
Abstract

To improve the speed of interpreting Tcl programs, we
are developing an on-the-fly bytecode compiler as part
of the Tcl project at Sun Microsystems Laboratories.
This new compilation system supportsdual-ported ob-
jects that are stored in Tcl variables and passed to pro-
cedures instead of strings. These objects allow faster
integer, list, and other operations by including an appro-
priate internal representation in addition to a string.
Early performance results show significant improvement
for some scripts. On a 167MHz UltraSPARC 11,
lindex of the last element of a 100 element list takes 3
microseconds compared to 72 for the current Tcl inter-
preter. Aset command that stores a new value in a lo-
cal variable now takes less than 1 microsecond vs. 5.8 to
10 microseconds (depending on the length of the vari-
able name) for the current system. This paper describes
the design of the compiler and its current state, outlines
its development plan, and gives some early performance
results. It also describes some implications of the com-
piler for Tcl script and extension writers, and describes
how to best take advantage of the compiler.

1 Introduction

Although the current Tcl interpreter is fast enough for
most Tcl uses, there are many applications that need
greater speed. The traditional approach to improving a
Tcl program’s performance has been to recode critical
portions in C. While this is effective, it is awkward. Also,
an increasing number of demanding applications such as
the exmh mail user interface [Welch95] are being written
entirely in Tcl. Recoding in C also makes the develop-
ment of portable applications much harder. A significant
advantage of Tcl7.5 is that it allows programmers to
write scripts that can run unchanged on UNIX, PC, and
Macintosh systems.

1. UltraSPARC and Java are registered trademarks of Sun
Microsystems, Inc.

UNIX is a registered trademark, licensed exclusively through
X/Open Company Limited.

The two main sources of performance problems in the
current Tcl system (Tcl 7.5) are script reparsing and con-
versions between strings and other data representations.
The current interpreter spends as much as 50% of its time
parsing. It reparses the body of a loop, for example, on
each iteration. Data conversions also consume a great
deal of time. Adam Sah [Sah94] found that 92% of the
time in incr ’s command procedureTcl_IncrCmd()
was spent converting between strings and integers. Many
Tcl programmers avoid using lists today because they
know that operations on lists are slow and become slow-
er with long lists. For example,lindex $a end re-
quires that the entire list be parsed to discover its last
element.

A new Tcl compiler and interpreter are being developed
at Sun Microsystems Laboratories to improve the speed
of Tcl programs. Our goal for the bytecode compiler is to
improve the speed for compute intensive Tcl scripts by a
factor of 10.

The compiler translates Tcl scripts at program runtime,
or on-the-fly, into a sequence of bytecoded instructions
that are then interpreted. The compiler eliminates most
runtime script parsing. It also makes many decisions at
compile time that are made now only at runtime. It can
tell, for example, whether a variable name refers to a sca-
lar or an array element. It also compiles away many type
conversions. As an example, it can recognize whether the
argument string specifying the increment amount in an
incr command represents a constant integer.

The bytecode interpreter usesdual-ported objects exten-
sively. These objects contain both a string and an internal
representation appropriate for some data type. For exam-
ple, a Tcl list is now represented as an object that holds
the list’s string representation as well as an array of
pointers to the objects for each list element. Dual-ported
objects avoid most runtime type conversions. They also
improve the speed of many operations since an appropri-
ate representation is available. The compiler itself uses
dual-ported objects to cache the bytecodes resulting from
the compilation of each script.

An On-the-fly Bytecode Compiler for Tcl

Brian T. Lewis

brian.lewis@sun.com
Sun Microsystems Laboratories

2550 Garcia Avenue, M/S MTV29-232
Mountain View, California 94043

An early version of the compiler and interpreter are run-
ning. The compiler emits a subset of the instructions that
will eventually be supported. The current instructions di-
rectly implement variable substitutions and theset ,
incr , and while commands. Other commands are
supported using instructions that invoke the associated C
command procedures. These instructions push and con-
catenate the dual-ported objects that hold command ar-
guments and results. The largest single item of work
remaining on the compiler is to compile Tcl expressions
and theexpr command. Most control structure com-
mands use expressions so compiling them should signif-
icantly reduce the execution time of almost every script.1

Other remaining work includes compiling performance-
critical commands likefor andlindex into inline se-
quences of instructions specific to those commands.

The bytecode compiler and interpreter pass most Tcl re-
gression tests. Tests that fail depend on the specific con-
tents of traceback information in error messages or on
the exact formatting of the result of list operations. The
bytecode system makes fewer recursive calls to
Tcl_Eval so error tracebacks now have fewer interme-
diate levels. The new list implementation consistently
usesTcl_Merge to regenerate a list object’s string rep-
resentation, while the traditional Tcl system typically ig-
nores portions of strings not directly modified in a list
operation. This can lead to such differences as whether
sublists are bracketed with braces or quotes: for example,
the result of

linsert {a b "c c" d e} 3 1

with the new system is

a b {c c} 1 d e

while the traditional system produces

a b "c c" 1 d e

The Tcl tests will be updated to reflect the new behavior.

1. Expressions are very expensive today. As an experiment, I
implemented a new commanduntilzero that repeats a loop
while a variable is nonzero. Executing

set x 1000; while {$x>0} {incr x -1}
requires 5.1 times more time than

set x 1000; untilzero x {incr x -1}
(28661 vs. 5577 usec). These two loops do the same work. The
difference is that the expression is reparsed on each iteration.
(Althoughwhile commands are compiled into a sequence of
instructions, their expressions are still evaluated today by
Tcl_ExprBoolean).

Table 1 shows performance results for a few simple
benchmarks on a 167MHz UltraSPARC 1.

Some scripts show significant improvement, especially
those that make heavy use of procedure arguments and
local variables, ones that manipulate lists, and scripts that
benefit from not reparsing. Performance improvements
for the larger (and more realistic) benchmarks are modest
at this time, largely because expressions are not yet com-
piled. I expect performance to improve significantly as
the remaining compiler and interpreter changes are
made.

The next section describes the goals for the bytecode
compiler. Section 3 describes the compilation strategy. I
present the design of the dual-ported object support next.
Section 5 and Section 6 give details about the design of
the bytecode compiler and interpreter. Memory require-
ments for the bytecode system are discussed in Section 7.
The current state of the compiler is described in Section
8 while Section 9 discusses related work. I explain next
why I do not use Java bytecodes. Section 11 discusses
implications of the compiler for script and extension
writers. The compiler’s development plan is outlined in
Section 12.

2 Goals for the Compiler

Besides increased execution speed, the compiler’s goals
include the following:

Table 1: Performance Benchmark Results

Benchmark
Time (usec)

Speedup
Tcl7.5 New

null proc with 5 args 64 6 10.6

proc incrementing arg 31 7 4.4

proc of just comments 31 3 10.3

set 20 global variables 210 31 6.7

set 20 local variables 206 21 9.8

incr 20 local variables 368 28 13.1

lindex end of long list 134 3 44.6

linsert end of long list 58 12 4.8

iterative factorial 449 265 1.6

list reverse with while 4985 2376 2.0

• Minimize user-visible changes to scripts. Old scripts
must run as before with no or very few changes. It isn’t
possible to change the Tcl language even if those
changes would improve the compiler’s effectiveness.
The compiler must continue to support Tcl features
like traces,upvar , andunset even though they slow
our implementation considerably.

• Continue to support Tcl’s dynamic features like
rebinding of core commands and runtime-computed
variable and command names. However, we may
change the behavior of core commands when those
changes allow significant performance improvements
without effecting the execution of correctly written
scripts: scripts that use the semantics documented in
the Tcl man pages. For example, list operations will no
longer preserve exact white space between list
elements.

• Minimize changes to C code in extensions. I expect to
do this by providing new parallel core API procedures
that contain the changes. Old C code can continue to
use the old interface procedures. Those old interface
procedures will often be reimplemented in terms of
new functionality.

• Minimize storage requirements during both
compilation and execution. Tcl’s small memory
footprint is a significant feature and must be retained.

• Portability. The compiler and interpreter must run on a
wide range of platforms. I cannot generate machine
code, for example.

3 The Compilation Strategy

The new compilation system relies upon support for
dual-ported objects and a new bytecoded compiler and
interpreter. Dual-ported objects are passed to command
procedures and are stored in variables. Objects contain a
string as well as an internal representation. They reduce
conversions by holding an appropriate representation
such as an array of element pointers for a list. Although
objects contain an internal representation, their seman-
tics are defined in terms of strings: an up-to-date string
can always be obtained, and any change to the object will
be reflected in that string when the object’s string value
is fetched. Objects are typed. An object’s type reflects
the set of operations on its internal representation. The
set of types is extensible. Several types are predefined in
the Tcl core including integer, double, list, and bytecode.

Compilation in the new system is done as needed, or on-
the-fly. When a script is evaluated (say as the result of a
call to Tcl_Eval), it is compiled into bytecodes that
are then executed. We use the termcode unit to describe
the collection of bytecode instructions and related infor-

mation that results from compiling a script. A new Tcl
API procedure,Tcl_EvalObj , operates much like
Tcl_Eval to evaluate a script but takes a Tcl object in-
stead of a string; it compiles the object’s string value and
caches the resulting code unit as its internal representat-
ion to avoid later recompilations. The compiler generates
instructions for an idealized Tcl virtual machine This
machine is stack-based since this allows programs to be
represented more compactly; the encoding of most in-
structions is a single byte. Since programs are compiled,
script parsing at execution time is rarely necessary. Some
runtime parsing is needed since Tcl scripts can compute
new scripts that they later evaluate. Such runtime-creat-
ed scripts are also compiled on-the-fly. The compiler
will eventually generate bytecodes for most of Tcl’s core
commands. It can make decisions now made by the tra-
ditional Tcl interpreter at runtime. For example, the com-
piler assigns frame offsets to local variables in
procedures to avoid the runtime hashtable lookup done
for them in the traditional system.

4 Design of dual-ported objects

4.1 TheTcl_Obj structure

Dual-ported objects are used throughout the new Tcl sys-
tem to hold scripts, strings, integers, arrays, lists, etc. For
example, command procedures now take an “objv ” ar-
ray of pointers to the argument objects. An object has
two representations: a string and an internal form. Ob-
jects are represented byTcl_Obj structures allocated
on the heap.

