and remote files using the FTP and HTTP pro-

tocols. Inter-process communication and socket-based TCP and UDP networking

are also fully supported.

Figure 27: The Qt 4 FTP example uses the QFtp class to provide simple FTP browsing capabilities.

14.1. Reading and Writing Files

Qt provides classes to perform advanced I/O on multiple platforms. The QTextStream

class has a similar interface to the standard <iostream> classes, and supports the encod-

ings provided by QTextCodec. The QDataStream class is used to serialize the basic

C++ types and many Qt types in a platform-independent binary format. For example, the

following code writes a Unicode string, a font, and a color to the splash.dat file:

QFile outputFile("splash.dat");
if (outputFile.open(QIODevice::WriteOnly)) {

QDataStream outputStream(&outputFile);
outputStream << QString("SplashWidgetStyle")

<< QFont("Times", 18, QFont::Bold)
<< QColor("skyblue");

}

The data can easily be retrieved and used with the following code:

QString str;
QFont font;
QColor color;
QFile inputFile("splash.dat");
if (inputFile.open(QIODevice::ReadOnly)) {

QDataStream inputStream(&inputFile);
inputStream >> str >> font >> color;

if (str == "SplashWidgetStyle") {
splashWidget->setFont(font);
splashWidget->setColor(color);

}
}

45

Qt 4.0 Whitepaper © 2005 Trolltech

The QFile class supports large files, long file names, and internationalized file names.

QTextStream and QDataStream operate on any QIODevice subclass. Qt also includes

the QBuffer, QTcpSocket, and QUdpSocket subclasses, and programmers can imple-

ment their own custom devices. QIODevice also provides low-level functions such as

readLine() and writeBlock() that can be used independently of any stream.

Directories are read and traversed using QDir. QDir can be used to manipulate path

names and access the underlying file system (e.g., create a directory or delete a file). QFile-

Info provides more detailed information about a file, such as its size, permissions, creation

time, and last modification time.

The following example lists the hidden files in the user’s home directory along with their

size, in increasing order of size:

QDir dir = QDir::home();
dir.setFilter(QDir::Files | QDir::Hidden);
dir.setSorting(QDir::Size | QDir::Reversed);
QStringList names = dir.entryList();

foreach (QString name, names) {
QFileInfo info(dir, name);
cout << name.toLatin1().data() << " " << info.size() << endl;

}

Transparent access to remote files is provided by the QHttp and QFtp classes. URLs can

easily be parsed and reconstructed using QUrl.

Some types of file can be read directly without requiring the use of a QFile object. For

example, image files are usually read via the QImage class with its extensible plugin

mechanism (page 27). Printing text and images is handled by QPrinter (page 27).

14.2. XML

Qt’s XML module provides a SAX parser and a DOM parser, both of which read well-formed

XML and are non-validating. The SAX (Simple API for XML) implementation follows the

design of the SAX2 Java implementation, with adapted naming conventions. The DOM

(Document Object Model) Level 2 implementation follows the W3C® recommendation and

includes namespace support.

Many Qt applications use XML to store their persistent data. The SAX parser is used

for reading data incrementally, and is especially suitable both for applications with simple

parsing requirements and for those involving very large files. The DOM parser reads the

entire file into a tree structure in memory that can be traversed at will.

14.3. Inter-Process Communication

The QProcess class is used to start external programs and to communicate with them from

a Qt application in a platform-independent way. Communication is achieved by writing to

the external program’s standard input and potentially by reading its standard output and

standard error. Since QProcess is a subclass of QIODevice, data can be streamed to and

from the process with QTextStream and QDataStream.

46

Qt 4.0 Whitepaper © 2005 Trolltech

Figure 28: A live currency convertor that uses the QTcpSocket class to send and receive data

from a remote server.

QProcess works asynchronously, reporting the availability of data by emitting signals. Qt

applications can connect to the signals to retrieve the data for processing, and optionally

respond by sending data back to the external program. QProcess also supports a blocking

mode of operation.

14.4. Networking

Qt provides a multiplatform interface for writing TCP/IP clients and servers, supporting

IPv4 and IPv6. All of Qt’s networking classes are reentrant and can be used from any

QThread.

The QTcpSocket class provides an asynchronous buffered TCP connection. QTcpSocket

is a QIODevice, making it easy to use QTextStream and QDataStream on a socket.

