
Basics of Mobile Linux Programming
Matthieu Weber (mweber@mit.jyu.fi), 2010

Plan
• Linux-based Systems
• Scratchbox
• Maemo
• Meego
• Python

Linux-based Systems

What Linux is Not
• An operating system: Linux is only a kernel

• A washing powder (in the context of this course)

A Short History
• 1983: GNU project (“GNU is Not Unix”)
• 1987: Minix (as a teaching tool)
• 1991: Linux kernel in Minix 1.5
• 1992: Linux becomes GNU’s kernel (Hurd is not ready)

Relation to Unix
• Unix was developped in 1969 by AT&T at Bell Labs
• Many incompatible variants of Unix made by various manufacturers
• Standardisation attempt (POSIX) in 1988
• Linux implements POSIX (kernel part)
• GNU implements POSIX (application part)

Distributions (1)
• Linux distributions are made of

– a Linux kernel,
– GNU and non-GNU applications,
– a package management system
– a system installation tool

• Examples: RedHat EL/Fedora Core, Slackware, Debian, Mandriva, S.u.S.E, Ubuntu

MW/2009/TIES425/Basics 1



Distributions (2)
• Distributions provide a comprehensive collection of software which are easy to install with the package
management tools

• Packages are tested to work with each other (compatible versions of libraries, no file-name collision. . . )
• Packages often have explicit dependencies on each-other ⇒ when installing a software, the required libraries
can be installed at the same time

• The origin of the packages can be authenticated ⇒ less risk to install malware

GNU General Public Licence
• Software licence for GNU, used by Linux
• Free software licence, enforces the freedom to:

– run the software for any purpose
– study/modify the program
– redistribute source code
– redistribute modified source code

• Free as in “free speech” not as in “free beer”

Unix Concepts
• Multiuser, multitasking, server-oriented
• Hierarchical file system, single tree with links
• “Everything is a file” (devices, sockets, pipes, directories...)
• “One task, one program” (lots of small CLI tools)
• Configuration files are text files

Filesystem Structure (1)
/ root directory
/bin basic system binaries
/boot kernel image and boot-related files
/dev device files
/etc configuration files
/home user directories

Filesystem Structure (2)
/lib system libraries
/sbin administrator programs
/tmp temporary files
/usr common application programs sub-tree
/usr/local, /opt machine-specific, local application programs
/var generated, “variable size” files

Users
• Users are identified by a username (internally by number, the UID)
• Users are granted permissions in the system, mostly regarding files
• The system administrator is called root and has UID 0
• Users also belong to groups, identified by names (and numbers, the GID)

File Ownership
• Files always belong to one user and to one group (not necessarily one of the user’s groups)
• Applies also to directories, devices, named pipes, sockets, symbolic links...

MW/2009/TIES425/Basics 2



File Permissions
• Files have 3 main permission categories: Read/Write/eXecute, which are set or not
• Each file has 3 ownership categories: user, group and other
• Each permission category applies to each ownership category: user r/w/x, group r/w/x, other r/w/x

Shell
• Basic user interface (command interpreter), command line oriented
• Also a programming language interpreter (shell scripts)
• Many different shells: sh, ksh, bash, ash, dash, zsh; csh, tcsh; sash

• From the shell, the user calls other programs

Useful Commands
cd changes directory
ls lists files in the current directory
mv, cp, rm rename, copy, delete a file
mkdir, rmdir create, delete a directory
chmod changes the permissions
man displays a manual page for a command

X-Window (1)
• Graphics-mode display usually provided by X-Window
• The X server is an independant program
• Graphical applications are clients of the X server
• The X server does not need to run on the same computer as the clients
• Handles graphics, fonts and input events (from keyboard, mouse, tablet, joystick...)

X-Window (2)

Computer 1 Computer 2

Client 1

Client 2

X server

Display

DISPLAY Environment Variable
• Environment variables give information to the current process
• “Exported” variables pass the information to the children of the current process
• The DISPLAY variable tells X clients how to connect the X server.
• Examples:

– export DISPLAY=:0 tells to connect to display 0 on the local machine,
– export DISPLAY=remote.machine.com:1 tells to connect to display 1 on remote.machine.com

Clutter
• Maemo 5 and MeeGo use OpenGL for 3D animations, through the Clutter library
• Clutter allows to display 2D surfaces in a 3D space

MW/2009/TIES425/Basics 3



Graphical Toolkits
• Libraries providing common GUI widgets (windows, buttons, lists, input boxes...)
• Examples: Athena widgets (Xaw), Motif/Lesstif, Gimp Toolkit (GTK+), Qt, Swing, wxWidgets...
• Maemo 5 is based on GTK+ (legacy) and Qt
• MeeGo is based on Qt (handset variant) and MX clutter (netbook variant, based on Clutter)

Window Managers
• X-Window displays basic rectangular windows with no decoration
• Window managers allow the users to move, resize, hide. . . windows
• Old Maemo used Matchbox, Maemo 5 uses only a library of core features of Matchbox
• Meego uses a window manager of its own

Compositing Window Manager
• Tell X-Window to draw the content of the windows to a hidden buffer instead of the actual on-screen
framebuffer

• An external process can then modify this buffer before displaying it on screen
• Allows to add e.g., 3D effects
• Maemo 5 and MeeGo use such a window manager

Remote Computer Access
• Linux/Unix systems can be used interactively remotely:

– In text mode using e.g., ssh

– In graphics mode using e.g., X-window or VNC

System Diagram

Driver Driver Driver DriverDriver

Device Device Device Device

X server

Device

Kernel

Applications

User

Hardware

Shell Window manager Graphical Applications

Scratchbox
Presentation

• Cross-compilation toolkit for embedded Linux applications
• Tools to integrate and cross-compile an entire Linux distribution
• Licenced under GPL

