
Creating New Tcl�Tk Commands Using C

Shyam Pather

December �� ����

� Introduction

Tcl provides and extensive set of general purpose built�in commands� However� some ap�
plications require adding new commands to those that Tcl provides� Very often� these new
commands cannot be implemented in Tcl� because of speed requirements� and the need for
access to system�level services� For this reason� the designers of Tcl provided an easy way
to write new Tcl commands using C�

� Packages

Ousterhout advises that new commands be implemented in a general way� so that they can
be used in many di�erent Tcl�Tk applications� To this end� he suggests grouping related
commands into �packages� that can be distributed to various users� See Ousterhout� Chapter
�	�

In order to use a package� one would typically create a new wish�like interpreter that
contains all the standard Tcl�Tk commands as well as the new ones that comprise the
package� This approach is used by many common extension packages such as Tix and incr

Tcl�
In this tutorial� we will create a simple package� and a wish�like interpreter that uses

it� Our package consists of two rather trivial commands
 one that adds two integers� and
another that gets the process ID of the current process�

� Creating a New Package

A package typically consists of a C function that performs all package initialization tasks�
and a series of C functions that implement the package commands�

The initialization for our package is done by the functionMyInit��� declared in myinit�h�
and implemented in myinit�c� This function simply calls Tcl CreateCommand�� to register
each of our two new commands� Among other things� Tcl CreateCommand�� is passed the
name that the command is to have in the Tcl interpreter� and the address of a C function
that implements it�

The package commands are implemented in two functions� AddCmd and PidCmd� These
functions can be found in the source �le mycmds�c�

	



All C functions that implement a new Tcl command are required to have a standard
list of arguments� The argument lists of AddCmd�� and PidCmd�� illustrate this� The �rst
argument� ClientData� will be explained in a later tutorial� The other arguments consist of
a pointer to the Tcl interpreter� the number of arguments passed to the Tcl command� and
the values of those arguments� C functions that implement Tcl command should only return
either TCL OK or TCL ERROR� Any additional information to be returned to Tcl should
be placed in the result �eld of the interpreter �explained later
�

The AddCmd�� function implements a new tcl command called �add�� This command
simply adds two integer arguments� Before proceeding� the function �rst checks the argu�
ments it was passed in Tcl� If it was not passed two arguments� it puts a message into the
result �eld of the interpreter� and returns TCL ERROR� Returning TCL ERROR causes the
Tcl exception handling code to be invoked� This causes the Tcl script that issued the �add�
command to be halted� and the error message to be displayed�

If the command received the correct number of arguments� it simply adds them� and puts
the sum into the interpreter result� It then returns TCL OK� which causes Tcl to proceed
normally�

In this example� we assumed the result �eld of the interpreter was pre�allocated to be
big enough to hold the string we were putting into it� This is allowed when the strings in
question are short� For longer strings� more caution is needed� See sections ���� and ���� in
Ousterhout for other ways to write the interpreter result�

The �pid� command is implemented in the PidCmd�� function� This function uses the
getpid�� system call to get the process ID� This is a good example of a system service that
cannot be accessed directly from Tcl� therefore requiring the use of C�

� Registering a New Package

In order to use a new package� it has to be initialized� and its commands registered in a Tcl
interpreter� The program contained in the �le mywish�c creates a wish�like interpreter and
registers the new commands in them�

The main�� function is simply a wrapper function that calls Tk Main��� Tk Main��
performs all the tasks necessary to start wish� but never returns since it eventually enters
the Tk event loop which terminates only when the application closes�

Tk Main�� is passed the address of an application�speci�c initialization procedure named
Tcl AppInit��� This procedure initializes all the packages that our wish�like application
needs� It �rst initializes all the standard Tcl commands by calling Tcl Init��� then all the
standard Tk commands by calling Tk Init��� and then our new package by calling MyInit��
�described in the previous section
� Leaving out the call to MyInit�� would result in an exact
replica of wish�

� Compiling and Linking

The example Make�le provided illustrates how to compile and link the new Tcl package and
the new wish�like interpreter� In this case� the package initialization and implementation

�



code are compiled as separate modules� which are later linked into the executable �le for the
wish�like interpreter�

In the compile step for mywish�c� two symbolic constants are de�ned� namelyTCL LIBRARY
and TK LIBRARY� The values of these constants are the paths to directories where certain
Tcl and Tk startup scripts are stored� Tcl and Tk use these values when constructing the
paths to these startup scripts�

Also� note the libraries against which the �nal executable is linked� These include the
tcl� tk� X		� math and C libraries� which are assumed to exist in the default locations�

� Using the new commands

Successfully compiling the code will result in a new executable �le called mywish� This is
the new wish�like interpreter� which is invoked by typing mywish at the command prompt�
When the wish�prompt appears� type info commands to get a list of commands that the
interpreter understands� Somewhere in that list will be the two commands we just created�
namely �pid� and �add�� You will also notice that the new interpreter behaves exactly like
wish� except that it knows about the two new commands�

� Things to Try

Experiment with these new commands� Try giving the wrong number of arguments to the
�add� command to see what happens in the case of an error�

�


