

Introduction to Computer Graphics

Spring 2011, lecture notes #2
Mathematics background
02.02.2011

Contents

- Abstractions
- Trigonometry
- Vectors
- Dot and cross products
- Local coordinate basis
- Curves: lines, parametric, implicit
- Planes: triangle, barycentric coordinates
- Matrices

Abstractions

- The mathematical foundations of computer graphics are based on infinite precision abstractions of geometrical objects.
- For instance, a **point** in space is 0-dimensional with zero length, zero area, zero volume, ... while a **line** has non-zero length but zero area, zero volume, and so on.
- Care should be taken when calculating positions, intersection points, etc., using finite precision arithmetic.

Trigonometry

- Trigonometric functions are used both directly and indirectly. All angles are measured in radians.
- Direct use
 - Rotations by an angle θ are expressed using $sin(\theta)$ and $cos(\theta)$.
 - Physical models of the behaviour of light at material interfaces use $sin(\phi)$ and $cos(\phi)$, needed to calculate photorealistic reflections and refractions.
- Indirect use
 - To decide if two vectors are pointing in the same or opposite directions: $\cos > 0$ or < 0.

Trigonometry

- $sin(-\alpha) = -sin(\alpha)$, but $cos(-\alpha) = cos(\alpha)$
- Addition formulae

$$\sin(\alpha+\beta) = \sin(\alpha)*\cos(\beta) + \cos(\alpha)*\sin(\beta)$$
$$\cos(\alpha+\beta) = \cos(\alpha)*\cos(\beta) - \sin(\alpha)*\sin(\beta)$$

Subtraction formulae

$$\sin(\alpha - \beta) = \sin(\alpha) * \cos(\beta) - \cos(\alpha) * \sin(\beta)$$
$$\cos(\alpha - \beta) = \cos(\alpha) * \cos(\beta) + \sin(\alpha) * \sin(\beta)$$

Points

 Points in n-dimensional Euclidean spaces are given by n-tuples

$$P = (x_1, x_2, ..., x_n)$$

We will mostly have $n \le 4$.

- Points are used to define straight lines and curves.
- Straight lines are used to define planes and areas. Using points and eg. splines or paramteric representations we can construct curved surfaces.
- Planes are used to define volumes.

- A vector a has a direction and a length
- The vector \mathbf{a} can be defined by giving its starting point P_1 and end point P_2 .

 A vector is not fixed in space. You may freely translate it preserving its direction.

Vector algebra:

$$a + b = b + a$$

$$\alpha * \mathbf{a} = \alpha \mathbf{a}$$

• Unit basis vectors \mathbf{e}_1 and \mathbf{e}_2 in a 2D Cartesian coordinate system:

- Unit length: $||\mathbf{e}_1|| = ||\mathbf{e}_2|| = 1$
- If P_1 and P_2 themselves are vectors defined from the origin (0,0,...,0) then $\mathbf{a} = P_2 P_1$

- Any vector a can be represented by its unique coordinates (x,y) in a Cartesian coordinate system: a = x*e₁ + y*e₂
- Coordinate representation:

$$\mathbf{a}^{\mathsf{T}} = [\mathsf{x} , \mathsf{y}]$$

• $||\mathbf{a}|| = \operatorname{sqrt}(x^2 + y^2)$, Pythagoras

Dot product **a** · **b**

For any two vectors a and b we can calculate their dot product ·

$$\mathbf{a} \cdot \mathbf{b} = ||\mathbf{a}|| * ||\mathbf{b}|| * \cos(\alpha_{\mathbf{a}\mathbf{b}})$$

where α_{ab} = the angle between **a** and **b**

In the coordinate representation

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{x}_{a} \cdot \mathbf{x}_{b} + \mathbf{y}_{a} \cdot \mathbf{y}_{b}$$

Dot product **a** · **b**

Combining these two results we have a way of calculating the cosine of the angle between two vectors using only square roots and multiplications:

$$cos(\alpha_{ab}) = (x_a * x_b + y_a * y_b)/(||a|| * ||b||)$$

• If \mathbf{a} and \mathbf{b} are perpendicular to each other then $\mathbf{a} \cdot \mathbf{b} = 0$.