Both QTcpSocket and QUdpSocket are designed to work well within a GUI application,

and support both blocking and non-blocking operating modes. A live currency converter

application illustrates this.

The application uses the fictional protocol CCP (Currency Conversion Protocol) to access

the latest exchange rates from a server. Only lines related to networking are presented.

The socket is created in the Converter constructor:

...
socket = new QTcpSocket(this);
connect(socket, SIGNAL(connected()), this, SLOT(sendSourceAmount()));
connect(socket, SIGNAL(readyRead()), this, SLOT(updateTargetAmount()));
...

Socket communication is asynchronous, and the socket emits the connected() signal when

a connection is made, and the readyRead() signal when there is data available to read.

The convert() slot is called when the user clicks the Convert button:

void Converter::convert()
{

convertButton->setEnabled(false);
socket->connectToHost("ccp.banca-monica.nu", 1234);

}

This slot disables the Convert button while the conversion takes place, opens the connec-

tion, and returns immediately. When the socket connects to the server, it will emit the

connected() signal.

47

Qt 4.0 Whitepaper © 2005 Trolltech

The sendSourceAmount() slot is called when the socket has successfully connected to the

server:

void Converter::sendSourceAmount()
{

QString command = "CONV " + sourceAmount->text() + " " +
sourceCurrency->currentText() + " " +
targetCurrency->currentText() + "\r\n";

socket->write(command.toLatin1().data());
}

This slot sends a request (e.g., CONV 100 EUR USD) to port 1234 on the server. QTcpSocket

automatically resolves ccp.banca-monica.nu to its IP address. All these operations are

non-blocking to keep the user interface responsive.

void Converter::updateTargetAmount() {
if (socket->canReadLine()) {

targetAmount->setText(socket->readLine());
socket->close();
convertButton->setEnabled(true);

}
}

The updateTargetAmount() function is called when the server replies to the CONV request.

It reads the reply, updates the display, closes the connection, and enables the Convert

button.

Simple TCP servers can be implemented by subclassing QTcpServer, which works asyn-

chronously like QTcpSocket. QTcpServer sets up a listening socket that accepts incom-

ing connections, and calls a virtual function to serve the client. Similarly, QUdpServer

provides a server based on QUdpSocket. QTcpServer can operate in blocking and non-

blocking modes.

The QAbstractSocket class provides a platform-independent wrapper for native socket

APIs. It provides the underlying functionality for QTcpSocket, QTcpServer, and QUdp-

Socket.

Online References

http://doc.trolltech.com/4.0/qiodevice.html

http://doc.trolltech.com/4.0/xml.html

http://doc.trolltech.com/4.0/networking.html

48

http://doc.trolltech.com/4.0/qiodevice.html
http://doc.trolltech.com/4.0/xml.html
http://doc.trolltech.com/4.0/networking.html

Qt 4.0 Whitepaper © 2005 Trolltech

15. Collection Classes

Collection classes are used to store groups of items in memory. Qt provides a set

of classes that are compatible with the Standard Template Library (STL), and

that work regardless of whether the compiler supports STL or not. Java-style

iterators are also provided for safety and convenience.

Applications often need to manage items in memory, such as groups of images, widgets, or

custom objects. Many C++ compilers support the STL, which provides ready-made data

structures for storing items. Qt provides lists, stacks, queues, and dictionaries with STL-

syntax. Qt’s collection classes even work with compilers that are not capable of supporting

the STL.

Qt’s rich set of portable collection classes (“containers”) and associated iterators are heavily

used inside Qt, and are provided as part of the Qt API. Qt’s containers are optimized for

speed and memory efficiency using two techniques: “private classes” and “implicit sharing”.

Programmers can also use STL containers on the platforms that support them, at the cost

of losing Qt’s optimizations.

Template classes usually increase the size of executables dramatically because the compiler

generates essentially the same code for each specialized type. Qt’s template collection

classes are optimized for minimal code expansion since they are implemented in a thin

layer over non-template private classes.

15.1. Containers

Qt provides five sequential containers that can be used to hold either values or pointers:

QList<T>, QLinkedList<T>, QVector<T>, QStack<T>, and QQueue<T>. They have

an interface very similar to the STL containers and are fully compatible with the STL

algorithms. Qt provides some STL-equivalent algorithms: qCopy(), qFind(), qSort(), etc.

