Translation and Rotation

written by Stef Nychka based on a presentation by Brian Booth

Department of Computer Science University of Alberta

October 10, 2007

Outline

- 1 You have two choices
- 2 Applying a formula to each point
 - Example of translating a point
 - Example of rotating a point
 - Other notes about rotating and translating points
- 3 Homogeneous coordinates: using matrix multiplication
 - Format
 - Rotation
 - Translation
 - Putting it all Together

You have two choices

- For Assignment 2, you will have to write your own code to rotate and translate figures.
- You cannot use move.h or libmove.a.
- You have two choices. You can either
 - apply a formula to each point in a figure, or
 - treat figures as matrices, and use matrix multiplication.

Applying a formula to each point

- We will show you how to rotate or translate one point.
- You can then apply this to all points in your C code for Assignment 2.
- To translate the point (x,y) by delta_x and delta_y: translated_x = x + delta_x translated_y = y + delta_y
- To rotate the point (x,y) by angle: rotated_x = x × cos(angle) - y × sin(angle) rotated_y = x × sin(angle) + y × cos(angle)

Example of translating a point

To translate the point (100, 2) by 50 vertically and zero horizontally, figure out the new x value

$$translated_x = x + delta_x$$

 $translated_x = 100 + 0 = 100$

and the new y value

$$translated_y = y + delta_y$$

 $translated_y = 2 + 50 = 52$

Example of rotating a point

To rotate the point (100, 2) by $\frac{Pl}{6}$ radians (30°) counter-clockwise about the origin (0,0), figure out the new x value

$$rotated_x = x \times cos(angle) - y \times sin(angle)$$

 $rotated_x = 100 \times cos(\frac{Pl}{6}) - 2 \times sin(\frac{Pl}{6})$

and the new y value

rotated_
$$y = x \times sin(angle) + y \times cos(angle)$$

rotated_ $y = 100 \times sin(\frac{Pl}{6}) + 2 \times cos(\frac{Pl}{6})$

Homogeneous coordinates: using matrix multiplication Motivation

- Not necessary for 201, but it helps with Asn 2, and is an introduction to graphics.
- In computer graphics, images are defined as a set of points (among other things)
- Often, we want to animate these objects using:
 - Rotations (Spin)
 - Translations (Move)
- Homogeneous coordinates allow us to easily combine these animation tasks
 - Everything can be handled with matrix multiplication

Homogeneous Coordinates at a Glance

- Commonly, a 2D point is represented in the form
 p = [x y]
- To make matrix multiplication possible, we represent a 2D point as $p = \begin{bmatrix} x & y & 1 \end{bmatrix}$
- We can then store our points in a matrix of the following form and use matrix multiplication to move objects

$$M = \begin{bmatrix} x1 & y1 & 1 \\ x2 & y2 & 1 \\ \vdots & \vdots & \vdots \\ xn & yn & 1 \end{bmatrix}$$

Note you should already be storing points in a similar format.

Homogeneous Coordinates Examples

For our examples we will use the following triangle

$$M = \begin{bmatrix} 100 & 10 & 1 \\ 200 & 100 & 1 \\ 300 & 10 & 1 \\ 100 & 10 & 1 \end{bmatrix}$$

Rotation using Homogeneous Coordinates

- We apply a rotation to an object with the following matrix multiplication
 - \bullet is the angle of rotation (around the origin)
 - M(rot) will always have size n × 3

$$M(rot) = \begin{bmatrix} x1 & y1 & 1 \\ x2 & y2 & 1 \\ x3 & y3 & 1 \\ \vdots & \vdots & \vdots \\ xn & yn & 1 \end{bmatrix} \times \begin{bmatrix} cos(\theta) & sin(\theta) & 0 \\ -sin(\theta) & cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Rotation Example

Let's rotate our triangle by $\frac{Pl}{6}$ radians (30°)

$$M(rot) = \begin{bmatrix} 100 & 10 & 1 \\ 200 & 100 & 1 \\ 300 & 10 & 1 \\ 100 & 10 & 1 \end{bmatrix} \times \begin{bmatrix} cos(\frac{Pl}{6}) & sin(\frac{Pl}{6}) & 0 \\ -sin(\frac{Pl}{6}) & cos(\frac{Pl}{6}) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Translation using Homogeneous Coordinates

- We can translate an object with the following matrix multiplication
 - Tx and Ty are the translation distances in x and y

$$M(tran) = \begin{bmatrix} x1 & y1 & 1 \\ x2 & y2 & 1 \\ x3 & y3 & 1 \\ . & . & . \\ . & . & . \\ . & . & . \\ xn & yn & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ Tx & Ty & 1 \end{bmatrix}$$

Translation Example

Let's move our triangle 50 pixels right and 100 pixels up

$$M(tran) = \begin{bmatrix} 100 & 10 & 1 \\ 200 & 100 & 1 \\ 300 & 10 & 1 \\ 100 & 10 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 50 & 100 & 1 \end{bmatrix}$$

The Power of Homogeneous Coordinates

- The great thing about homogeneous coordinates is that we can easily combine rotations and translations to do more complex movement
- For example, let's rotate our triangle $\frac{Pl}{6}$ radians, and move it 50 pixels to the right, 100 pixels up.

$$M = \begin{bmatrix} 100 & 10 & 1 \\ 200 & 100 & 1 \\ 300 & 10 & 1 \\ 100 & 10 & 1 \end{bmatrix} \begin{bmatrix} \cos(\frac{Pl}{6}) & \sin(\frac{Pl}{6}) & 0 \\ -\sin(\frac{Pl}{6}) & \cos(\frac{Pl}{6}) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 50 & 100 & 1 \end{bmatrix}$$

Example Cont.

We multiply the rotation and translation matricies and get

$$M = \begin{bmatrix} 100 & 10 & 1 \\ 200 & 100 & 1 \\ 300 & 10 & 1 \\ 100 & 10 & 1 \end{bmatrix} \times \begin{bmatrix} cos(\frac{PI}{6}) & sin(\frac{PI}{6}) & 0 \\ -sin(\frac{PI}{6}) & cos(\frac{PI}{6}) & 0 \\ 50 & 100 & 1 \end{bmatrix}$$

Summary and other notes

- You can use either method: translate and rotate individual points, or use homogenous coordinates and matrix multiplication.
- Remember to convert degrees to radians, and to use the PI macro.
- For more information, most of which is not needed for 201, see the Hints section at the bottom of Assignment 2.