Dot product **a** · **b**

■ In 3D

$$e_1 = (1,0,0)$$

$$\mathbf{e}_2 = (0,1,0)$$

$$e_3 = (0,0,1)$$

- $\mathbf{a} = \mathbf{x} * \mathbf{e}_1 + \mathbf{y} * \mathbf{e}_2 + \mathbf{z} * \mathbf{e}_3$
- $||a|| = sqrt(x^2 + y^2 + z^2)$
- **a** \cdot **b** = $x_a * x_b + y_a * y_b + z_a * z_b$

Cross product a x b

Defined in 3D for two vectors a and b

$$\mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ \mathbf{a}_x & \mathbf{a}_y & \mathbf{a}_z \\ \mathbf{b}_x & \mathbf{b}_y & \mathbf{b}_z \end{vmatrix}$$

$$(\mathbf{a} \times \mathbf{b})_{x} = a_{y} * b_{z} - a_{z} * b_{y}$$

 $(\mathbf{a} \times \mathbf{b})_{y} = -a_{x} * b_{z} + a_{z} * b_{x}$
 $(\mathbf{a} \times \mathbf{b})_{z} = a_{x} * b_{y} - a_{y} * b_{x}$

• Also $||\mathbf{a} \times \mathbf{b}|| = ||\mathbf{a}|| * ||\mathbf{b}|| * \sin(\alpha_{ab})$

Cross product a x b

- $\mathbf{a} \times \mathbf{b} = \mathbf{0}$ iff \mathbf{a} and \mathbf{b} are parallel, $\mathbf{a} \times \mathbf{a} = 0$
- $a \times b = -b \times a$
- If a and b are not parallel to each other then a x b will be perpendicular to the plane spanned by a and b.

Local coordinate basis

- An orthonormal basis of three unit vectors e₁, e₂, e₃ perpendicular to each other can be formed from any three vectors a, b, c not collinear by the following procedure:
 - $-\mathbf{e}_1$ = normalized \mathbf{a} : \mathbf{e}_1 = $\mathbf{a}/||\mathbf{a}||$
 - Form $\mathbf{b}' = \alpha \mathbf{e}_1 + \beta \mathbf{b}$ such that $\mathbf{b}' \cdot \mathbf{e}_1 = 0$, that is, $\alpha + \beta \mathbf{b} \cdot \mathbf{e}_1 = 0$
 - If $\mathbf{b} \cdot \mathbf{e}_1 = \mathbf{0}$ choose $\alpha = 0$ and $\mathbf{e}_2 = \mathbf{b}/||\mathbf{b}||$
 - Else let $\beta = 1$, $\alpha = -\mathbf{b} \cdot \mathbf{e}_1$, and $\mathbf{e}_2 = \mathbf{b'}/||\mathbf{b'}||$
 - $\mathbf{e}_3 = \mathbf{e}_1 \times \mathbf{e}_2$

Curves, lines

- Curves are 1D objects with non-zero length but zero area, zero volume, etc.
- We consider only curves in Cartesian coordinate spaces, 2D or 3D.
- Can be defined
 - implicitly from an equation f(x,y) = 0

eg.
$$f(x,y) = y - k*x -b$$

- parametrically, $[x,y] = [f(t),g(t)], t \in [0,1]$

- Definition: f(x,y) = y k*x b
- Points on the line given by f(x,y) = 0
 - k is the slope, $k = tan(\alpha) = b/a$
 - $-x = 0 \Rightarrow y = b$, the y-intercept
 - $-y = 0 \Rightarrow x = -b/k$
- Special cases: $k = \infty$ and a = 0

A more general definition:

$$f(x,y) = A*x + B*y + C$$

Normal: (A,B)

- Given two points on the line, find A,B,C!
- A,B,C not unique: we can multiply by any non-zero value.
- The vector $\mathbf{P}_2 \mathbf{P}_1$ is orthogonal to \mathbf{N} :

$$(A,B) \cdot (x_2-x_1,y_2-y_1) = 0$$

choose

$$A = y_1 - y_2$$

$$B = x_2 - x_1$$

- Thus $(y_1-y_2)*x + (x_2-x_1)*y + C = 0$
- This line also passes through $(x,y) = P_1$. Use $x = x_1$ and $y = y_1$ and solve for C.

$$(y_1-y_2)*x + (x_2-x_1)*y + x_1y_2 - x_2y_1 = 0$$

- Distance d from (a,b) to lin, at (x,y)?
- d is along normal, $d = k*sqrt(A^2+B^2)$
- (a,b) = (x,y) + k(A,B), calculate $f(a,b) = Ax+kA^2+By+kB^2+C = k(A^2+B^2)$
- $d = f(a,b)/sqrt(A^2+B^2)$
- if (a,b) on negative side use

-d

Straight line in 2D, parametric

• The line passing through $P_1 = (x_1,y_1)$ and $P_2 = (x_2,y_2)$ can be written

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 + \mathbf{t}(\mathbf{x}_2 - \mathbf{x}_1) \\ \mathbf{y}_1 + \mathbf{t}(\mathbf{y}_2 - \mathbf{y}_1) \end{bmatrix} \quad \mathbf{t} \in (-\infty, +\infty)$$