On platforms with STL support, Qt provides automatic conversion operators between STL

and Qt containers.

Additionally, Qt provides Java-style iterators for developers who are more familiar with

Java containers than the STL.

Qt provides five associative containers: QMap<Key,T>, QHash<Key,T>, QSet<T>,

QMultiHash<Key,T>, and QMultiMap<Key,T>. The “Hash” containers use a hash func-

tion to improve search performance.

Qt’s sequential and associative collection classes can be used to store both value-based and

pointer-based types, making them especially useful for handling QWidget and QObject

pointers. When used to hold pointer-based items, convenience functions can be used to

delete the contents of collections in one pass before the collection is destroyed.

15.2. Implicit Sharing

When used with Qt’s value classes, the items held in these collection classes are implicitly

shared (“copy on write”). Copies of these classes share the same data in memory. The

49

Qt 4.0 Whitepaper © 2005 Trolltech

data sharing is handled automatically; if the application modifies the contents of one of the

copied objects, a deep copy of the data is made so that the other objects are left unchanged.

When an object is copied, only a pointer is passed and a reference count incremented, which

is much faster than actually copying the data, and also saves memory.

Sharing is used wherever it makes sense: in Qt’s value-based collection classes, and in

other commonly-used classes such as QBrush, QFont, QIcon, QPalette, QPen, QPixmap,

QRegExp, and QString. Programmers can safely and efficiently copy objects of these

classes by value, avoiding the risks related to optimizing pointer-based code by hand. In

particular, the implicitly shared QString class makes string processing easy and fast.

Qt also provides the low-level QBitArray and QByteArray classes. These classes are

very efficient for handling basic data types.

Online References

http://doc.trolltech.com/4.0/containers.html

http://doc.trolltech.com/4.0/shclass.html

50

http://doc.trolltech.com/4.0/containers.html
http://doc.trolltech.com/4.0/shclass.html

Qt 4.0 Whitepaper © 2005 Trolltech

16. Plugins and Dynamic Libraries

Qt applications can access functions from dynamic libraries using a platform-

independent API. Qt also supports plugins, allowing developers to create and

distribute codecs, database drivers, image format converters, styles, and custom

widgets as separate components.

16.1. Plugins

Converting a Qt component into a plugin is achieved by subclassing the appropriate plugin

base class, implementing a few simple functions, and adding a macro. For example, a

QStyle subclass called CopperStyle can be made available as a plugin in the following

way:

class CopperStylePlugin : public QStylePlugin
{
public:

QStringList keys() const {
return QStringList() << "CopperStyle";

}

QStyle *create(const QString &key) {
if (key == "CopperStyle")

return new CopperStyle;
return 0;

}
};

Q_EXPORT_PLUGIN(CopperStylePlugin)

The new style can be set like this:

QApplication::setStyle(QStyleFactory::create("CopperStyle"));

Components supplied as plugins are detected and used by the application automatically.

Many third parties provide Qt components in source form, as precompiled dynamic li-

braries, and as plugins.

16.2. Dynamic Libraries

The QLibrary class provides a cross-platform API for loading dynamic libraries. Below

is an example of the most basic way to dynamically load and use a library. The example

attempts to obtain a pointer to the print_str function from the mylib library (mylib.dll

on Windows, mylib.so on Unix).

typedef void (StrFunc)(const char *str);
QLibrary lib("mylib");
StrFunc *func = (StrFunc *) lib.resolve("print_str");
if (func) func("Hello world!");

Calling a function this way is not type-safe, and only symbols with C linkage are supported.

Online References

http://doc.trolltech.com/4.0/plugins-howto.html

51

http://doc.trolltech.com/4.0/plugins-howto.html

Qt 4.0 Whitepaper © 2005 Trolltech

17. Building Qt Applications

Qt developers can take advantage of a suite of tools to simplify the process of

building applications on all supported platforms. Applications, libraries, and

plugins are described by project files that are processed to produce suitable Make-

files for each platform.

17.1. Qt’s Build System

Projects are described by .pro files that contain terse, but readable descriptions of source

and header files, Qt Designer forms, and other resources. These are processed by the qmake

tool to produce suitable Makefiles for the project on each platform.