The definition of the Tcl_Obj structure is shown in Fig-
ure 1. This structure is five words: the reference count, a
pointer to the object’s type structure, a string pointer, and
two words used by the type. The string is the object’s
string representation which is also allocated on the heap.
The two words managed by the type hold the object’s in-
ternal representation: an integer, a double-precision
floating point number, two arbitrary words, or a pointer
to a value containing additional information needed by
the object’s type to represent the object. A list object, for
example, contains a pointer to a structure with an array
of pointers to the objects for the list elements. An integer
object contains an integer value.

At least one of an object’s representations is valid (non-
NULL) at any time. Representations are computed lazily,
when they are needed. An object that contains only a
string and is (so far) untyped has aNULL typePtr . As
an example of the lifetime of an object, consider the fol-
lowing sequence of commands:

% set A 123

This assigns A to an integer object whose internal
representation is the integer 123. Its string
representation is leftNULL to avoid allocating a
string on the heap; if the string is needed later, it can
be regenerated from the integer1. The typePtr
points to the structure describing the integer type.

% puts “A is $A”
A’s string representation is needed. It is computed
from the object’s internal representation.
Afterwards, A’s internal representation holds the
integer 123 and its string representation points to
“123”. Both representations are now valid.

% incr A

Theincr command increments the object’s integer
internal representation and invalidates (setsNULL)
its string representation is since it is no longer valid.

% puts “A is now $A”

The string representation of A’s object is needed and
is recomputed. The string representation now points
to “124”.

An object’s internal form is typically computed on the
first type-specific operation, or when an object is con-
verted to a new type. The string is invalidated (setNULL)
when the internal representation is changed, and vice-
versa. The string representation is only regenerated when
necessary. For example, the string representation of a
for loop’s index variable will never be recomputed un-
less it is actually used as a string. I expect that almost all

1. This optimization is possible only when the correct string
representation can be regenerated. It can’t be used, for exam-
ple, for the string “000123” since a later command might de-
pend on the leading zero characters.

objects will remain a single type, perhaps after an initial
conversion.

4.2 Object types

The set of object types is open ended. The Tcl core pre-
defines six object types: integer, double, list, bytecode,
boolean, and command name. We expect to create many
new types in the future. For example, the Tcl core could
use a file pathname type to store a canonical platform-in-
dependent representation of a file’s path. Also, Tk might
use objects to store options for Tk commands.

A Tcl object type is defined by a structure containing
pointers to four procedures called by the generic Tcl ob-
ject code. The definition of this type is shown in
Figure 2.

The Tcl_UpdateStringProc updates an object’s
string representation from its internal representation.
A type’s Tcl_DupInternalRepProc and its
Tcl_FreeInternalRepProc , respectively, dupli-
cate and free an object’s internal representation. The
final procedure, theTcl_SetFromAnyProc , converts
an object from another type by producing this type’s in-
ternal representation. It can always do this by first updat-
ing the object’s string representation (if necessary) then
generating the internal representation from the string.
However, theTcl_SetFromAnyProc s for most ob-
ject types include special case conversions from some
number of other types. An example is the double type’s
Tcl_SetFromAnyProc . This supports faster integer
to double conversions by directly converting the integer
that is an integer object’s internal representation to a
double-precision floating point number; it does not re-
generate the string representation and then parse it.

As an important optimization, an empty string is repre-
sented by an object with aNULL string pointer and

typedef struct Tcl_Obj {
int refCount; /* When 0 the object will be freed. */
char *string; /* The Tcl_Obj's string representation. */
Tcl_ObjType *typePtr; /* Reflects the object's type. */
union { /* The internal representation. */

int intValue; /* – An integer value. */
double doubleValue; /* – A double-precision floating value. */
VOID *otherValuePtr; /* – Another, type-specific value. */
struct { /* – The value as two words (ints). */

int field1;
int field2;

} twoIntValue;
 } internalRep;
} Tcl_Obj;

Figure 1: Definition of the Tcl object structure

typePtr . Empty strings are common and this optimi-
zation helps to reduce storage requirements.

The list type maintains for each list object an array of
pointers to the Tcl objects that represent the list’s ele-
ments. This internal representation allows for fast index-
ing and append operations (which we believe to be the
most common) at the expense of slightly slower inser-
tions. For example,lindex is now a constant time op-
eration; extracting the last element of a list now requires
only 3 usec regardless of the list’s length while Tcl7.5
takes 15 usec for a 10 element list, 37 usec for a 40 ele-
ment list, and 72 usec for a 100 element list.linsert
is also faster; inserting an element at the end of a 60 ele-
ment list is 4.8 times faster (12 vs. 58 usec).

The element array of a list is initially allocated just large
enough to hold the list’s elements. However, if a list is
grown by, say, an append operation, a new array is allo-
cated that is larger than is actually required by the oper-
ation. This overallocation improves the speed of
subsequent append or insertion operations. When the list
type’sTcl_SetFromAnyProc generates the internal
representation for a list, it parses the entire list. This
means that operations on some lists will fail in the new
system that would have succeeded in Tcl7.5: if a list has
a syntax error after the elements being operated on, the
new system will return an error message where Tcl7.5
would have ignored the bad syntax.

The command name object type is used by the bytecode
interpreter to cache the result of command hashtable
lookups. Hashtable lookups are expensive (about 1 usec
on a UltraSPARC 1, or the same time needed to set a lo-
cal variable in the bytecode system), so avoiding them on
most command invocations significantly improves exe-
cution time.