This is equivalent to saying

$$p(t) = P_1 + t*(P_2 - P_1)$$

Straight line in 3D, parametric

The line passing through $P_1 = (x_1,y_1,z_1)$ and $P_2 = (x_2,y_2,z_2)$ can be written

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{z} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 + \mathbf{t}(\mathbf{x}_2 - \mathbf{x}_1) \\ \mathbf{y}_1 + \mathbf{t}(\mathbf{y}_2 - \mathbf{y}_1) \\ \mathbf{z}_1 + \mathbf{t}(\mathbf{z}_2 - \mathbf{z}_1) \end{bmatrix} \quad \mathbf{t} \in (-\infty, +\infty)$$

This is equivalent to saying

$$p(t) = P_1 + t*(P_2 - P_1) p(0.5) P_1$$

$$p(1.0) p(0.5) P_2$$

p(-0.5)

Plane in 3D, implicit

• Given the point **a** and a normal N, can we formulate an equation for all points in a plane for which N is the normal? Denote any point in the plane by **p**.

Plane in 3D, implicit

Three points a,b,c define a plane. Can we formulate an equation for this plane?

$$(\mathbf{p} - \mathbf{a}) \cdot \mathbf{N} = 0$$

$$N = (b - a) \times (c - a)$$

Triangles, 2D

- Three points a,b,c in 2D define a triangle.
- Its area $A = base*height/2 = ||\mathbf{b} \mathbf{a}||*h/2$
- But $sin(\alpha) = h/||\mathbf{c} \mathbf{a}||$ therefore

$$A = \frac{1}{2}||\mathbf{b} - \mathbf{a}|| * ||\mathbf{c} - \mathbf{a}|| * \sin(\alpha)$$

$$= \frac{1}{2} ||(\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})||$$

 Any point p in the plane defined by the triangle abc can be written

Rewrite as

$$\mathbf{p} = (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}$$

- Define $\alpha = (1 \beta \gamma)$
- Now

$$\mathbf{p} = \alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c}$$
 $\alpha + \beta + \gamma = 1$

• P is inside the triangle provided $0 < \alpha < 1$ and $0 < \beta < 1$ and $0 < \gamma < 1$

- The barycentric coordinates b.c. give a smooth interpolation of values given at the vertices of the triangle:
 - if two of the b.c. are zero we are at one of the vertices, eg. $\alpha = 1$, $\beta = \gamma = 0$ at **a**

the b.c. coordiantes are proportional to triangle subareas

$$\alpha = A_a/A$$

$$\beta = A_b/A$$

$$\gamma = A_c/A$$

• Given \mathbf{a} , \mathbf{b} , \mathbf{c} how do we calculate the barycentric coordinates α , β , γ ?

• We already saw that the implicit form f(x,y) = Ax + By + C of a line gives a value proportional to the signed distance to the line

b-a

b

Therefore, for any point (x,y)

$$\beta = f_{ac}(x,y)/f_{ac}(x_b,y_b)$$

$$\gamma = f_{ab}(x,y)/f_{ab}(x_c,y_c)$$

$$\alpha = 1 - \beta - \gamma$$

In 3D, all formulae for the barycentric coordinates are the same, only add the third coordinate to the points a,b,c!

Triangles in 3D, barycentric c.

In 3D, any point **p** in the plane of the triangle with vertices **a**,**b**,**c** is given by

$$\mathbf{p} = (1 - \beta - \gamma)\mathbf{a} + \beta\mathbf{b} + \gamma\mathbf{c}$$

The length of the normal

$$\mathbf{n} = (\mathbf{b} - \mathbf{a}) \mathbf{x} (\mathbf{c} - \mathbf{a})$$

is proportional to the triangle area: $A = |\mathbf{n}|/2$

 Idea: Let's calculate the subtriangle areas formed by p and the triangle vertices a,b,c!

Triangles in 3D, barycentric c.

• We should make sure the vertices of the subtriangle form a right-handed coordinate system when calculating n_i:

$$\mathbf{n}_{a} = (\mathbf{c} - \mathbf{b}) \times (\mathbf{p} - \mathbf{b}) \rightarrow \alpha = \mathbf{n} \times \mathbf{n}_{a} / |\mathbf{n}|^{2}$$

$$\mathbf{n}_{b} = (\mathbf{a} - \mathbf{c}) \times (\mathbf{p} - \mathbf{c}) \rightarrow \beta = \mathbf{n} \times \mathbf{n}_{b} / |\mathbf{n}|^{2}$$

$$\mathbf{n}_{c} = (\mathbf{b} - \mathbf{a}) \times (\mathbf{p} - \mathbf{a}) \rightarrow \gamma = \mathbf{n} \times \mathbf{n}_{c} / |\mathbf{n}|^{2}$$