All of the Qt libraries, tools, and examples are described by project files. For example, the

Qt 4 HTTP example can be described in just the following three lines:

HEADERS += httpwindow.h
SOURCES += httpwindow.cpp main.cpp
QT += network

The first two definitions inform qmake about the header and source files needed to build

the example; the last one ensures that Qt’s networking library is used. The project file

syntax also lets developers fine-tune the build process with configuration options, and write

conditional build rules for different deployment situations.

Project files can also be used to describe projects that are organized within a deep direc-

tory tree. For example, Qt’s examples are located in a directory tree within a top-level

examples directory. The examples.pro file instructs qmake to descend into directories for

each category of examples with the following lines:

TEMPLATE = subdirs
SUBDIRS = dialogs draganddrop itemviews layouts linguist \

mainwindows network painting richtext sql \
threads tools tutorial widgets xml

Support for conditional builds means that the Windows-specific examples are only built

when compiling a suitable edition of Qt on an appropriate supported platform:

win32:!contains(QT_EDITION, OpenSource|Console):SUBDIRS += activeqt

When qmake is used to build a project, all the enhanced features of Qt are automatically

handled by the other tools in the build suite: moc (page 12) processes the header files to

enable signals and slots, rcc compiles the specified resources, and uic is used to create

code from user interface forms created with Qt Designer (page 20).

Precompiled header support, pkg-config integration, the ability to generate Visual Studio

project files, and other advanced features allow developers to take advantage of platform-

specific tools while retaining the use of a cross-platform build system for common project

components.

Developers using the Desktop or Desktop Light editions of Qt can also use qmake’s project

files from within Microsoft Visual Studio. On Mac OS X, support for project files from

within Apple’s Xcode is provided as standard with all Qt editions.

52

Qt 4.0 Whitepaper © 2005 Trolltech

17.2. Qt’s Resource System

Qt provides a resource system that allows data files to be stored inside executables, so that

any resources required by applications can be accessed at run-time. Qt’s widgets support a

naming scheme that allows developers to directly refer to these packaged resources.

. . .

application.pro

application.qrc

main.cpp

mainwindow.cpp

mainwindow.h

images/copy.png

images/cut.png

images/save.png

application.exe
. . .

:/images/save.png

:/images/cut.png

:/images/copy.png

Figure 29: In this example, a set of images are packaged with the application when it is built. The

application references them using the naming scheme shown.

The resources to be packaged with an application are listed in a .qrc (Qt Resource Col-

lection) file, containing a list of files in the build directory along with the resource paths

that are used in the application. These files are processed using rcc to create data that

is compiled into the application. This approach ensures that certain critical resources are

always available to applications, avoiding possible distribution and installation problems.

Online References

http://doc.trolltech.com/4.0/qmake-manual.html

http://doc.trolltech.com/4.0/resources.html

http://www.trolltech.com/products/qt/vs-integration.html

http://www.trolltech.com/products/qt/mac.html

53

http://doc.trolltech.com/4.0/qmake-manual.html
http://doc.trolltech.com/4.0/resources.html
http://www.trolltech.com/products/qt/vs-integration.html
http://www.trolltech.com/products/qt/mac.html

Qt 4.0 Whitepaper © 2005 Trolltech

18. Qt’s Architecture

Qt’s functionality is built on the low-level APIs of the platforms it supports. This

makes Qt flexible and efficient, and enables Qt applications to fit in with single-

platform applications.

Qt is a cross-platform framework which uses native style APIs to accurately follow the

human interface guidelines on each supported platform. All widgets are drawn by Qt,

and programmers can extend or customize them by reimplementing virtual functions. Qt’s

widgets accurately emulate the look and feel of the supported platforms, as described in

Styles and Themes (page 42). This technique also enables developers to derive their own

custom styles to provide a distinct look and feel for their applications.

Qt uses the low-level APIs of the different platforms it supports. This differs from tradi-

tional “layered” cross-platform toolkits that are thin wrappers over single-platform toolkits

(e.g., MFC on Windows and Motif on X11). Layered toolkits are usually slow, since every

function call to the library results in many additional calls down through the different API

layers. Layered toolkits are often restricted by the features and behavior of the underlying

toolkits, leading to obscure bugs in applications.

Qt is professionally supported, and takes advantage of the available platforms: Microsoft

Windows, X11, Mac OS X, and Embedded Linux. Using a single source tree, a Qt appli-

cation can be compiled to an executable for each target platform. Although Qt is a cross-

platform framework, customers have found it to be easier to learn and more productive

than many platform-specific toolkits. Many customers use Qt for single-platform develop-

ment, preferring Qt’s fully object-oriented approach.