4.3 Storage management of objects

Tcl objects are allocated on the heap. A custom allocator
reduces the cost of allocating and freeing objects by
maintaining a private list of available free objects.

Because many objects are simply passed as arguments to
called procedures, objects are shared as much as possi-
ble. This significantly reduces storage requirements be-
cause some objects such as long lists are very large. Also,
most Tcl values are only read and never modified. This
is especially true for procedure arguments, and argument
objects can be shared between the caller and the called
procedure. Assignment and argument binding is done by
simply assigning a pointer to the value. It isn’t necessary
to copy (and allocate storage for) the entire value. But
this raises the problem of knowing when it is safe to free
an object. I use reference counting to determine when it
is safe to deallocate an object; an object can be freed
when the number of references to it drops to zero. I can’t
use a garbage collector because it would increase Tcl
code and runtime memory usage too much.

One advantage of reference counts is that they support an
important optimization calledcopy-on-write. Since ob-
jects are shared, a new copy must be made before modi-
fying an object. But if an object is unshared–that is, if it
has a reference count of one–the object can be modified
directly without having to make a copy. Copy on write
reduces storage requirements and execution time.

5 Design of the bytecode compiler

The compiler is single pass to minimize compilation
time. It uses a recursive descent parser that emits instruc-
tions for each command as it is parsed.

typedef int (Tcl_SetFromAnyProc) (Tcl_Interp *interp, Tcl_Obj *objPtr);
typedef void(Tcl_UpdateStringProc) (Tcl_Interp *interp, Tcl_Obj *objPtr);
typedef void(Tcl_DupInternalRepProc) (Tcl_Obj *srcPtr, Tcl_Obj *dupPtr);
typedef void(Tcl_FreeInternalRepProc)(Tcl_Obj *objPtr);

typedef struct Tcl_ObjType {
 char *name; /* Name of the object type, e.g. "int" or "list". */
 Tcl_FreeInternalRepProc *freeIntRepProc;

/* Frees any storage for the type's internal representation. */
 Tcl_DupInternalRepProc *dupIntRepProc;

/* Creates a new object as a copy of an existing object. */
 Tcl_UpdateStringProc *updateStringProc;

/* Updates the string rep. from the type's internal rep. */
 Tcl_SetFromAnyProc *setFromAnyProc;

/* Converts the object's old internal rep. to this type. */
} Tcl_ObjType;

To hold information needed during compilation, the
compiler uses a compilation environment (Compile-
Env) structure. This holds a code unit’s instructions,
object table, and command location map. The object
table is an array of pointers to Tcl objects referenced by
instructions. The table has an object for every unique
constant in the script that is not “compiled away”: for ex-
ample, the string "A is " needed for the command
puts "A is $A" above is represented by an object
table entry. The command location map has source and
bytecode location information for each command. This
information is used, for example, to find the source com-
mand for a bytecode location. TheCompileEnv struc-
ture also contains a pointer to the current procedure’s
Proc structure (if any) to compile references to local
variables, and contains fields that describe the length and
other properties of the last command word processed.
TheCompileEnv structure is allocated on the C stack
and is large enough to hold the instructions and other in-
formation for almost all Tcl scripts. This use of stack-al-
located space minimizes the number of costly heap
allocations. When compilation is finished, a single heap
object is allocated to hold the subset of information re-
quired to execute the script.

In order to generate instructions for a command, the
compiler first checks whether a compile procedure
(CompileProc) has been registered for it. This is done
just after the command’s first word is parsed. If aCom-
pileProc is found, it is called to generate code for the
command. If noCompileProc is found, or if the first
word involves substitutions that can only be computed at
runtime, the compiler emits code to invoke the com-
mand’s command procedure at execution time.Com-

pileProc s exist today for theset , while , andincr
commands. EventuallyCompileProc s will be regis-
tered for most core Tcl commands.

At this time, the compiler emits the 35 instructions listed
in Figure 3. Some of these implement variable substitu-
tions and the Tcl commandsset , incr , andwhile .
The remainder do the work of the traditional Tcl parser
by pushing and popping objects, concatenating strings,
and calling command procedures. New instructions will
be added as more commands are compiled. I expect also
that the instruction set will change as I get more experi-
ence with the bytecode system.

Most instructions operate on anevaluation stack. This
stack is separate from the “stack” of Tcl procedure call
frames and is also separate from the C call stack. The
evaluation stack holds pointers to Tcl objects holding
command arguments and results. Each Tcl interpreter
has its own evaluation stack. The compiler computes the
maximum stack depth needed for each code unit and the
interpreter, when starting to execute a code unit, ensures
that it has enough stack space. This avoids checking on
each instruction whether the stack needs to be grown.