Matrices

- Let A,B and C be three matrices of the same size, preferably square!
- Basic matrix algebra
 - Unit matrix I : ones on the diagonal, zero otherwise, I_{ij} = δ_{ij} , δ_{ij} Kronecker delta
 - Addition: A + B = B + A, $(A + B)_{ij} = A_{ij} + B_{ij}$
 - Subtraction: A B, $(A B)_{ij} = A_{ij} B_{ij}$
 - Multiplication by constant $\alpha : (\alpha A)_{ij} = \alpha A_{ij}$
 - Generally $A \cdot B \neq B \cdot A$
 - Distributivity: $A \cdot (B+C) = A \cdot B + A \cdot C$

Matrices

Inverse matrix

$$A^{-1}$$
 s.t. $A^{-1} \cdot A = A \cdot A^{-1} = I$
 $(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$

- Matrix transpose $A_{ij}^T = A_{ji}$, $(A \cdot B)^T = B^T \cdot A^T$
- A is symmetric if $A^T = A$
- U is *orthogonal* if its columns consists of vectors which have length 1 and are orthogonal to each other. Then the rows are also orthogonal, and $A \cdot A^T = A^T \cdot A = I$.

Matrices

- The inverse matrix exists only if the determinant $|A| \neq 0$.
- \blacksquare |AB| = |A||B|, |A^T| = |A|
- $|A^{-1}| = 1/|A|$
- For U orthogonal, $|U| = \pm 1$
- Solving equations: if $A \cdot v = 0$ then nontrivial v exists only if |A| = 0.

Volume = ABS(Determinant)

The volume of the parallelepiped formed by three vectors **a**,**b**,**c** is the absolute value of the determinant |**abc**| where the components of the vectors are row or columns in the determinant

Note! Do a,b,c form a right or left handed coordinate system? c

Eigenvalues

• nxn square matrices A have n eigenvalues λ and corresponding n eigenvectors \mathbf{v} s.t.

$$\mathbf{A} \cdot \mathbf{v} = \lambda \mathbf{v}$$

They are found by calculating

$$(A - \lambda I) \cdot v = 0 \Leftrightarrow |A - \lambda I| = 0$$

This gives an n-th order polynomial in λ with n solutions.

• Eg. in 3D, for real λ , **v** respresents a direction in which A is *invariant*.

Singular Value Decomposition

- If A is symmetric, the eigenvalues are real, and $A = Q \cdot D \cdot Q^T$ where D is a diagonal with eigenvalues λ_i and Q has columns with corresponding eigenvectors.
- Any square matrix A can be decomposed $A = U \cdot S \cdot V^T$

where S is diagonal with non-negative singular values σ_i of A, and U,V are orthogonal. If $A^T = A$ then $\sigma_i = \operatorname{sqrt}(\lambda_i * \lambda_i)$

Complex Numbers

- Introduced to extend real numbers to include an imginary number i such that
 i² = −1. Symbolically i = sqrt(−1)
- Any complex number z can be written using two real numebrs x,y and the imaginary unit: $z = x + \mathbf{i}*y$
- Complex numbers appear often as roots for polynomials.
- Functions f(z) have strong properties.

- Quaternions were invented as an extension of complex numbers to a set of elements with an associative division algebra.
- Idea: try w = x + i*y + j*z, x,y,z real, $i^2 = j^2 = -1$. Unfortunately nobody has been able to make any sense of i*j

Quaternion numbers q are given by

$$q = s+a*i+b*j+c*k = (s,a,b,c) = (s,\underline{v})$$

- s,a,b,c∈ ℜ
- i,j,k satisfy the algebra:

Quaternions are not commutative.

Algebra:

$$|q|^2 = s^2 + a^2 + b^2 + c^2 = s^2 + \underline{v} \cdot \underline{v}$$

 $q^{-1}*q = (1,\underline{0})$
 $q^{-1} = (s,-\underline{v})/|q|^2$

Quaternion multiplication:

$$q_1 = (s_1, \underline{\mathbf{v}}_1), \quad q_2 = (s_2, \underline{\mathbf{v}}_2)$$

$$q_1 * q_2 = (s_1 s_2 - \underline{\mathbf{v}}_1 \cdot \underline{\mathbf{v}}_2, s_1 \underline{\mathbf{v}}_2 + s_2 \underline{\mathbf{v}}_1 + \underline{\mathbf{v}}_1 \times \underline{\mathbf{v}}_2)$$

- Rotations in 3D are usually formulated using 3x3 or 4x4 matrices.
- Quaternions can be used to formulate a 2x2 matrix representation of rotations in three dimensions.
- Both representations have their advantages and disadvantages