18.1. X11

Qt/X11 uses Xlib to communicate with the X server directly. Qt does not use Xt (X Toolkit),

Motif, Athena, or any other toolkit.

Qt supports the following versions of Unix: AIX®, FreeBSD®, HP-UX, Irix®, Linux, NetBSD,

OpenBSD, and Solaris. See the Trolltech web site for an up-to-date list of supported com-

pilers and operating system versions.

Qt applications automatically adapt to the user’s window manager or desktop environment,

and have a native look and feel under Motif, CDE, GNOME™, and KDE™. This contrasts

with most other Unix toolkits, which lock users into their own look and feel.

Qt provides full Unicode support (page 36). Qt applications automatically support both

Unicode and non-Unicode fonts. Qt combines multiple X fonts to render multi-lingual

text. Qt’s font handling is intelligent enough to search all the installed fonts for characters

unavailable in the current font.

Qt takes advantage of X extensions where they are available. Qt supports the RENDER

extension for anti-aliased and alpha-blended fonts and vector graphics. Qt provides on-

the-spot editing for X Input Methods. Qt supports multiple screens both with traditional

multi-head and with Xinerama.

54

Qt 4.0 Whitepaper © 2005 Trolltech

Qt Application Source Code

Qt API

Qt/Windows Qt/X11 Qt/Macintosh

GDI X Windows Carbon

Windows Unix/Linux Mac OS X

Figure 30: An overview of Qt’s architecture on supported desktop platforms.

18.2. Microsoft Windows

Qt/Windows uses the Win32® API and GDI for events and drawing primitives. Qt does

not use MFC or any other toolkit. In particular, Qt does not use the inflexible “common

controls,” but rather provides its own more powerful, customizable widgets. (For non-

specialized uses, Qt uses the native Windows file and print dialogs.)

Qt/Windows customers can create Qt applications using Microsoft Visual C++® and Bor-

land C++ that will run on Windows 95, 98, NT4, ME, 2000, and XP.

Qt performs a run-time check for the Windows version, and uses the most advanced ca-

pabilities available. For example, only Windows NT4, 2000, and XP support rotated text

natively; Qt renders rotated text on all Windows versions, and uses the native support

where available. Qt developers are insulated from differences in the Windows APIs.

Qt supports the Microsoft accessibility interfaces. Unlike the common controls on Win-

dows, Qt widgets can be extended without losing the accessibility information of the base

widget. Custom widgets can also provide accessibility.

Qt also supports multiple screens on Microsoft Windows.

18.3. Mac OS X

Qt supports Mac OS X using the Carbon® API.

Qt/Mac introduces layouts and straightforward internationalization support, standardized

access to OpenGL, and powerful visual design with Qt Designer. Qt handles files and

asynchronous socket input/output in the event loop. Qt provides solid database support.

Developers can create Macintosh applications using a modern object-oriented API that

includes comprehensive documentation and full source code.

Macintosh developers can create applications on their favorite platform and broaden their

market hugely by simply recompiling on the other supported platforms.

Online References

http://www.trolltech.com/products/platforms/

55

http://www.trolltech.com/products/platforms/

Qt 4.0 Whitepaper © 2005 Trolltech

19. Platform Specific Extensions and Qt Solutions

In addition to being complete in itself, Qt provides some platform-specific ex-

tensions to assist developers in certain contexts. The ActiveQt extension allows

developers to use ActiveX controls within their Qt applications, and also allows

them to make their Qt applications into ActiveX servers. Other platform-specific

extensions are made available through Qt Solutions, a service made available to

commercial Qt licensees.

In addition to the ActiveQt extension outlined below, there are additional extensions avail-

able from third party suppliers. For example, there is Tq from froglogic™ which provides

Tcl/Tk integration, and a Microsoft Windows resource converter is available from Klarälv-

dalens Datakonsult.

19.1. ActiveX Interoperability

ActiveX is built on Microsoft’s COM technology. It allows applications and libraries to

use components provided by component servers, and to be component servers in their own

right. The Qt/Windows ActiveQt module allows developers to turn their applications into

ActiveX servers, and to make use of the ActiveX controls provided by other applications.