Instructions consist of an opcode byte followed by zero
or more operands. Operands are one or four byte integers
or indexes. As an example, push1 <index> pushes
an object onto the evaluation stack. The one byte index
refers to one of the first 256 objects in the code unit’s ob-
ject table. Several instructions have four byte variants to
support large scripts, while the one byte variants keep the
code for small scripts small. Instructions whose names
include the “Stk” suffix take an operand from the evalu-
ation stack.

push1 <1 byte index>
push4 <4 byte index>
pop
concat <1 byte count>
invokeStk1 <1 byte argument count>
invokeStk4 <4 byte argument count>
loadScalar1 <1 byte index>
loadScalar4 <4 byte index>
loadScalarStk
storeScalar1 <1 byte index>
storeScalar4 <4 byte index>
storeScalarStk
loadArray1 <1 byte index>
loadArray4 <4 byte index>
loadArrayStk
storeArray1 <1 byte index>
storeArray4 <4 byte index>
storeArrayStk

loadStk
storeStk
incrScalar1 <1 byte index>
incrScalarStk
incrArray1 <1 byte index>
incrArrayStk
incrStk
incrScalar1Imm <1 byte index> <incr byte>
incrScalarStkImm <signed incr byte>
incrArray1Imm <1 byte index> <incr byte>
incrArrayStkImm <signed incr byte>
incrStkImm <signed incr byte>
evalStk
jump1 <1 byte signed distance>
jump4 <4 byte signed distance>
jumpFalse1 <1 byte signed distance>
jumpFalse4 <4 byte signed distance>
done

Figure 3: The current bytecode instructions

To make local variables faster, the compiler assigns each
local variable an entry in an array of variables stored in a
procedure’s call frame. This avoids an hashtable lookup
on each reference. The compiler also determines whether
the variable name refers to a scalar or an array element.
These two changes alone make local variable access fast-
er by a factor of 9.5! (From 201 usec to 21 to set 20 lo-
cals. Other changes account for a 5 usec improvement.)

Some variables are only created (computed) at runtime.
For example, the command set [gensym] 123 as-
signs a value to the variable whose name is returned by
the procedure gensym . To support these runtime com-
puted variables, the compiler emits the instructions
loadStk andstoreStk that take the variable name
from the top of the evaluation stack.

5.1 Examples of compiled code

Compiling the procedure

proc while_1000x {} {
set x 0
while {$x<1000} {

incr x
}

}

generates a code unit with the instructions

set x 0
0 push1 0 # push object "0"
2 storeScalar1 0 # store into local x
4 pop # discard value
while {$x<1000} {\n incr x\n }
5 push1 1 # push "$x<1000"
7 jumpFalse1 8 # false => goto pc 15
incr x
9 incrScalar1Imm 0,1# increment local x
12 pop # discard value
13 jump1 -8 # goto pc 5
15 push1 2 # while result is ""
17 done

The number at the left of each instruction is its bytecode
offset. The push1 1 instruction at offset 5 pushes a
string object containing"$x<1000" ; the instruction’s
operand specifies the second object in the code unit’s ob-
ject table. This string is passed to the Tcl expression code
at runtime since expressions are not yet compiled. The
storeScalar1 0 at offset 2 stores the object at the
top of the evaluation stack into the scalar local variable
at offset 0 in the call frame’s array of local variables.

This procedure currently runs 1.4 times faster with the
bytecoded system than in Tcl 7.5 (26954 vs. 38550 usec).
I expect this performance to improve when expressions
are compiled.

As a more complex example, the procedure

proc lreverse_with_while {a} {
set b ""
set i [expr [llength $a] -1]
while {$i >= 0} {

lappend b [lindex $a $i]
incr i -1

}
return $b

}

generates the instructions

set b ""
0 push1 0 # push ""
2 storeScalar1 1 # store into local b
4 pop
set i [expr [llength $a] -1]
5 push1 1 # push "expr"
7 push1 2 # push "llength"
9 loadScalar1 0 # load local a
11 invokeStk1 2 # call llength,2 args
13 push1 3 # push integer obj -1
15 invokeStk1 3 # call expr, 3 args
17 storeScalar1 2 # store into local i
19 pop
while {$i >= 0} {\n lappend b [lindex ...
20 push1 4 # push "$i >= 0"
22 jumpFalse1 23 # false=>goto pc 45
lappend b [lindex $a $i]
24 push1 5 # push "lappend"
26 push1 6 # push "b"
28 push1 7 # push "lindex"
30 loadScalar1 0 # load local a
32 loadScalar1 2 # load local i
34 invokeStk1 3 # call lindex, 3 args
36 invokeStk1 3 # call lappend,3 args
38 pop
incr i -1
39 incrScalar1Imm 2,-1
42 pop
43 jump1 -23 # goto pc 20
45 push1 0 # push ""
47 pop
return $b
48 push1 8 # push "return"
50 loadScalar1 1 # load local b
52 invokeStk1 2 # call return, 2 args
54 done

Here theinvokeStk1 instructions are used to invoke
command procedures at runtime. In the next few months,
the compiler will be modified to emit command-specific
instructions inline for most Tcl core commands. This
procedure runs 2.0 times faster with the current bytecod-
ed system than in Tcl 7.5 (2376 vs. 4985 usec for a 60 el-
ement list).

5.2 Some compilation problems

a) Variables must be accessed in the correct order

Compiled code must read, write, and delete variables in
the correct order. This is because traces must run the cor-
rect number of times and in the correct order. Consider
the following example:

expr{$a} + $b || {$c} + $d

The variables must be read in the orderb, d, a, thenc .