Features
• Supports ARM and x86 targets (PowerPC, MIPS, CRIS under development)
• Mainly Debian support
• glibc and uClibc
• QEMU or real target hardware to execute cross-compiled binaries
• Runs with normal users privileges

MW/2009/TIES425/Basics 4



Structure
• Entire Debian system in one directory per user
• One directory per target
• Common files are shared between targets
• Execution in a chrooted environment

Usage
• Type /scratchbox/login in a terminal
• Any command in this terminal runs in Scratchbox with user privileges, including e.g., package installation.
• sb-conf select DIABLO_ARMEL selects the ARMEL target; runs ARMEL binaries through QEMU and
compiles binaries for the N800 device

• sb-conf select DIABLO_X86 selects the X86 target; runs x86 binaries straight on the host and compiles
binaries for the host

Starting the GUI
• Outside Scratchbox type: Xephyr :2 -host-cursor -screen 800x480x16 -dpi 96 -ac

• In Scratchbox type: export DISPLAY=:2

• Type: af-sb-init.sh start to start the graphical environment
• Type: run-standalone.sh program to run program in the Hildon framework

Maemo
Presentation

• Open source development platform mostly for Nokia Internet Tablets
• Made up mostly of free components, from desktop and embedded systems
• Based loosely on Debian GNU/Linux distribution
• Linux kernel, X-Window (Kdrive), GTK graphical toolkit, Matchbox window manager, Hildon graphical
framework (based on Gnome)

• D-Bus, Telepathy, gstreamer, GConf
• Proprietary software for exotic hardware (e.g., camera, WLAN, GPS, software keyboard)

Programing Languages
• Maemo supports C, C++, Python, Perl, bash (and the usual CLI tools: awk, sed... through Busybox)
• Target architecture is ARM11

N900’s OMAP3430 Processor

MW/2009/TIES425/Basics 5



Maemo Platform (1)

Maemo Platform (2)

Graphical Interface

Meego

Presentation
• Open source development platform, merge between intel’s Moblin and Nokia’s Maemo
• Originally for netbooks, nowadays targetting mobiles devices
• Made up mostly of free components, from desktop and embedded systems
• Uses RPM as a package manager, but not based on any particular Linux distribution
• Essentially similar to Maemo 5

MW/2009/TIES425/Basics 6



Maemo Platform

Graphical Interface

Python

Presentation
• Scripting language
• Developed by Guido Van Rossum since 1991
• Multi-paradigm (functional, object oriented and imperative)
• Fully dynamic type system
• Automatic memory management
• Wide library of free modules

Syntax Features
• Indentation matters, defines blocks of code
• Little use for parenthesis
• Ready-made data types: integer, boolean, float, string, list, dictionnary, tuple

Documentation
• Maemo/Meego use version 2.5
• Latest version is 3.1 (contains radical changes from 2.x)
• Base page: http://docs.python.org/release/2.5/

• Tutorial: http://docs.python.org/release/2.5/tut/tut.html

• Built-in functions and basic modules: http://docs.python.org/release/2.5/lib/lib.html

• Other modules: http://docs.python.org/release/2.5/modindex.html

MW/2009/TIES425/Basics 7



Simple Example
def hello(n):

for i in range(n):
s = "Hello "
if i % 2 == 0:

s += "even (" + str(i) + ")"
else:

s += "odd (%d)" % i
s += " world !"
print s

hello (10)

Sequences Example
string = " abcdefg "
weekdays = ["Mon", "Tue", "Wed", "Thu",

"Fri", "Sat", "Sun"]
days_of_week = {"Mon": 1, "Tue": 2, "Wed": 3,

"Thu": 4, "Fri": 5, "Sat": 6,
"Sun": 7}

print string [2], string [-2]
print weekdays [4], weekdays [-1]
print days_of_week ["Wed"]

Classes and Methods
• class keyword
• All members are public, except if their name starts with __.
• A class instance is returned when calling the class name
• Methods are objects

Class Example (1)
class Divider :

def __init__ (self , divider =1):
self. divider = divider

def divide (self , n):
try:

self. result = n / self. divider
except :

self. result = None

Class Example (2)
def __str__ (self ):

if self. result == None:
return "Not a number "

else:
return "%d" % self. result

d = Divider (0)
d. divide (4)
print d

MW/2009/TIES425/Basics 8



Modules
• Lots of code provided as extra modules e.g., GTK+
• Modules usage:

– import module (e.g., import gtk)
→ names must be qualified with the module’s name (e.g., gtk.Button())

– from module import name, . . . (e.g., from gtk import Button, Label)
→ name is added to the current namespace (e.g., one can call simply Button())

Exceptions
• Python handles exceptions
• try and except keywords (and else)
• Exceptions are classes too

Exception Handling Example
import sys
try:

f = open(’myfile .txt ’)
s = f. readline ()
i = int(s.strip ())

except IOError , (errno , errstr ):
print "I/O error (%s): %s" % (errno , errstr )

except ValueError :
print " Converting to an integer failed ."

Special Methods
__init__ class instance initialization (constructor)
__del__ class instance destructor
__str__ conversion to string
__lt__, __eq__... comparison methods
__hash__ generates a key when the instance is used in dictionary
__call__ used when the object is called as a function operations

Dynamic Attributes and Introspection
• New attributes can be added at runtime to Classes and class instances
• Attributes can be:

– deleted (del() function)
– listed (dir() function)
– queried (hasattr() function)

Conclusion
• Linux is not only for servers, it’s widely used in embedded systems
• Maemo and Meego reuse free software and adapt it to mobile devices
• Python allows quick development of applications on any platform

MW/2009/TIES425/Basics 9