Integration with Microsoft’s .NET™ technology is also possible with ActiveQt. Applica-

tions can use ActiveQt’s COM support to automatically give .NET developers access to Qt

widgets and data types.

ActiveQt seamlessly integrates ActiveX into Qt: ActiveX properties, methods, and events

become Qt properties, slots, and signals. This makes it straightforward for Qt developers

to work with ActiveX using a familiar programming paradigm, and insulates them from all

the different kinds of generated code that is normally part of an ActiveX implementation.

Here’s how to register Internet Explorer for use as an ActiveX component:

#define CLSID_InternetExplorer "{8856F961-340A-11D0-A96B-00C04FD705A2}"

QAxWidget *activeX = new QAxWidget(this);
activeX->setControl(CLSID_InternetExplorer);

If we want to track the user’s use of the component, we could watch how its title changes:

connect(activeX, SIGNAL(TitleChange(const QString &)),
this, SLOT(setWindowTitle(const QString &)));

ActiveQt automatically handles the conversions between ActiveX and Qt data types. Ac-

tiveQt supports the dynamicCall() function to control an ActiveX component through the

control’s IDispatch interface implementation:

activeX->dynamicCall("Navigate(const QString &)", "http://doc.trolltech.com");

Turning a Qt application into an ActiveX server is simple. If we only need to export a single

class, little more is required than the inclusion of the qaxfactory.h header and a suitable

QAXFACTORY_DEFAULT macro. Once the class is compiled, its properties, slots, and signals

become ActiveX properties, methods, and events to ActiveX clients. ActiveQt also provides

the QAxFactory::isServer() function that can be called to determine if the application is

56

Qt 4.0 Whitepaper © 2005 Trolltech

being run in its own right or being used as an ActiveX control, so that developers can

control which functionality is available in which context.

19.2. Qt Solutions

In addition to all the classes supplied with Qt, Trolltech also produces Qt Solutions, an

optional service available to Qt licensees either at the time of purchase or as an add-on

product. Qt Solutions offers a regularly updated set of components and widgets, many of

which are available under the same dual licensing scheme as Qt. An increasing number of

Solutions made available to Qt 3 developers are also available for Qt 4, and new Solutions

are planned for the future.

Online References

http://doc.trolltech.com/4.0/activeqt.html

http://www.trolltech.com/products/solutions

57

http://doc.trolltech.com/4.0/activeqt.html
http://www.trolltech.com/products/solutions

Qt 4.0 Whitepaper © 2005 Trolltech

20. The Qt Development Community

Companies and independent developers from around the world are joining the Qt

development community every day. They have recognized that Qt’s architecture

lends itself to rapid application development. These developers, whether they are

targeting one or many platforms, benefit from Qt’s consistent and straightfor-

ward API, powerful build system, and supporting tools such as Qt Designer.

Qt has an active and helpful user community who communicate using the

http://www.qtforum.org
http://www.trolltech.com
http://doc.trolltech.com
http://www.trolltech.com/training/
mailto:info@trolltech.com
http://partners.trolltech.com/
http://lists.trolltech.com/qt-interest/
http://doc.trolltech.com/qq/