In the traditional Tcl system, the interpreter reads vari-
ables b and d when substituting their values. When
expr is called, it does a second round of substitutions on
its arguments itself, and so reads the variablesa andc .
The order in which variables are read is shown above.
Compiled code must read the variables in the same order.
I may alter the variable read, write, and delete behavior
of some operations to improve the implementation, but I
will only do this if the changes do not modify the seman-
tics of those operations or of thetrace command as de-
scribed in the Tcl man pages. For example, the
traditional Tcl interpreter implementslappend using
Tcl_SetVar2 to append each new list element. This
triggers read and write traces for each appended element.
I may compile code to append the new items all at once
and run the traces a single time.

b) expr ’s substitutions can change the apparent ex-
pression

As described above,expr does a second round of sub-
stitutions on its arguments. This can make the expres-
sion’s apparent interpretation and the obvious code
wrong. Consider the following commands:

% set x 2
% set y {$x+5}
% expr $y*15

From the expression$y*15 it looks like the final result
is a multiple of 15, but this is wrong.expr is passed
$x+5*15 , which afterexpr ’s second round of substi-
tutions becomes2+5*15 or 77.

This problem only happens whenexpr does a second
round of substitutions. Ifexpr ’s argument is not en-
closed in braces, the best I can do is to generate “optimis-
tic” code for the apparent expression and check at
runtime whether this code might be wrong. It can only be
wrong if variables substituted in the first round require
more substitutions in the second round. Typically this
isn’t the case and the interpreter can execute the com-
piled code. Otherwise, the interpreter needs to back off
and invokeexpr to interpret the expression.

If expr ’s argument is enclosed in braces, the apparent
code is always correct and the test can be dropped. So,
expressions protected by braces will executefaster. This
includes expressions used inif , while , and other con-
trol structure commands.

c) Global variables may not be truly global

In the same way that it currently does for local variables,
the compiler could assign each global variable an index
in the table of globals and use this index in instructions.
It can only do this for variables, however, which it knows
to be truly global. Tcl lets aglobal command appear
anywhere, including after the use of a local variable with
the same name. This is an error, and must be reported as
such, so the compiler can only “compile away” global
variables known to be global. It can safely do this for
global commands that appear at the top of a proce-
dure, which is the usual location anyway. Those that ap-
pear elsewhere will have to be implemented by a
global instruction that will do the appropriate check-
ing. This means thatglobal commands placed at the
top of procedures will be faster.

6 Design of the bytecode interpreter

The bytecode interpreter uses a traditional while loop
that switches on the opcode of each instruction:

for (;;) {
opCode = *pc;
switch (opCode) {

case INST_INVOKE1:
...

}
I checked first whether an alternative implementation
would be faster. This used an array of procedure point-
ers, indexed by opcode, to implement each instruction.
However, this proved about 20% slower, independent of
machine or compiler.

The compiler emits a done instruction to terminate the
main interpreter loop if noreturn orerror command
is executed. This instruction trades space for time and
avoids the need to continually test for the last instruction.

The evaluation stack holds arguments for commands.
When invoking a command procedure, the procedure’s
objv array (the array of pointers to argument objects)
is set to the address of the evaluation stack element hold-
ing a pointer to the object with the command name; no
pointer copying is needed. The interpreter caches a
pointer to the top of the stack in a local variable.

If a Tcl program redefines a core command, any code
that uses that command must be invalidated. To imple-
ment this, the interpreter increments a counter, thecom-

pilation epoch, whenever a core command is redefined.
When a script is compiled, the current compilation epoch
is stored in its code unit. Before executing a code unit,
the bytecode interpreter checks whether the code unit’s
epoch matches the current epoch. If not, the interpreter
discards the code unit and recompiles its script.

I have reimplemented the command procedures for most
commands to be object-based: that is, to take anobjv
array and to return an object result. These object-based
command procedures are called directly by the bytecode
interpreter. The remaining string-based command proce-
dures are implemented using a wrapper procedure. This
wrapper generates an argv string array from the string
representations for the argument objects, calls the string
command procedure, and constructs a string object hold-
ing the result. I expect eventually to make all command
procedures object-based.

7 Memory requirements for the bytecode
system

Strings are a compact way to represent Tcl scripts: no
separate instructions or other data representations are
needed. The bytecode system improves the speed of ex-
ecuting Tcl scripts at the cost of additional storage for
code units and dual-ported objects. How much additional
memory is needed?

The body for the procedurewhile_1000x in Section
5.1 is 56 characters. Its code unit requires 18 instruction
bytes. Its object table contains pointers to three Tcl ob-
jects: an integer object for the source string"0" (for
which no string is allocated on the heap), an object point-
ing to "$X<1000" , and an empty object representing
the result of the while command. Since each Tcl object
requires five words, the object table requires 80 bytes in-
cluding the storage for the one heap string. The com-
mand location table for this procedure’s three commands
requires 3 entries of 4 words each, or 48 bytes. So, the to-
tal memory for this procedure’s code unit is (18 + 80 +
48) or 146 bytes1, 2.6 times the storage for just the source
characters.

The body for the second procedure in Section 5.1,
lreverse_with_while , is 131 characters. Its code
unit requires 55 instruction bytes. Its object table has
nine objects (for"" , "expr" , "llength" , "-1" ,
"$i >= 0" , "lappend" , "b" , "lindex" , and
"return") and requires a total of 261 bytes. There are
six commands so the command location table requires 96

1. This ignores any overhead words required by the heap imple-
mentation.

bytes. The total memory for this procedure is then (55 +
261 + 96) = 412 bytes, or 3.1 times the source size.

