Creating New Tcl/Tk Commands Using C

Shyam Pather
December 3, 1996

1 Introduction

Tcl provides and extensive set of general purpose built-in commands. However, some ap-
plications require adding new commands to those that Tcl provides. Very often, these new
commands cannot be implemented in Tcl, because of speed requirements, and the need for
access to system-level services. For this reason, the designers of Tcl provided an easy way
to write new Tcl commands using C.

2 Packages

Ousterhout advises that new commands be implemented in a general way, so that they can
be used in many different Tcl/Tk applications. To this end, he suggests grouping related
commands into “packages” that can be distributed to various users. See Ousterhout, Chapter
31.

In order to use a package, one would typically create a new wish-like interpreter that
contains all the standard Tecl/Tk commands as well as the new ones that comprise the
package. This approach is used by many common extension packages such as Tix and incr
Tcl.

In this tutorial, we will create a simple package, and a wish-like interpreter that uses
it. Our package consists of two rather trivial commands: one that adds two integers, and
another that gets the process ID of the current process.

3 Creating a New Package

A package typically consists of a C function that performs all package initialization tasks,
and a series of C functions that implement the package commands.

The initialization for our package is done by the function Mylnit(), declared in myinit.h,
and implemented in myinit.c. This function simply calls Tecl_CreateCommand() to register
each of our two new commands. Among other things, Tcl_CreateCommand/() is passed the
name that the command is to have in the Tcl interpreter, and the address of a C function
that implements it.

The package commands are implemented in two functions, AddCmd and PidCmd. These
functions can be found in the source file mycmds. c.



All C functions that implement a new Tcl command are required to have a standard
list of arguments. The argument lists of AddCmd() and PidCmd() illustrate this. The first
argument, ClientData, will be explained in a later tutorial. The other arguments consist of
a pointer to the Tcl interpreter, the number of arguments passed to the Tcl command, and
the values of those arguments. C functions that implement Tcl command should only return
either TCL_OK or TCL_.ERROR. Any additional information to be returned to Tcl should
be placed in the result field of the interpreter (explained later).

The AddCmd() function implements a new tcl command called “add”. This command
simply adds two integer arguments. Before proceeding, the function first checks the argu-
ments it was passed in Tcl. If it was not passed two arguments, it puts a message into the
result field of the interpreter, and returns TCL_ERROR. Returning TCL_ERROR causes the
Tcl exception handling code to be invoked. This causes the Tcl script that issued the “add”
command to be halted, and the error message to be displayed.

If the command received the correct number of arguments, it simply adds them, and puts
the sum into the interpreter result. It then returns TCL_OK, which causes Tcl to proceed
normally.

In this example, we assumed the result field of the interpreter was pre-allocated to be
big enough to hold the string we were putting into it. This is allowed when the strings in
question are short. For longer strings, more caution is needed. See sections 30.3 and 30.4 in
Ousterhout for other ways to write the interpreter result.

The “pid” command is implemented in the PidCmd() function. This function uses the
getpid() system call to get the process ID. This is a good example of a system service that
cannot be accessed directly from Tcl, therefore requiring the use of C.

4 Registering a New Package

In order to use a new package, it has to be initialized, and its commands registered in a Tcl
interpreter. The program contained in the file mywish.c creates a wish-like interpreter and
registers the new commands in them.

The main() function is simply a wrapper function that calls Tk_Main(). Tk_Main()
performs all the tasks necessary to start wish, but never returns since it eventually enters
the Tk event loop which terminates only when the application closes.

Tk_Main() is passed the address of an application-specific initialization procedure named
Tcl_AppInit(). This procedure initializes all the packages that our wish-like application
needs. It first initializes all the standard Tcl commands by calling Tel Init(), then all the
standard Tk commands by calling Tk_Init(), and then our new package by calling MylInit()
(described in the previous section). Leaving out the call to MylInit() would result in an exact
replica of wish.

5 Compiling and Linking

The example Makefile provided illustrates how to compile and link the new Tcl package and
the new wish-like interpreter. In this case, the package initialization and implementation



code are compiled as separate modules, which are later linked into the executable file for the
wish-like interpreter.

In the compile step for mywish. c, two symbolic constants are defined, namely TCL_LIBRARY
and TK_LIBRARY. The values of these constants are the paths to directories where certain
Tcl and Tk startup scripts are stored. Tcl and Tk use these values when constructing the
paths to these startup scripts.

Also, note the libraries against which the final executable is linked. These include the
tcl, tk, X11, math and C libraries, which are assumed to exist in the default locations.

6 Using the new commands

Successfully compiling the code will result in a new executable file called mywish. This is
the new wish-like interpreter, which is invoked by typing mywish at the command prompt.
When the wish-prompt appears, type info commands to get a list of commands that the
interpreter understands. Somewhere in that list will be the two commands we just created,
namely “pid” and “add”. You will also notice that the new interpreter behaves exactly like
wish, except that it knows about the two new commands.

7 Things to Try

Experiment with these new commands. Try giving the wrong number of arguments to the
“add” command to see what happens in the case of an error.