Index

accelerator, 15

action, 14, 15

action system, see actions

ActiveQt, 56

ActiveX, 56

AIX, 54

alpha-blending, 54

analog clock, 7

anti-aliasing, 8

Apple

Xcode, 20, 24, 52

application, 13

architecture, 4, 54, 55

Athena, 54

books, 58

browser, 20

callback, 10

Carbon, 55

CDE, 54

CFPreferences, 18

collection class, 49

color, 26

HSV, 26

RGB, 26

COM, 56

communication, 10

inter-process, 46

community, 58

compiler, 12

Components, 51

connect(), 10

connection, 10

container class, 49

hash, 49

implicit sharing, 49

Java-style iterator, 49

STL, 49

STL iterator, 49

cross-platform, 54

database, 33

DB2, 33

Interbase, 33

MySQL, 33

Oracle, 33

PostgreSQL, 33

SQL Server, 33

SQLite, 33

Sybase, 33

dialog, 5, 16

file, 16

modal, 16

modeless, 16

semi-modal, 16

dock windows, 15

documentation, 20, 58

dynamic libraries, 51

encoding

Big5, 36

EUC-JP, 36

GBK, 36

ISO-8859, 36

JIS, 36

KOI8-R, 36

Shift-JIS, 36

event, 8, 44

example

application, 22

currency convertor, 47

signals and slots, 11

file

reading, 18, 45

writing, 18, 45

form

designing, 20

FreeBSD, 54

FTP, 45

GNOME, 54

graphics, 26

3D, 28

image formats, 27

GUI, 13, 22

help, 17, 20

interactive, 15

online, 17

What’s This?, 17

HP-UX, 54

HTML, 22

i18n, see internationalization

image, 27

59

Qt 4.0 Whitepaper © 2005 Trolltech

indexing, 20

input methods, 54

interactive, 17

interface

graphical user, 13

guidelines, 54

multiple document, 13, 18

single document, 13

interfaces

dynamic, 20

internationalization, 14, 36

introspection, 12

Irix, 54

item view, 29

KDE, 54

KDevelop, 25

keyboard, 15

layout, 20, 39

built-in, 39

nested, 40

right-to-left, 40

layouts, 20

Linux, 5, 54

Mac OS X, 55

mailing list

qt-interest, 58

main, 14

main window, 20

Mandelbrot, 19

MDI, 13, 18

menu, 14

menus, 20

meta-object, 12, 19

MFC, 54

Microsoft

.NET, 56

Visual Studio, 20, 24, 52

Windows, 55

moc, 12, 52

Model-View-Controller, 30

model/view, 30, 33

SQL model, 34

Motif, 54

multithreading, see threading

mutexes, 19

NetBSD, 54

networking, 47

object-oriented, 10

ODBC, 33

OpenBSD, 54

OpenGL, 28

paint, 8

paintEvent(), 8

painting, 26

Bezier curves, 26

path, 26

text, 26

Plastik, 42

Plastique, 5, 16, 17, 42

plugin, 25, 27, 51

popup, 15

progress bar, 16

properties, 20

property, 12

QAbstractItemModel, 30

QAbstractItemView, 30

QAbstractSocket, 48

QAction, 15

QApplication, 44

QAssistantClient, 17, 22

QBitArray, 50

QBrush, 50

QBuffer, 46

QByteArray, 50

QChar, 36

QCheckBox, 5

QColor, 26

QComboBox, 5, 15

QCommonStyle, 43

qCopy(), 49

QDataStream, 45–47

QDialog, 17

QDir, 46

QDockWidget, 15

QEvent, 44

QFile, 46

QFileDialog, 16, 17

QFileInfo, 46

qFind(), 49

QFont, 50

QFontDialog, 17

QFormBuilder, 24

QFtp, 45, 46

QGLWidget, 28

QGridLayout, 39

QGroupBox, 5

60

Qt 4.0 Whitepaper © 2005 Trolltech

QHash<Key,T>, 49

QHBoxLayout, 39, 40

QHttp, 46

QIcon, 50

QImage, 27, 28, 46

QIODevice, 46, 47

QLayout, 41

QLineEdit, 5

QLinkedList<T>, 49

QList<T>, 49

QListView, 29

QListWidget, 29

QMainWindow, 14, 18

qmake, 12, 52

QMap<Key,T>, 49

QMenu, 14

QMenuBar, 14

QMessageBox, 16

QMultiHash<Key,T>, 49

QMultiMap<Key,T>, 49

QObject, 10, 11, 37, 44, 49

QPainter, 26

QPalette, 50

QPen, 50

QPicture, 28

QPixmap, 27, 28, 50

QPrintDialog, 31

QPrinter, 28, 31, 46

QProcess, 46

QProgressDialog, 16

QPushButton, 5

QQueue<T>, 49

QRadioButton, 5

qrc, see rcc

QRegExp, 50

QSA, 58

QScrollArea, 5

QSet<T>, 49

QSettings, 18

QSlider, 5

qSort(), 49

QSpinBox, 5, 15

QSplitter, 41

QSqlQuery, 33

QSqlQueryModel, 35

QSqlRelationalTableModel, 35

QSqlTableModel, 35

QStack<T>, 49

QString, 36, 50

QStyle, 42, 43, 51

Qt Assistant, 17, 20

Qt Designer, 5, 16, 17, 20, 37, 39, 43