Note that five of the nine objects for this code unit are al-
located just to hold the names of commands to be in-
voked byinvokeStk1 commands. One of the benefits
of compiling commands into inline sequences of com-
mand-specific instructions is to reduce the storage need-
ed for programs. In this case, removing just those
command name objects by compiling the commands in-
line would save 155 bytes! The count of instruction bytes
would increase a little, but the code unit’s storage would
still drop to approximately 1.9 times that of the source.

These memory results are preliminary. The actual stor-
age needed for Tcl scripts will change as more com-
mands are compiled inline. I expect to look for further
opportunities to reduce memory requirements. For ex-
ample, it should be possible to find a more compact rep-
resentation for the command location tables.

8 Compiler status

At this time (May 1996), the basic support and infra-
structure for the new bytecode system is complete. The
dual-ported object support is finished. The Tcl core im-
plements six object types. Objects are passed to and re-
turned by command procedures and are stored in
variables. The compiler emits inline instructions for sev-
eral key instructions. Support routines exist that allow
newCompileProc s for commands to be added at the
rate of about one a day. The largest remaining item of
work is to compile Tcl expressions. Another large work
item is to support Tcl namespaces. The specific function-
ality for namespaces has not been decided, but it will
probably be similar to George Howlett’s proposal
[Howlett94] and Michael McLennan’s [incr Tcl]
namespace support [McLennan95].

Performance improvements to date are modest for most
code: about a factor of two for scripts that use expres-
sions or control structures (since these use expressions).
The fact that performance is significantly faster for
scripts that make heavy use of variables or lists is prom-
ising. The key reasons performance isn’t better for all
scripts yet include:

• Few commands have command-specific instructions
generated for them. A procedure call to a command
procedure is still being made for most commands.
Also, many objects are pushed, popped, have their
reference counts incremented and decremented just to
fabricate the arguments for the command procedures.
Appropriate instructions for each command will
reduce this significantly.

• expr isn’t compiled yet. Theexpr command is itself
used often and expressions are used in many control
structure commands.

• Too many little code units are compiled and executed.
This is primarily because control structure commands
are not yet directly compiled into a linear sequence of
instructions. As an example, anif command’sthen
and anyelse subcommands are compiled separately,
and are executed when theif command’s command
procedure recursively callsTcl_EvalObj on the
bytecode objects for their scripts. This results in extra
procedure calls and execution overhead as well as
extra storage use. This will improve when instructions
for those subcommands are emitted inline.

• Repeated compilations. This is because some
command procedures are still string-based and can’t
save the bytecodes of a compiled subcommand in an
object. Consider the following:

expr {$n*[llength $a]}

This is slowed today because the nested command
llength $a is recompiled, executed, and its byte-
code deallocated each time theexpr is evaluated.
This is becauseexpr does command substitutions on
its arguments, and recursively callsTcl_Eval . This,
in turn, compiles the expression but the code unit re-
sulting from the compilation is discarded afterwards.
This is a temporary problem that will end when ex-
pressions are directly compiled.

• Compilation is expensive at the moment. The cost of
compiling lappend pkgs "stdPkg" is about
twice that of executing it once. Most of the
compilation time is spent allocating objects for each
word or part of a word in a script. In this script these
are the words "lappend" , "pkgs" , and
"stdPkg" . When the compiler emits command-
specific instructions, most of these allocations will
disappear. But even now, the compilation time for
most realistic scripts is only a small part of their
execution time: a recursive factorial procedure
computing the factorial of five spends only 1% of its
time compiling.

9 Related work

Adam Sah’s TC system [Sah94] provided a speedup of
about 5-10 over traditional Tcl. His system introduced
the use of dual-ported objects. TC implemented lists us-
ing arrays of pointers much as I do. It also used reference
counts to decide when to free objects. Like our system
TC used reference counts to implement copy-on-write.
This minimized copying in procedure calls and saved a
considerable amount of storage. In an attempt to reduce

the cost of script execution, TC statically preparsed
scripts. This did not benefit most Tcl/Tk scripts since
most scripts require runtime parsing. Because of this, he
suggested instead caching the result of parsing, which is
effectively what our system does. His system also imple-
mented several other optimizations, including imple-
menting procedure frames as arrays and compiling
variable references into indexes. Unfortunately, Adam
Sah never released TC.

Forest Rouse and Wayne Christopher developed the ICE
Tcl compiler [Rouse95] that is available from ICEM
CFD Engineering. This compiler translates Tcl to C
code, which is then compiled. It speeds up typical Tcl/Tk
applications by a factor of between 5 and 20. ICE Tcl
tracks the dynamic types of Tcl variables in C code using
a mechanism similar to our object system. ItsTcl_Var
structure has fields for integer, double, list, and string
representations and includes a flag word that indicates
which of these representations is valid. Unlike our sys-
tem, more than two representations may be valid at any
time. This offers the potential for improved speed at the
cost of additional memory, greater complexity, and more
difficult use. One drawback of translating to C is the sig-
nificant expansion in application code size (a factor of
20-30 in some cases) and complexity of application de-
velopment. ICEM has announced plans to develop a
bytecode compiler to avoid these problems.