Qt Forum, 58

Qt Linguist, 16, 36–38

Qt Quarterly, 58

Qt Script for Applications, 58

Qt Solutions, 57

Qt/Mac, 55

Qt/Windows, 55

Qt/X11, 54

QTableView, 29

QTableWidget, 29

QTabWidget, 5

qtconfig, 43

QTcpServer, 48

QTcpSocket, 46, 47

QtDesigner, 25

QTextBrowser, 31

QTextCodec, 36, 45

QTextDocument, 31

QTextEdit, 14, 22, 31

QTextLayout, 32

QTextStream, 45–47

QToolButton, 15

QToolTip, 17

QTranslator, 37

QTreeView, 29

QTreeWidget, 29

QUdpServer, 48

QUdpSocket, 46–48

QUrl, 46

QVBoxLayout, 39, 40

QVector<T>, 49

QWhatsThis, 17

QWidget, 5, 7, 17, 28, 49

QWorkspace, 14, 18

rcc, 52, 53

RENDER, 54

reusability, 10

SDI, 13

semaphores, 19

serialization, 18

settings, 18

signal, 10

signals, 19

slot, 10

slots, 19

Solaris, 54

SQL, 30, 33

61

Qt 4.0 Whitepaper © 2005 Trolltech

STL, see collection class

style, 42, 54

custom, 43

system

build, 12, 52

resource, 53

TCP/IP, 47

IPv4, 47

IPv6, 47

templates

form, 20

text

bidirectional, 37

editing, 31

entry, 5, 36

rich, 22, 32

theme, 42, 54

thread-global storage, 19

threading, 19

threads, 19

timer, 7

toolbar, 15

toolbars, 20

tooltip, 15, 17

tr(), 14, 37

translation, 12, 36–38

uic, 22, 52

Unicode, 36

Unix, 54

URL, 46

W3C, 46

What’s This?, 17

widget, 5

built-in, 5

central, 18

custom, 7

widgets, 20

X11, 54

XIM, 54

Xinerama, 54

XML, 46

DOM, 46

SAX, 46

Xt, 54

62

Qt, the Qt logo, Qtopia, the Qtopia logo, Trolltech and the Trolltech logo are registered trademarks

of Trolltech AS and/or its subsidiaries in the U.S. and other countries. Additional company and

product names are the property of their respective owners and may be trademarks or registered

trademarks of the individual companies and are respectfully acknowledged.

Trolltech AS operates a policy of continuous development. Therefore, we reserve the right to make

changes and improvements to any of the products described herein without prior notice. All infor-

mation contained herein is based upon the best information available at the time of publication. No

warranty, express or implied, is made about the accuracy and/or quality of the information provided

herein. Under no circumstances shall Trolltech AS be responsible for any loss of data or income or

any direct, special, incidental, consequential or indirect damages whatsoever.

Copyright © 2005 Trolltech AS. All rights reserved.

	Introduction
	Executive Summary

	Widgets
	Built-in Widgets
	Custom Widgets

	Signals and Slots
	A Signals and Slots Example
	Meta-Object Compiler

	GUI Applications
	Main Window Classes
	The Main Window
	Menus
	Toolbars
	Actions
	Dock Windows
	Dialogs
	Interactive Help
	Multiple Document Interface

	Settings
	Multithreading

	Qt Designer
	Working with Qt Designer
	Qt Assistant
	GUI Application Example
	Extending Qt Designer

	2D and 3D Graphics
	Painting
	Images
	Paint Devices
	3D Graphics

	Item Views
	Standard Item Views
	Qt's Model/View Framework

	Text Handling
	Rich Text Editing
	Rich Text Processing
	Custom Text Layouts

	Databases
	Executing SQL Commands
	SQL Models

	Internationalization
	Text Entry and Rendering
	Translating Applications
	Qt Linguist

	Layouts
	Built-in Layout Managers
	Nested Layouts

	Styles and Themes
	Built-in Styles
	Custom Styles

	Events
	Event Creation
	Event Delivery

	Input/Output and Networking
	Reading and Writing Files
	XML
	Inter-Process Communication
	Networking

	Collection Classes
	Containers
	Implicit Sharing

	Plugins and Dynamic Libraries
	Plugins
	Dynamic Libraries

	Building Qt Applications
	Qt's Build System
	Qt's Resource System

	Qt's Architecture
	X11
	Microsoft Windows
	Mac OS X

	Platform Specific Extensions and Qt Solutions
	ActiveX Interoperability
	Qt Solutions

	The Qt Development Community