10 Why not use Java bytecodes?

If it proved feasible, using Java bytecodes to implement
Tcl would have a number of advantages. The Java virtual
machine is widely available (e.g., in the Netscape brows-
er). Using Java bytecodes might also simplify interoper-
ation between Tcl and Java code.

Unfortunately, using the Java virtual machine would be
too slow or take too much memory, at least with current
Java interpreters. The basic problem is the semantic mis-
match between Java bytecodes and Tcl. Consider the Tcl
set command. Tcl variables behave very differently
than Java variables. I can’t use a Java instruction like
astore (store object reference in local variable) to
store a Tcl value into a Tcl variable since it doesn’t han-
dle by itself such Tcl details as variable traces,unset ,
or global . The best I could do would be to translate a
Tcl set command into a sequence of several Java instruc-
tions that did the appropriate checks. Unfortunately, the
number of Java instructions to implement each Tcl com-
mand would make the compiled program too big. A more
realistic scheme is to generate Java bytecodes that call
one or more Java methods to do the actual work for each
Tcl command. With this number of Java method calls,
acceptable performance would depend on using a Java

machine code compiler. But these compilers won’t be
free.

Another problem is that much of the interesting code in
Tcl/Tk and its extensions is in C. Java code can call “na-
tive” methods implemented in C, and vice-versa, but this
is awkward and the capability is disabled in Netscape
(and probably most other Java implementations) for
safety reasons.

11 Implications for current script and
extension writers

11.1 Implications for scripts

Use lists. They are now even faster than arrays since in-
dexing elements requires no hashtable lookup.

You should not rely on the string representations of lists
having a particular syntax. That is, you should use list
operations likelindex to manipulate lists. Also, list
operations will now parse the entire list when converting
an object to a list.lappend , for example, no longer ig-
nores arbitrary text in the list it is appending an element
to. This means that you shouldn’t use list operations to
manipulate values that aren’t lists. Use string operations
to manipulate arbitrary strings.

Use braces around expressions, including those used in
control structure commands. This lets us generate inline
instructions to evaluate the expression without the need
to check for second-level substitutions that might invali-
date the code.

Put allglobal commands at the start of procedures.

The execution traceback information in error messages
will change. Since the compiler will generate inline in-
structions for what currently are recursive calls to
Tcl_Eval , error tracebacks will be somewhat flat-
tened. They should be more understandable, however,
especially since I should be able to include source line
numbers.

11.2 Implications for extension C code

Convert string-based command procedures to use ob-
jects. These will execute faster and will be able to take
advantage of type-specific operations that operate on in-
ternal representations appropriate for those types.

As described above, don’t use the list API procedures to
operate on values that aren’t lists and don’t rely on them
preserving white space between list items.

12 Future work

Much work remains on the compiler. This includes the
changes described above, in particular:

• Compile inline code forexpr commands.

• Implement the remaining changes for Tcl variables.
This includes compiler-allocated entries for global
variables, and betterglobal , unset , uplevel and
upvar support.

• Generate inline instructions for high payoff
commands. For example, I won’t immediately
compile theclock or history commands.

• Add namespace support.

I expect to release an initial version of the bytecode com-
piler about four months from now.

I have no plans at this time to do type inference for Tcl
expressions as done by David Koski [Koski95] and Guy
Steele [Steele94]. This can be very effective—David
Koski got speedups of more than a 1000 for some float-
ing point intensive Tcl code—but type inference is diffi-
cult to do correctly in a language as dynamic as Tcl.

13 Conclusion

I have described the design and current state of an on-
the-fly bytecode compiler for Tcl. I expect this compiler
to eventually improve the speed of compute-intensive
Tcl scripts by a factor of about 10. Part of the compiler’s
speedup derives from its use and support for dual-ported
objects and variables. Early results with the compiler are
promising but considerable work remains.

14 References

[Howlett94] Howlett, George. “Packages: Adding
Namespaces to Tcl.” Proceedings of the 1994 Tcl/Tk
Workshop, New Orleans, Louisana, June 1994.

[Koski95] Koski, David. “A Tcl Compiler.” Unpub-
lished class project report, University of Wisconsin, Oc-
tober 1995.

[McLennan95] McLennan, Michael. “The New [incr
Tcl]: Objects, Mega-Widgets, Namespaces and More.”
Proceedings of the 1995 Tcl/Tk Workshop, Toronto,
Canada, July 1995. Also described by the web pages at
http://www.tcltk.com/itcl/namesp.html .

[Rouse95] Rouse, Forest R. and Christopher, Wayne. “A
Tcl to C Compiler.” Proceedings of the 1995 Tcl/Tk
Workshop, Toronto, Canada, July 1995. A commercial
version is described byhttp://icemcfd.com/
tcl/ice.html .

[Sah94] Sah, Adam. “TC: An Efficient Implementation
of the Tcl Language.” Master’s Thesis, UC Berkeley
Dept. of Computer Science report UCB-CSD-94-812.
1994.

[Steele94] Steele, Guy. Unpublished Common Lisp pro-
gram that translates a subset of Tcl to C.

[Welch95] Welch, Brent. “Customization and Flexibility
in the exmh Mail User Interface.” Proceedings of the
1995 Tcl/Tk Workshop, Toronto, Canada, July 1995.

